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Abstract

We introduce a new class of higgs type fields {U, U¥, U} with Feynman propaga-
tor ~ 1/p*, and consider the matching to the traditional gauge fields with propagator
~ 1/p? in the viewpoint of effective potentials at tree level. With some particular
restrictions on the convergence, there are a wealth of potential forms generated by the
fields {U,U*, U}, such as: (1) in the case of U coupled to the intrinsic charges of
matter fields, electromagnetic Coulomb potential with an extra linear potential and
Newton’s gravitation could be generated with the operators of different orders from
the dynamics of U, respectively; (2) for the matter fields, with the multi-vacuum struc-
ture of a sine-Gordon type vector field A* induced from U, a seesaw mechanism for
gauge symmetry and flavor symmetry of fermions could be generated, in which the
heavy fermions could be produced; besides, by treating the fermion current as a field,
a possible way for renormalizable gravity could be proposed; (3) the Coulomb poten-
tial in electromagnetism and gravitation could be generated by an anti-symmetric field
strength of U¥, when it’s coupled to the intrinsic charge and momentum of matter
fields, respectively; and, except for the Coulomb part in each case, there is a linear and
a logarithmic part in the former case which might correspond to the confinement in
strong QED, while there is a linear and a logarithmic part in the latter case which might
correspond to the dark energy effects in the impulsive case and dark matter effects in
the attractive case, respectively; besides, a symmetric field strength of U* could also
generate the same gravitation form as the anti-symmetric case; (4) a nonlinear version
Klein-Gordon equation, QED and the Einstein’s general relativity, could be generated
as a low energy approximation of the dynamics of U, U* and U, respectively; more-
over, in the weak field case, the gauge symmetry could superficially arise, and, a linear
QED, linear gravitation and a 3rd-order tensor version QED could be generated by
relating the field strength of U, U* and UM to the corresponding gauge fields, respec-
tively; (5) for the massive {U,U"}, attractive potentials for particles with the same
kind of charges could be generated, which might serve as candidate for interactions
maintaining the s-wave pairing and d-wave pairing Cooper pairs in superconductors,
with electric charge in the U case and magnetic moment in the U* case as interaction
charge, respectively; etc.

PACS Numbers: 11.10.-z, 11.15.-q, 11.90.+t, 12.10.-g, 74.20.-z, 74.20.Fg, 04.50.Kd

*rui-chengli@Q163.com
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1 Introduction

As a very successful theory, the gauge field theory with the gauge invariance principle could
be used to solve a huge part of questions for people. Certainly, there are some challenges
to the gauge theory: one class about the extension for methods of application, such as the
ones for non-perturbative problems; another class about the extension for new phenomenons,
such as the ones for new particles or dark matter/dark energy effects; with an inevitable old
topic about the unification and renormalization.

It’s just the linear potential from the non-perturbative results in lattice gauge theo-
ry [I] that motivated us to consider a fourth order differential equations (D.E.). And,
mathematically, a most straightforward way on the extensions for new particles could be
related to the higher order D.E., generally with a trouble on dealing with the redundant
unphysical /noncausual degrees of freedom (d.o.f) and an omittance/ignorance on the non-
perturbative and unification problems. So, it would be significant to modify the higher order
D.E. framework to cover the three sectors mentioned above, even with some man-made pos-
tulations or constraints. That is just what we have done in this paper.

In this paper, we have taken some postulations to construct our model within the 4th-
order D.E. framework, mainly for the convergence(renormalization) and a reasonble perfor-
mance on matching conditions of the model. For simplicity, we have concentrated our studies
on the pro forma feasibility of the model in the view of effective potentials at tree level.

The remainder of this paper is organized as follows. In Sect. 2,3,4, we build the dy-
namics for the massless scalar, vector and tensor fields, respectively, in the 4th-order D.E.
framework. In Sect. 5, we extend the models to a massive case and apply them to discuss
the superconductor. The final section is reserved for our conclusions.

2 Field U

2.1 A Lagrangian for linear potential
2.1.1 Framework: effective potentials for tree-level

We can get the classic non-relativistic (NR) potential form from the amplitude of the tree-
level “2— 27 scattering process for a perturbative theory, within the Born-approximation
framework, for instance, we can take [2]

(vertex), ® (inner-line propagator) ® (vertex), < V (1)

where the Lh.s is a part of the amplitude for a tree-level Feynman diagram, and the r.h.s
is the classic potential. So, conversely, we can build theories for potentials with a definite
form through the tree-level-correspondence, provided that the theories are perturbatively
computable. For example, if there were neither momentums nor coordinates in the Feynman
rules of vertices, we would extract different potentials with different inner-line propagators,



such as:

. . 1
linear potential < —.,
p
) 1
Coulomb potential «+ —,
p
1
van der Waals potential <> —  with oo <a <2. (2)
pCl{

2.1.2 A Lagrangian for linear potential

We firstly write a Lagrangian, and then give the illustrations in following subsubsections.

We take {U, 1} as the physical particle degree of freedom(d.o.f), which have the trans-
formation law under a U(1) global group element V' as

U—=VUVT, = Vi, (3)

and, with the method in Section 2. I.1], for a propagator ~ 1%’ we take the Lagrangian with
Lorentz symmetry and the U(1) global symmetry as

£:£U—|—£¢+£1, (4)
where the kinetic energy term
Ly = —0"0"U'0,0,U — AL[(U + U +4i(U - UN] +m{UU
with Uu<i, (5)

is for free complex-valued field U{l the term
Ly =i —my)y (6)

is for free particle ; and,
L1 = —aQAB(U+UY)+i(U U
—BQUIU +U") +i(U - U]y
~0Q 0Ll + UT) + iU — UN)(5i T )

QI + U (U~ U]

+...(higher order 3-field terms)

Q10 {7 U]+ AU T U]+ G )} v

+...(higher order multi-field terms) (7)

is for the gauge invariant interaction term under the condition of (B]), where the “...” denotes
terms for multi-field and higher order operators. Each of the coefficients {a, 3, k} takes a real
number value for the sake of hermitian; and, () is an operator corresponding to the generator
of gauge group, with (Q) = £|Q)| for particles and anti-particles respectively. Particularly,
in the simplest case, for the sake of universality, we can take

a=f=p=E=n=gy. ®)

IFor a non-Abelian version of extension, the terms would be taken a trace of the “charge” indices.
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For the parameters A and M, referring to Wilson’s scheme for renormalization, we can
propose the postulation as:

(i) each U(rather than OU) is tied with one small I.LR. energy scale A, so the operators
constituted with multi-U would be spontaneously depressed;

(ii) all the higher-dimensional(D > 4) operators are depressed by the large U.V. energy
scale M. B
And, the variable A and M for balancing the dimension is set to be

A:/L[R@)O, M:,MUV @)MEWN246G€V (9)

where 7 is the infrared boundary(but not the cutoff 1 in next sections for dealing with I.R.
divergences of loop level processes), and M the ultraviolet boundary for the theory. The first
reason for taking a so small u;p is the fact that the linear potential hasn’t been detected in

the real QED sector. For the correspondence between p;r for U and pyg(or pyy) for QED,
we won’t consider in this work.

Since both p = 0 for a complex field and p = O for a real field are hermite, the two
interaction forms

Lr=—ap(U+ Uy — po(U + UM, (10)

and
Ly = —apli(U — UMy — Byofi(U — U]y, (11)

are both hermite and right. Indeed, we can have

vt iU-UY
— U1, 2

UEUl—’iUQ,:> =U,. (12)

that means, both U; and U, include the effects from both U and UT. For future convenience,
here we obviously write down the interaction Lagrangian for Uy, as

L = ~aQATUW — BQIPUW — pQ 0PIV + . (13)

and, contributions from Us; should combine rather than cancel with that from U;, otherwise,
the introduction of U would be trivial.

We don’t consider terms as
L =—alA 8“U11/;[0MV(7“ — 0"y (14)

in this work.

2.1.3 On the 00U term (I): no 90U, in kinetics term!

Each one of the {U, 90U, 90U} could be well-define and be taken as the block for constructing
Lagrangian terms. However, there are two questions to answer:
1. why is OU absent in the kinetic energy term?

2If we offer a 1/M factor for every @ symbol in all the interaction terms, the linear potential would be a
dominated part of the interaction since all other interaction terms are depressed, which isn’t consistent with
the real world.



2. which one is the canonic commutator, among [U, U], [U, U] and [U, dU|?

Firstly, we should note, these are two isolated questions. In a word, for a block-variable,
its appearance/absence in the kinetic energy term is irrelevant with its appearance/absence
in canonic commutator. For instance, for a massless scalar field A, one of its canonic vari-
able, the field variable A itself as a well-defined d.o.f., doesn’t appear in the kinetic term,
while for a Dirac field v, its canonic variables ¥ and ¢ both appear in the kinetic term.

Secondly, it’s not incomprehensible for the kinetic energy term with four derivatives: now
that the kinetic energy term of Dirac field could include only one derivative rather than two
for the case of Klein-Gordon fields, the number of derivative in kinetic energy term could be
possibly as many as it needed. So, we could say, which variables and how many 0 operators
appear in the kinetic energy term could be irrelevant with the ones in canonic commutator,
and, it’s allowed to construct the kinetic energy term with the 00U variable; or, we could
say, the E.O.M is the very core for a field, rather than the kinetic energy term which could
be constructed according to the E.O.M. Besides, the stress tensor for a block of continuum
material is not completely equivalent the acceleration of a particle, that is,

9,0,U # 9%g,,U . (15)
Thirdly, for the Question-1, the term
(0U)? and UT00U

could not appear in our model, since it would give a term dOU in the E.O.M so a propagator
form ~ 1/(p* — p?). However, due to the singularity(pole) structure, we can’t get the same
results for the two propagators, ~ 1/(p*) and ~ 1/(p* — p?). Besides, if the E.O.M is not
the form p*U = m*U, that might break a generalized “charge” symmetry, see Sect. L0l
So, we could only take QU to construct the kinetic term rather than oU.

Fourthly, for the Question-2, if we asked, “for variables at different level, such as a field
U and its derivative {OU, 99U, ...} or integration { [ U, [ [ U, ...}, which ones could be the
well-defined blocks for constructing the canonic commutators, E.O.M and propagators, in-
teraction terms for d.o.f?”, then, at least we can say, for different successful frameworks,
the matching among them should always be realized, and their results should be always
equivalent in the matching region.

2.1.4 On the 00U term (II): in the viewpoint of continuum medium

A particle is a field, and a field should be a field much more.

Based on the continuum mechanics theory, the stress tensor, a second order tensor,
completely define the state of stress inside a material. So, if the velocity(momentum)p” are
treated as canonic coordinates for a particle, the stress tensor(energy-momentum tensor)
TH ~ ptp” should be reasonably treated as canonic coordinates for a field. In other words,
if the canonic momentum operators of particles are treated as the blocks for construction of
the wave equations for particles, such as in relativistic quantum mechanics

p¥ = mV, p°® = m>®, ....(higher order D.E.), (16)



where “D.E.” denotes differential equations, then the canonic momentum operators of fields
should be treated as the blocks for construction of the wave equations for fields, such as

TV = m?¥, T?°® = (m?)?®, ....(higher order D.E.). (17)

The E.O.M is contained in the continuity equation for a particle current, as [2]

" = 0,
JH = put = TiorD — 0" DTP = 0rD = prd , pH = moH (18)
LI, _P0 = b = m2d = pF =+, (19)

where we take directly a square for each operator to get the Klein-Gordon equation for a
relativistic extension. So, under the correspondence, the continuity equation and E.O.M for
a field should be as

0,0,T" = 0,
™ = (p+puru” +pg"” (symmetric tensor)
oL
— Mbo — g™ L
00,00 7

= (0u0' 0,0+ 0,0'0,0) — 9" (020106 — m*' )
= ¢ [?M + 0,0, g"(0 0" - m?)| ¢
= 6 [(10,i0,0 + i0,i0,) — g (104i0" — m?)] 6
= i0"i0"¢ = p'p’¢,p’—m’ =0
(square

bard) gy = p*U =mpU = p* = £m7; (20)

where we also take directly a square for each operator to get the relativistic extension.

2.1.5 On the 00U term (III): in the viewpoint of anti-particle

Although there exist acausal solutions for differential equations with orders higher than 2, see
Ref. [4], we can just omit them by treating them as non-physical (or, frozen) d.o.f, or, treat
them as effects of hidden new degrees of freedom (existent but can’t be directly measured
for some reasons, such as being confined or spreading to the higher dimensions) beyond the
standard model(SM) in particle physics; the latter one case is just what we want to propose,
as discussed in Section 217

Only on the viewpoint of mathematics, the general solution to ([B9) could be the form

U(z) = c1e®P™ + coe™ % + c3eP™ + cye P, (21)

which could be converted to a particular solution with a specific boundary condition. How-
ever, we can write the E.O.M in another form,

p'U(x) = [p*@(2)]* = [p°®(x)] - [p°® ()], (22)

with the correspondence for ® to ® here is just like a generalized version of the case that the
anti-particles 1 associated with the particles 1, which also arised from the treatment that
the Dirac equation was formally from the square root of the Klein-Gordon equation. Besides,



we can see, if the E.O.M is not the form p*U = m*U, then that might break a generalized
“charge” symmetry between ® and ®, as mentioned in Sect. 2.1.3 We can denote that as

O(x) ~ (1)
= K-Geq =[Diraceq. |*, (23)
Uz) ~ (00)
= U-eq. =[K-Geq. ]*. (24)
Then we can have the new E.O.M
PPPd = m%]q) = O = 1PT + cye P (25)

for the ordinary physical d.o.f, and

PP = —m%]CAf), (tachyon/higgs) (26)
& —p*® = m?®, (phantom) (27)
=& = 3" 4 cue Pt (28)

for the so-called unphysical d.o.f: the tachyons in (26]), with an imaginary number valued
mass [5], and the phantoms in (27)), with a negative kinetic energy [6], respetively.

Now, we can understand how to deal with the divergence part cze?* + c4e?* in ([2I)):
they could be limited as serving for the two particular cases of boundary conditions, that is,
the tachyon/higgs/phantom /instanton solution,

€p0x0 ) 9(—1’0) + €,p0x0 9(1,0): . [efip-m + eip-m] : (29)
g (—a®) 4 -6’(260): O(x), (30)
or :ep%“ 0(—2°) + e P02° .g(xo): [P 0(—z) + e P f(x)] (31)

with C' a constant function.

Methodologically to say, wherever an infinity exist, it might be the place to discover new
d.o.f. Or, we can take a generalization for the “pair” concept. For example:

a. the zero-temperature point , T' = 0;

b. the light-speed point, ¢ = 1;

b. the critical point for cosmological state parameter, w = 1, see Ref. [6] [7];
all of them could not be reached, but could be crossed by skipping it, with the introduction
of a pair of some kind of conjugated “charges” for the two sides of the critical boundary, as:

a. the magnetic moment in a ferromagnetic system, leading to a generation for states
of negative-temperature, with the critical boundary "= 0" and T = 0~ still could not be
reached;

b. the tachyon, leading to a generation for states faster than light, with the critical
boundary ¢ = 1% and ¢ = 1~ still could not be reached;

c. the phantom, leading to a generation for states of negative pressure, w < 1, with the
critical boundary w = 17 and ¢ = w™ still could not be reached.



2.1.6 On the 00U term (IV): hints from the lattice gauge theory

In fact, the term U in (7) has been formally introduced in the lattice gauge theory ,
though Eq.([B03) by setting a finite minimal € = a - 0 for the space size, that is, [I]

WDy =~ [+ en) — () + (1~ U)b(a)]. (32)

And, there is a kind of orthogonal relations for the Wilson line U;;, as the functional inte-
grations below:

1
/[dU] Ui =0, /[dU] U,UL = RILE (33)
where the indices ijkl denote the lattice grid points.

Besides, as what shown in the computation, it’s just the employment of the Wilson loop
Up that ensured the availability of lattice gauge theory, while the usual concepts for the
gauge field A in perturbative quantum field theory were almost unavailable and absent.

It is just these subtle hints that reminded us the importance of Up, and inspired us to
consider a field U, with a hidden correspondence of

UP—>U, (34)

rather than the gauge field A as a possible effective particle degree of freedom, which might
even be a more general concept for all g-valued cases. And, since the field U is corresponding
to the Wilson line Up(y, =), which could visually be seemed as a propagator of a particle in
the lattice, B

U~ Up(y,z) ~ (20), (35)

so it’s not difficult to understand that the E.O.M of U is the square of K-G equation, as

shown in (24)).

Some details in the lattice gauge theory

However, since U wasn’t treated as a particle in Ref. [I], the term Ut in lattice gauge
theory is essentially different with the one in (7)), for instance, there would’t be an appar-
ent kinetics Lagrangian for a particle U (nevertheless, that surely doesn’t matter with the
employment of functional method, which is also available in the semi-classic framework). In-
deed, in the derivation of the linear potential in Ref. [1], the field A (equivalently, the U) was
treated as a classic field without free excitation modes, besides, with the gauge invariance
of Up, the Lagrangian were parameterized as Lguon ~ Lgiuon(Up) for gluons, and S ~ Up
for the total action, which could also be said that, the Lagrangian of a “free particle” U was
chosen to a nonstandard Lagrangian as

S~Up = Ly~*U+U), (36)

after a correspondence of Up — U.

Besides, from the parameterization S ~ Up in semi-classic sense in Ref. [I] we can know:
if Up was quantized, so would be the action S! However, we should note that, although Up
could be a particle degree of freedom, S couldn’t be, since S would change its form after
quantization, for instance, it would be constituted with multi-field coupled terms including

the block Up as a field!
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Figure 1: Self-interaction potentials for the field U and A.

2.1.7 On the mass term: more than higgs!

Why do we define UTU < 17

U is a special higgs field.

Firstly, U is a complex-valued field rather than a quaternion, so it has only two compo-
nents. For a potential V (U) with the form as the line-“a” in Fig.{I}(1), which is defined only
for [U| < 1 rather than for all the U field configuration, we can treat U as a field including:
a radial-direction component U,., and a angular component Uy as the conventional field(the
Goldstone boson).

Secondly, for a higgs field U with a potential form as the line-“b” in Fig.{I}(1), we can
generally decompose its radial-direction component to two fluctuation: a stable(physical) one
based on the stable vacuum (minimum of the potential V' (U)), and a unstable(unphysical)
one based on the unstable vacuum (maximum of the potential V(U)); the former one could
be seemed as the traditional excitation of “higgs particle”, and the latter one would be “die
out”. Here, the most important point is, how to consider the U,.? For the case of line-“a”,
we can surely treat U, as the former one, however, now we can also treat U, as the latter
one, since now U, can keep exciting at the point of U = 0 without a “death” (which would
happen in the case of line-“d” in Fig.{I}(1)), which could be more reasonable in the strong
field case.

We will take the latter one choice, as discussed in Section 2. I1.0l So, now, we needn’t
give too many query to the sign of the mass term in (B). We can say: yes, U is a kind of
higgs-type field, and U does have a nonzero VEV, however, the U field (with p*U = m*U)
is not a traditional higgs field (or, tachyon, with p>U = —m?U, see (28])). The choice for the
sign of the mass term is very important and crucial for our following work.

2.2 The kinetics of U
2.2.1 The equation of motion of U
By the Euler-Lagrange equation [3]
oLy oLy

Ly -
o~ a0 T ama,m = (37)

3Indeed, we can define UTU < wg, with vy a constant.



from (B) we can get the equation of motion(E.O.M) of U, see Appendix [D]

—040"9,0,U = —m{U + A}, (38)
& —p*U = —mjU + Ay, p = i0", (39)

and the dynamical E.O.M for U, see ([BG8) in Appendix [D] as
—'U = —m{U + AL+ aQA Y + ... (40)

So, that means, the media field U would only be influenced by the “scalar currents” of the
matter field, but not the vector currents, which is fit with the common sense.

The appearance of term (U + UT) must be in the combination with the term UTU, by the
requirement for a stable vacuum, and, the role of term (U + UT) is to provide a shift for the

position of vacuum, as
v A Yo ALY A
i U (oL
U U U

2.2.2 The canonic commutator and propagator

V(U) =AU +UY —miUU = —my, (41)

Please pay attention to the free propagator! There are two crucial problems about it:

1. whether it’s reasonable for the application of the traditional canonic framework with only
two canonic variables to a 4th-order D.E.?

2. how to construct the canonic commutator for U, especially, how to decide the “+” sign?

Firstly, if we crudely copy the tradition of the procedure for P-2 type field theory, then,
according to the custom on the choice of “+” sign in classic Poisson bracket

[pi, x5 = —idy; (42)
and its quantum version for scalar field
Ui(=, 1), Ui(y, )] = —id® (z — y), (43)

we just need assign the canonic commutators below to quantize our model:
Postulation

02U, 0), Uy, )| = —iP(@ —y) (44)
L0 U@ )00t~ |Au@ ) Ay D)| = igudP@—y),  (45)
others = 0. (46)

Formally, maybe we can understand (44)) in another viewpoint (43), where U ~ 1 + ien,A*.
Or, maybe we can say, the Lagrangian should be originally constructed with the block

000U, as

L = +0,U-8°0"U +mjUU = 8,U0,8""U + my;UU
= 0,(0,U0"0"U) — 0,0,U0"0"U + my;UU (47)

and then modified to the from in (H),

L — —0,0,U0"0"U +m{UU , (48)

9



where the derivative term in (47)) was dropped. And, with the corresponding Euler-Lagrangian
equation

0Ly _ aaauayaﬁiff =0, (49)

0Ly 0Ly
0 0.0 200, 0,0)

ou - Ma,U) T M 9(0,0,U)

we can get a definition for the “canonic momentum” as

m(x) = Oy _ = +0°0"U , (50)
oU

just the one in (44)), with the Hamiltonian form

H ~ +/d3a:7r(w)U(w) — Ly . (51)
Secondly, by inserting one of the definition (“physical version”) of propagator (U = U

for simplicity in this subsection)

Dp(z —y) OITU(x)U(y)]0)
0(a" —y*){O[U(2)U (1)0) + 0(y" — 2°)(0|U (y)U ()|0) (52)

into the E.O.M, we can verify its correctness, as

—(0" —=m*);Dp(z —y) = (0" —m").{0|TU(x)U(y)|0)

= —{(@" —m") [0(z" — ") 0|U(2)U(y)|0)]
+( —m") [0(y° — 2°)(0U ()" (2)[0)] }

= —{0"0(" =) - (U (@)U (y)|0) + 40°0(2" — y°) - D{O|U (x)U (y)|0)
+60%0(2 —y°) - *(0|U (2)U(y)[0) + 400(2” — y°) - *(0|U(2)U (y)[0)
+0(2" —y") - (0" —m* )(0|U(=)U (y)|0)
+010(y" — 2") - (0|U(y)U()[0) + 40°0(y" — ") - 9(0|U (y)U (2)|0)
+60%0(y" — ) 82<0|U() (2)]0) +400(y° — 2°) - 0°(0|U (y)U ()]0}
+0(y" —2”)(0" —m*) - (0|U(y)U(2)[0) }

= —{5/ («® = 3") - Ol[U(2), UW)]I0) + 48" (2° — y°) - O(0[[U (), U (y)]]0)

+60 (2 —y) O*0|[U (), UW)][0) +45(" — y°) - 9*(0|[U (), Uy )]|0>}

= —{-0(a"—y") - 30|[U(x), Uy )]|0>+4<5(:c —y") - 9*(0[[U(x), U(y)]|0)
—60(2" — ) 83<0|[ (2), U(y)]|0) +48(z" — y°) - (0] [U (), U(y)]|0) }

= —{5(fv°—y°)-<0|[8‘°’U(x), U(y)]|0) }

= +idW(z —y), (53)

with the condition that § (2° — ¢°) and & (2° — y°) are odd functions with respect to o,
and the relations on d-functions:

/ TS ele)de = [, - / " by () do = — / T b)) de,  (54)
dx

/_Za”(x)so(a:)dx = —/_ZcS'(x)cp/(x)dx:/_Zé(x)¢”(x) (55)

/_ Z §"(z)p(z)de = — /_ Z 8" ()¢ () dx = /_ Z §'(z)¢" (z) dz = — /_ Z 5(2)d" (&) dx
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That means, Dp(x — y) is really the propagator of U. We can get the Feynman propagator
D through its another definition(“mathematical version”), that is, with an equation for
DY’ from the E.O.M in (BIH0) or (368)) in Appendix [D] by setting Ay = 0, we have
—(0* —mi)Dp(x —y) = i6W(z —y), (57)
oo —(p'—my)Dr(p) =i, (58)
with the solution in momentum space
—1 —1

Dr(p) = — hen Ay = 0 59
#(p) pt—mi +ie  (p?+md —ie)(p? — mE + ie) (when Ay ), (59)

for my # 0, or .
—i

:p4+ie

Dp(U) (60)

for my = 0.

So, the “—" factor in the E.O.M BIFUE3EY) is very crucial, which represents the sign
of the mass term in Lagrangian, and, without the “—” factor, everything will be different!
After all, the U here isn’t the traditional scalar field.

Besides, please pay attention to the poles in the propagator. The position and residue of
a pole is crucial for the calculation results. For a general case, a contour integration in the
p° complex plan would be equivalent to a complex integration fj;o dp® + f_tfoo dp®, however,
if we transfer the imaginary unit 4 in ip° to i2° through the product p- 2 in e=#% and treat
iz" as the temperature 7', then, in a zero-temperature field theory, we can omit effects of
the two poles {iEy + ¢, —iEy — €}, with Ey = /p? + mi, the energy of U. Otherwise, if
we just rudely choose to detour the two poles, then our model would not give the results for
superconductor in Section Bl Besides, for the my = 0 case, it’s much more convenient for us

since we can reduce the four simple-poles to two double-poles or just one quadruple-pole.

For convenience, we would call the model for U defined in the E.O.M p'U = m{,U as a
“P-4” type, and the traditional model for U defined in Klein-Gordon equation p*U = m# U
as a “P-2” type.

2.3 Interaction I: coupled to intrinsic charges, QED?

A linear potential for strong QED?

At the beginning, we set the variables of the particles below:

pP= (m,p), k= (m7 k)v (61)
pr=(mp), K=(mk). (62)

For the non-relativistic approximation, we have the relations for kinetics variables as

, o (NRlimit)

g=p —p=q¢ =0 —p) —|p' — p|* + O(p*), (63)

and

’

_g s ss’  —s s (NR limit)
a® (p')u’(p) = 2md™, @’ (p' )y’ (p) ——=

vH2ma* . (64)
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Suppose that the scattering is between a pair of particles with different kinds of charges,
denoted as ()1 = —@Q)2 = 1, that is, here the couplings a9 = a2, and ;2 = Q1 2, then
we have the complete amplitude for Fig. @-(a), ad]

iM, = @i(Aay + Brig)u - ;_Z ~ai(Aay — Boig)u’

12

_Z. / !
?i(Aal + B17,1¢" )i(Aay — Bay,iq”)2mé™ 2md™

—1 . v ss’ rr/
— [N aqan — iNazBivr — a1Bavs) - q — BiBevu " q”] 2m8® 2mé

12

7
. 2 1 . 1 00 1 ss’ rr/
= —|—A (ozlozg)—4 - ZA)\ozlﬁg—g + 51829" 5 2mo** 2mo’" .
q] [q [q
(65)
where
(aefrv1 — a1 favs) - ¢ = o Ba(vy — v2) - ¢ = a1 Ba|q], (66)
for the reason of asf8; = a@Q260Q1 = a@Q15Q2 = o132, and we define
(v — ) g=v12-q=Ng|, —00 < XA < +00, (67)
or
Vig ¢ = Aalgl, A=A — Ag, —00 < A\j o < +00, (68)

and, particularly, for v;5 = 0 case, A = 0, and, for NR case, A ~ 0.

The amplitude M should be compared with the Born approximation to the scattering
amplitude in non-relativistic quantum mechanics, written in terms of the potential function
Vie): 2 N

iM ~ NPT |p) vk = =iV (q)(2m)6(Ey — Ep), (@ =p" —p). (69)

By dealing with the kinetics factors as 2mé**" — 6°" and (27)6(Ep — E,) — 1, we can have

V(q) = —A2<a1a2>ﬁ 4 m#, (70)

where the A\ term in (65) was dropped according to the optical theorem, and the inverse
Fourier transformation

V(z)=F'[V(g)]. (71)

With the formula in Appendix [Bl we can get the potential form for a pair of particles with
different kinds of charge, as
ANayay B152
T+ .
8T Ay
There is a linear confined potential for the a;as > 0 case, which might be corresponding to
the confinement for strong-coupled gauge theory.

V(r)=+

(72)

4For simplicity, here we can only consider the contributions from Uy, and, for the contributions from Us,
the result just need a double.
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2.4 Interaction II: coupled to momentum, gravity?

Could the term OU serve as gravity?
For the interaction term
1, 1 -
Lroory = —aQ " AYUY — pQ MQ/J@@UNP, (73)

which was extracted from the total Lagrangian (), as the case for (I0I]), we can write the
corresponding part for the amplitude with the Feynman rules as

—1

iMyyooy = us/(k:’)i(an_lA+pQ1%i¢jiyj)us(l€) =

W ()05 A+ pQu (il (7)

_ , (g2 ’
(Q1=Q2) — 95 (k‘,)’L(Ole_lA)us(k‘) ) Z(qQ4) T (p,)i(pQQ%)UT(p)‘F---
A ' ,
= 20 (K)i(oQr ) (k) 0 ()i(pQa)u (p) + -
- 2% : [iMCoulombflike] + ..., (74)

which was indeed a weak version of Coulomb-type potential (depressed by %) but attractive
for particles with the same charge so could be a possible candidate for Newton’s gravity.
Maybe this could give an approach to unify the electromagnetic force and the gravity. For
detail, if we set A = % ~ 107" GeV with L ~ 10''1.9y. corresponding to the size of universe,
with the ratio of Newton’s gravity force F; and the Coulomb force Fi,

Fq me\ 2 €2 e?
e () G k| =107 75
=0 C) 5 ™
where m, is the mass of electron and k ~ 9 x 10°(N - m?* - C~?) the Coulomb constant(in SI
unit), then we have

M ~ 10°GeV (76)

by a lucky coincidence at the order of E.W. energy scale! See ().

If this is true, we might say, the the smallness of gravitation constant G' comes from a
depression of the I.R. energy scale A or the size of universe. And, of course, directly to see,
the two couplings in (I72]) and (203) would spontaneously become equal at a large enough
energy scale, so a unification would be realized.

2.5 Comments on the potentials: Unification I

If we combine the potential terms in ({24 ), then, we can say, the field U could provide a
wealth of interaction information, such as:

The list of potentials generated by U
1. there is a linear impulsive/confined potential (for the ayay < 0 and ajas > 0 case,
respectively), which might be corresponding to the dark energy effects [6] [7] or the confine-

ment for strong-coupled gauge theory; surely this term would be depressed or enhanced by
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the energy scale A.

2. (Unification I) there are two Coulomb-type potentials, which might be correspond-
ing to the ordinary Coulomb potential and Newton’s gravitation; that the two kinds of forces
appear in a single model with a relation on the coupling coefficients, might be seemed as a
kind of unification;

Some notes for the potential

3. the special relativity (SR) effects are automatically served by the spinor basis u*(p).
Since the coupling 3 is dimensionless, this theory would be a U.V. renormalizable one in
the sense of superficial degree of divergence(or, in the dimensional regularization framework).

4. apparently, with different settings for the parameters, different part in the total po-
tential would be the dominant part.

5. the linear potential would not influence the transmit of the free photons since the pho-
ton is a kind of source-free field, but the hyper-hyperfine structure of the optical spectrum
of atoms would be influenced.

2.6 Renormalization: depression for higher-order processes

Postulation Amplitudes for all higher-order processes are depressed by I.R. renormaliza-
tion, even couplings «, > 1!(Renormalization IT)

/

k/ p/ k/ l p/ k/ p /h
1,1 o 7
' e ‘

\ - - - >

l—q
]J p K Pk p
(a)

(0) () (d)

Figure 2: Some Feynman diagrams for higher order processes induced by the 3-particle
vertices.

2.6.1 Ladder loop level: a infrared cutoff

When g — oo, rather than doing perturbative expansion in 1/g power series in the neigh-
borhood region of g = oo, we will show that in some particular cases we can directly do the
expansion in g power series.

In the approximation k ~ my ~ 0 and k' ~ k, with the leading order (LO) interaction
terms in ()

L= —-aQAYUY — BQUIUY (77)
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the amplitude corresponding to the vertex correction part of the loop diagram in Fig. 2}(a)
can be written as(for the loop integration formula, see Appendix [C))

iM, = /<dl)4 li( b+ Bl g l. i(a 1A+ﬁlg)/#i(alA—W)
A i1+ my) ith—J + my)
—l/@)4ﬂ<1A+@m( e+ A e 3

e x| e+ A+ A (Dl - 4

d*l agl® + azl® + aol?
- [ / )4 : l4l3—k:) : }(alAJrﬁl!’j)

Sy NI TN
e (55) 5 (2) 2 ()] -

There are both ultraviolet divergences and infrared divergences in this integration, however,
it’s renormalizable, with a dimensional regularization for the ultraviolet part and a cutoff for
the infrared part. Here, if we can renormalize the magnitude of the amplitude for the loop-
level to be smaller than the result for the tree-level in Fig. d(a), and ensure the magnitude
becomes smaller and smaller as the loops becoming more and more, then, the theory would
be “perturbatively” computed “loop by loop” (attention: it is not equivalent to “order by
order” in the power of {«, $} here).

For instance, reminding the second factor in (78 is just corresponding to a single vertex
for the tree level, if we impose a very large u (say, p > «A) as the infrared cutoff, the
amplitude in (78) could indeed become smaller than the one in (65]) for the tree-level. We
can take an example to show the reasonableness for this statement, in the viewpoint of the
relaxation time: the stronger interaction, the short relaxation time, so the larger character-
istic momentum scale.

The amplitude of the loop diagram in Fig. 2-(b) can be written as

iMy = [ i+ A i(onA + i (f — D)

T Ot u"i(co\ — 5#)mi(a1/\ = Buld = )"
I y—l+my — )
- [ G+t g A+ A )
1T, F+l+my

(A = B — )

¥

.F.qu (&2A—52/l)<k/+l)2_

/ d* bgls +bsl® + ... + byl + by
(27’(’)4 a0l12 + a1111 + ...+ CLgl4

2mo*s 2mo’ . (79)

Apparently, it’s hyper-renormalizable in the ultraviolet region and non-renormalizable in
the infrared region for this integration, that is, there isn’t ultraviolet divergences but only
infrared divergences in this integration. Here if we impose a very large u (say, u > aA) as
the infrared cutoff, the amplitude in (79) indeed becomes smaller than the one in (G5) for
the tree-level.
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2.6.2 Higher order tree-level: kinetics/dynamics equivalence

The amplitude of the loop diagram in Fig. PF(c) can be written as

iMC ~ ’iMa : ’i(OzlA —+ 61%) (80)

i
P+l —my
The result can be used to describe two cases: (1) the amplitude indeed becomes larger for a
many-body system, which should be in a bound state (or Bose - Einstein condensate state),
with the same momentum for all the particls, like the case in Fig. [2(d); (2)the amplitude
could be “depressed” after the renormalization of the collinear divergences, for instance, one
can introduce a cutoff for the phase-space parameters to avoid the collinear divergences,
which would give an effective depressed factor for the physical cross section, and, the more
particles, the more depressed factors. (Renormalization IIT)

Anyway, for some particular cases, in which the effective expansion factors could be
“renormalized” to be smaller than 1 after the renormalization to the infrared divergences
(through an introduction of a large energy scale) and the renormalization to the collinear
divergences (through an introduction of a constraint on the kinetics phase space), the the-
ory would be “perturbatively” computed “order by order” formally in the power series of
the couplings {«, 8}, and, maybe we could say the theory is formally non-perturbative but
practically perturbative.

& the multi-particle vertices

K I p K p
4
RASRN l{/ N AR
N 4 \ q 4 S €« 7 +_**
N~ <~ - > — \ Aoy
[7(] A L -~
k p k p 4
(a) (0) c d)
\ +,>~‘
/*/j\ 5*: -7 -]
> > -
\‘ - AL o
~ S, -
\ ~ -
(e) (f) (9) (h)

Figure 3: Some Feynman diagrams for loop-level processes induced by the multi-particle
vertices.

For the amplitude in Fig. B}(a), with the 4-particle coupled terms in (7)), we have

d*l I 3 I [
i./\/lafv/ 4a4 + az 4+a_2 :ra1 +a0. (81)
(2m) 1l —q)

Apparently, it’s hyper-renormalizable in the ultraviolet region and non-renormalizable in the
infrared region for this integration, as in the case of ([[9).
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2.7 U out a nutshell: the generation of a nonlinear K-G equation

1. We can generate a Klein-Gordon equation for ® ~ /U.

Mathematically, it’s allowed to reduce the one 4th-order D.E. (89) to two 2nd-order e-
quations. Indeed, as mentioned in (22H24]), we can decompose the E.O.M of U in [B9)) to two
Klein-Gordon equations for a P-2 type conventional scalar field ® and a P-2 type unconven-
tional scalar field ® respectively, where U ~ ®®, for ®, see (26H2T).

2. We can’t generate a Klein-Gordon equation for U.

By treating ([B9) as an inhomogeneous Laplace equation for V = 9?U, we can get a
solution

OV=miU—J=V=(0U=..) (82)

as a formally 2nd-order D.E. for U, underlined in (82). However, that’s not a real Klein-
Gordon equation for U, even not a nonlinear one! For mathematical detail, we take the free
E.O.M of U in (B9) as an example:

a. if my # 0, ([82)is truly an integro-differentia equation rather than a really 2nd-order
D.E. for U, with the r.h.s a nonzero term [ G(z,2")U(z2"), where G(z, ') is the Green func-
tion of the homogeneous Laplace equation 9*V = 9%(0*U) = 0;

b. if my = 0, with the boundary condition [0*U]g # 0 for the nontrivial D.E. (B9), we
must get a solution V' = 92U = B # 0, which is corresponding to a E.O.M for massive U or
interactive U, rather than the original massless free field U, depending on the detail of the
term B.

So, we can not say that the Klein-Gordon equation is based on the “solution” level of the
4th-order D.E. (39).

Nonlinear Klein-Gordon equation for U: out of a nutshell

Here we need the self-interaction term of U, which could be written as
L[ = —gUA?]UﬁuUa“U—l—m‘lUUz . (83)

Since there is at least 3 U-field for the interaction term, there must be at least 0 or 2 0-
symbols for constructing a Lorentz scalar Lagrangian; however, here we don’t use the terms
UUU, because, we'll see, that can’t give us a qualified 2nd-order D.E..

In a word, for a pure U-field system, if 00 < AyA (or, we can say, the system is “out
of a nutshell” as an illustrative statement), then the kinetic energy term could be dropped,
then we can get a E.O.M for U according to the Euler-Lagrangian equation, as

4

my
2
gUAU

guAL(0U)? — 2guALUOPU = mipU = (OU)? — 2U0°U = U. (84)

Apparently, that is a nonlinear 2nd-order D.E., so, we just call it “nonlinear Klein-Gordon
equation”. Particularly, for a special case, (U) > U — (U) and (U) > 0U, we can get the
“linear” Klein-Gordon equation

4
— Uy,
290 (U)AE
and there should be the relation 2gy(U)AZ = m7,.

—9*U = (85)
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2.8 From U to QED: gauge symmetry arises
2.8.1 U as a group element in weak field case
For a complex-valued field U, we can decompose it as
U= ¢rexp 92 = ¢y cos g —idysing,, U'U < 1, (86)
then, in the weak field approximation, that is, U ~ (U), there would be
Ulx) = (U)e %@ = (U)(cos g¢ —isingo) =~ (U)[L —igo(x)],
g~0 = UU~1. (87)

So we can see, within a nonlinear ¢ model framework, terms in (I0) and (II]) are now ac-
tually equivalent so that should be mutually exclusive in a definite Lagrangian of U, with
the difference on the choice for the particle degree of freedom(d.o.f) between two real fields,
(U + UT) and [i(U — UT)]. For example, if a real vector field A* behaved as the fluctuation
of U, then the imaginary part of U would be chosen for the proper “block” for constructing
the Lagrangian.

Particularly, there is another approximation expansion of U,

U~ (U)[1 — igen, A¥(z)] — (U)e ermA"@

That means, now U could be treated as a U(1) group element with A" as its gauge
particle d.o.f, and the superficial gauge symmetry of the Lagrangian arises!
Hence, in the viewpoint of traditional gauge theory, the interaction term

YUIGU ) = i(U — U")y

is formally supplemented for the gauge invariance for the kinetics terms of the matter field
1. Sine the former term above would be depressed as it’s a multi-field term, the actual term
for the gauge invariance is the latter one, 1¥i@UT), and that might imply

f=e. (89)

Effects of the nonzero VEV of U
U is a kind of higgs field, so it should exhibit its higgs-like property. From its definition
U = exp|—igen’A,| ~ 1 —igen' A, + ..., (90)

when g — 0, there was (U) = 1. And now, with the interaction term aA U in (),
according to the higgs mechanism, the fermions will get a a mass correction

Am ~ aA(U) ~ah 2% 0, (91)

2.8.2 From A to U: U as a background and U as an excitation

We write the quantum mechanics amplitudes as
(fle5]i) = e = e?e? = S(T)e'' . (92)
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Traditionally, we separate ¢ to a § = co part e as classic background(BKG) effects and a
0 < @ < 1 part € as quantum fluctuation effects,

S-matrix = (BKG effects) + (fluctuation effects)
= SU)=S0U0)+S(A),or U=U+ A (93)

that is, if & = oo, the system could be described in a classic mechanics picture by taking
a classic field U to serve the BKG effects, or, if § < 1, the system could be described in
a quantum mechanics picture by taking a particle A(exactly the gauge field) to serve the
fluctuation effects. But, in the case of ' = exp{ig@} with g > 1 # oo so that 0 > 1 # oo,
how do we calculate the amplitudes? The question itself is also to say, problems for strong
coupling cases would have combined the classic effects and the quantum effects together
under consideration.

From (O3), at least one thing is definite, that is, no matter it’s in the g = oo case or the
g # oo case, all fluctuations A were defined on a definitely certain BKG. By taking a change
on the form, we could rewrite (@3] as

U-U=A, (94)

which is to say, when U was treated as a BKG, the particle A was not only a fluctuations, but
also be the renormalized version of the background U(by a cancellation with the anti-BKG
U), or on the other hand, all the effects from A in fact include the background effects from
U.

However, by sequentially taking a generalization on the meaning of U in (04]), we could
rewrite (O3) as

(BKG effects), — (BKG effects), = (fluctuation effects), (95)

then, it immediately comes to our mind that the situation for the cancelation effects of
particle-antiparticle pairs, written as

(BKG effects) + (anti-(BKG effects)) = (fluctuation effects) (96)
=U+U = A#0, (97)

which would motivate us that, if U itself became a new effective degree of freedom, then A
needn’t to be isolated out and defined as a new degree of freedom any more, since whose
effects had been innately included in U.

As we all know, it is relative and not absolute to treat a particle as BKG effects or
fluctuation effects, or, in other words to say, the criteria for particles and quasi-particles are
relativistic. The best example is the electron: in the relativistic limit case, say, in decays of
nuclei, the electron was a quantized field degree of freedom, with its partner, the positrons;
in the NR limit case, the energy spectrum of atoms, wer determined by the energy of the
NR motion of electrons, which was seemed as the fluctuation of a BKG, the mass of the rest
electrons; in the case of considering the fine structures of the energy spectrum, the relativis-
tic effects of electrons would appear; and so on.

2.8.3 Where is the Coulomb potential? oU ~ A!

When g — 0, the effects of U should be matched to the effects of A, by the matching between
their respective Lagrangian terms, or their respective predictions for the physical amplitudes.
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Renormalization I

As discussed in Section Z.8.1], when g — 0, with the definition of U in @56), UTU ~ 1, so
now Ly is a non-linear o model for U. In the nonlinear o model frame, when g = 0, the radial-
direction component of U was stable with taking the value U = (U), so, the “propagating
effects” of the vacuum(actually the radial-direction component) has been reduced originally,
that means, for the propagator

OITUU@)0) = (T —id(y) + .01 — id(x) + ]I
— 1 (0li(y) + id(x)]]0) + (O|T[ig(y)ie()][0) + ..
= 0= (0][id(y) + i¢(x)][0) + (OIT[ip(y)i¢(x)][0) + ...,  (98)

the infinity from the VEV [ d*z -1 has been renormalized, with (0]¢(x)|0) = 0. Besides, the
VEV of U don’t influence the interactions induced by oU.

+

The amplitude

Remind that, when U is a group element, in the weak coupling case the gauge interaction
term

gi = BTG = G((1 —iO(ge)id((1 +iO(ge)) )i
~ P — U, (99)

that means, the two terms, )(U@U )1 and ¥@Uv both appears in (), are now numerically
approximately equal. However, are these two terms still give the equivalent results when U
is a particle in (), and, what are the difference between them?

In the viewpoint of S-matrix, the answer is positive. For detail, in the weak fluctuation
case, there is U ~ 1 —i0O(g - €), so that, UTU = UUT ~ 1 could be inserted into the S-matrix
element, as

1
Sy = exp[i/d4x£] = 1+: é(iﬁ)z D

= 1+ lzﬂlzﬂg iU - iU -+

2
= 1+ %wﬂm iU - (UTU) - iU« ..
= 1+ %zﬂlzﬂg CUIQU N - UTIQUY = +... (100)

that means, now the term iUy and Ui@UTy) are equivalent.

To answer which term is corresponding to the gauge interaction, or, how to understand
each term in the Lagrangian (), let’s firstly consider the contributions of the term ¢@U)
to a scattering amplitudes, see Fig. @ (a).

We can extract the corresponding term for the amplitude straightforward from the Feyn-
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K p/ 2 p'
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Figure 4: The Feynman diagrams for the leading order tree level processes and for Coulomb
potential in QED.

man rules as

l

Mo = 0 (K)i(=5Quig)u (k) g - ()i(5Quid)w ()
= E I ) -~ ()i(5Qn Y o)
L LREQr (k) S (L3 (L)
. . 2 S .
= AP LRIBQu (LK) - (L (3Q ™ (L)
= " (LK)i(BQuy"yu"* (LK) - ‘ff;‘” @™ (Lp)i(BQay" u"" (Lp)
e (WIAQu (k) = ()i(5Q o ()
= iMC’oulomba (101)

where L denotes a Lorentz rotation which changed the tensor ¢,q, to

Gy — LauLq, = (L9)* 9 = ¢ G, (102)

with the i Mgy and ¢? invariant for the reason of the Lorentz invariance of the Lagrangian
term ¥@Uz). And we can find that (IOI) is just the amplitude of a scattering process
corresponding to the Coulomb potential in QED, as in Fig[}H(b).

So, now we can say, when U is a particle, it’s the term @U1) serving for the effects
corresponding to the gauge interaction in QED. And, definitely, with the result from (0T,
we can say, the term )(U@U)1p in (@) isn’t the leading order contribution corresponding to
the gauge interaction, since the term (U@UT)1) is serving for a high order contribution.

It is easy to understand that through the physical picture, followed as the meaning of
Eq.([@10):

1.The gauge particle field A, which was originally defined as a d.o.f with UOU T to denote
the fluctuation effects from the cancelation of BKG U and anti-BKG U, could be a good
degree of freedom only when U was a frozen BKG(or, a classic field, rather than a particle).
But, when U was excited, A wouldn’t be a good degree of freedom, and the isolation of A
from U in Eq.(II3) was not available any more.

2.However, the effects corresponding to the “old” A would be still included in the one
particle U, which should be surely determined by term @Ut) rather than terms (U@U*),
which was corresponding to the mixing effects of two particles U and UT(see (BI]) in next sec-
tions). Or, in other words, when U behaved as a BKG field(or a VEV), the gauge interaction
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absorbed into an effective field A is the all effects of U, but, when U was excited, it is just
a part of the whole effects of U. Anyway, it’s affirmed again that the gauge particles could
be seemed as fluctuation effects of U, either a particle U in a new perspective for ¢ > 1 or
a classic field U in the old perspective for g — 0.

2.8.4 The generation of a linear QED

To generate a QED from Ly in ([), the crucial point is a good d.o.f or “block” for construct-
ing Lagrangian.

1. The weak field case

In this case, the gauge connection field 4, is a good d.o.f, and UTU — 1. We will see,
the good block is not 9,U — A, but 00U < F,,.

The variable 70, U is a gradient field, so it does serve as the gauge transformation A, —
A, +10,U for a gauge field A. However, just because it’s only a gradient field, i0,U could
never serve as a gauge connection field, even as a longitude component for a gauge field.
The “field strength” of a gradient field would be zero, which could be confirmed in another
way here, as

FMV = aﬂ(auU) - 81/(0#(]) =0. (103)

So, how would we realize the correspondence for 9,U — A,?7 Here are two methods:

a. we modify 9,U to a qualified vector field. As in (I20[@9), there is A, = U0, UT ~ 9,U",
so we can take the Maurer-Cartan 1-form A, = Ud,UT as gauge field; essentially, that is an
operation in the way of extending the number of d.o.f, either 9,U" — U9, U", or

A, ~0,U" = ¢(2)0,U (104)

with ¢ an arbitrary scalar field, and, particularly, in the case of ¢(x)¢(z) = 1, we can just
treat ¢ ~ U. Then, we can rebuild the kinetic energy term for A, ~ A, as

0,0,UT0"0"U = 0,0,U" - ¢'¢p - 010" U
= [0,(6'0,U") = 96" - AU - [ (90°V) — 06 - U]
= [0,(0'0,U") = 9,0" - 0,UT] - [0"(¢0"U) — 9"¢ - 9 U]
= 0,A,0"A” + (multi-field terms) (105)
For dealing with the lack of a term 9,4, 0" A" in the full kinetic energy term, indeed, for an

Abelian case, we can take a anti-symmetric tensor (complex-valued) A,z as the spin-1 field,
which is equivalent to the vector A,, as

(Eaﬁu _ Eﬁau)
2

b. we use the correspondence between 0,0,U and F),,. As in (298300), we have defined
U as the Wilson loop,

AH

As = &(2)0"U . (106)

U(z) = Up(z,2) = exp {—z’g ff} dz“Au(x)]

= exp {—ig/da‘“’FW}
2 Js

= 1—ic?gF + O(e), (107)
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with the field strength defined as
iU(x)

2

F,=0,A, —0,A,~

& 00U . (108)

€

Note, it’s not true for 90U = F,,, since 90U is a symmetric tensor but F),, an anti-symmetric
one, but just for a correspondence in the sense of “block” for constructing Lagrangian.

For the interaction terms in the full Lagrangian (@), we can directly set U — 1, d,U; —

A, and U could be seemed as frozen. Or, we can directly omit terms including
x x 1
Ul(x) :/ dz, 00U (2) N/ dzH@A“(z), (109)

since there is a depression for these terms from the small A.
2. The strong field case

In this case, g - € ~ 1, we can’t reduce U to a single gauge field A*, for the reason, we
can say, as in (I31]), now the instanton ¢ would be excited, so A* should be combined with
¢ to serve for the full interaction. However, it’s just the significance that we construct a P-4
type model for U, otherwise, our P-4 type model would be trivial.

2.8.5 Matching I: the degree of freedom

It is the crucial point for the construction of (), that, for ¢ — oo, U is treated as a particle
degree of freedom, while for g — 0, U is treated as a classic field function. For the detail,

when g is small, from (292B06B08297B00) in Appendix [A] we have

Uz +en,z) = 1—igenA,(z) + O((ge)?), (110)
Upj(r,2) = 1—ie’gF;+ O(e%), (111)
Bu(x) = U@ (x) = —igd, + Og?), (112)

D, = 0,+ B, =0, —igA,+0(g?, (113)

where in (III]) the subscript ij meant a chosen path P;; was in the ¢ — j plane for instance.

We give a list for variables in (ITOHIT3) in Table [l

Then, the Lagrangian of a U(1) gauge theory, for instance, the QED, was expressed in
the form

Lawp = 3 F* Fyu + 0P~ m)o, (114)

that is, the physical particle degrees of freedoms are v and A, and the theory could be
calculated in the perturbative scheme.
However, for the g — oo case, that is,

gre>1, (115)

the expression of (II3) and (II4l)is unavailable. So, we construc a theory in which U is
treated as a particle degree of freedom for the case g — oo as in (), as mentioned in the
beginning of this section.
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P-4 type P-2 type
{U,U* U} field
0-UF =0 | gauge fixed condition
orur field strength of U
orU UTorU fluctuation of U A field
0-0U =0 0- A =0 | gauge fixed condition
ororU stress tensor o AY field strength of A
0-0A" =0 E.O.M
00 - 00U =0 E.O.M

Table 1: Correspondence between variables in (IIOHIT3)) .

2.8.6 Matching II: the canonic commutator

If g — 0, U could be treated as classic field, U and A could be the equivalent d.o.f, and
there could be A, ~ 9,U'(z) ~ U(z)d,U'(z); on the other hand, if g — oo, U should be
treated as particle, U and A could not be good d.o.f at the same time, and in in fact there
is A, ~ 9,U'(z) » U(x)9,U' () for g — oo.

Let’s show the two cases in the viewpoint of the relation A, ~ 9,U(x) .

If we just want to get a Lopp(g — 00) form which could restore or match the Lorp(g —
0) in (II4)) as g becomes small, there are many different ways to realize that goal. For

example, we can just take B instead of A in (I13]) and (114,
Larp(g — 00) = (0,8, — 0,B,)° + ¥(if) + g — m)y, (116)

that is, the physical particle degrees of freedom are ¢ and B, but the theory couldn’t be
calculated in the perturbative frame since the coupling constant gg = 1.

Although we can still formally treat A as a physical degree of freedom with whose all
the complicate effects included in B, we should note that, A and B couldn not be physical
degrees of freedom at the same time, since the two canonical quantized conditions couldn’t
be true at the same time, as below

B@), By)| = 69—y

= {—igA(x) - %A(z)Q + ..., —igA(y) — %A(y)2 + }

3

= —¢* [A@), Aw)] +i% [A@? Aly)] + ...

In another viewpoint, for an Abelian gauge field case, when ¢ is small, we have
A Ay)] = 8% (@ = )3

~ BU(?MUT(x), 9 FU@UT] (y)}

L1y
- _é { [U@MUT(x), UaVUT(y)] + [U@U*(:ﬂ), UayU*(y)H
_ _é {U@) |,01@), 00,01 (y)| + |U(), Ua,UT ()| 0,0 ()
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+ [U(:p), UayUf(y)} 0,U' () + [U(x), UaVU*(y)] 8MUT(x)}
~ U O] e As |Uou] (e a2 (117)

and
0,0] = [1+ge- A4,94- A = eay” - |4, 4] (118)

which showed that A and U are equivalent degrees of freedom. Contrarily, when g is large,
A and U couldn’t be good degrees of freedom at the same time. In another point of view,

even [Am AV] —en~0, [U, U} could still be g2ee — oo ~ §)(0), which is an indication for
the quantization canonic commutator.

Besides, the kinetics energy term Ly in (@) could not be constructed through the way of
directly inserting A ~ UOU' into the £, in QED. For instance, there is

(0#A")(0,Ay)
— Tr ([0"(*UUM][0,(Ud,UM)])
= Tr(0Ue*Ut +ororuU"9,U0,U" + U9,0,U1)
= T (0*U0"UT-0,U0,U" + 0"0"Ud,UTU0,UT)
+Tr (0"UO*U'U0,0,U" + 0"0"U - U'U - 9,0,U") (119)

which could only give the self-interaction terms of U for a general case of UTU # 1. Or, in
the weak fluctuation case, UTU ~ 1, there is a trivial result,

Fivo= grAY — 97 AN

L (9"B" — o' BY)
g
1

o (Uorut) — 0" (UorU)]

- Q

~ ! [0"(1 + igena A%) - 0¥ (1 — igen, A%)
9

—0"(1 —igen, A%) - O*(1 — igen, A%)]
= é ligA¥(—ig) A" —igA”(—ig) A" = 0

or o~ 3(8“-1-8"-1—8"-1-3"-1):9g—ﬁoﬁf'éo- (120)
9 9

In a word, we can’t generate Ly from L 4!

2.8.7 U~e€-A, so,is U a string?

According to the analysis above, and the definition
Ulx +en,z) =1 —igen' A, (z) + ... (121)

we could find that the product € - A as an entire variable might be concentrated on.
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When g — 0, A is a good d.o.f. of particle, then the relation of action

S = /d4x3HAa8,,A5n‘“’na5

= /de
J(d.ﬁlfl, d.I‘Q)

~ d*x
/ J(Elu 62)

might indicate that U is a string if there was

J(d.ﬁlfl, d.I‘Q)

A0)0, (e2Ag)nP" 7
J(€1,62> 8#(61 04)8 (62 5)77 n

0,U0,Un (122)

dxq,d
’w = Const. . (123)

J(El, 62)

Apparently, it’s equivalent to what here we have done, that is, treat U is a “field” for g — oo,
with a different form of (90U)? as a kinetic energy term, by contrast with the particles A
with (DA)? as kinetic energy term; as well as for the case of ¢ — 0. On the other hand,
we might say, the interaction of matter fields ¢ coupled to U is a kind of “point-string”
interaction.

The reduction of U — € - A might be seemed as a kind of realization of holographic
principle (take the ADS/CFT duality as an example), that is, both of them worked through
taking a correspondence between different d.o.f or operators with different dimensions. Or,
we might say, the reduction of “string— point” could be realized by the approximation in
Section [2.7], instead of the compactification.

2.8.8 Multi-vacuum structure for higgs vector A"
1. Multi-vacuum structure for A*
One thing should be noted. If we write
U(z) = exp|—igen A, (z)] = cos[gen A, (z)] — isin[gen” A, (z)], (124)
then the potential term
V(A) ~ U(A) + U (A) = cos[(ge) Al (125)

would mean that the dynamics for the field A* is of a sine-Gordon type (or, a kind of higgs
vector), see Fig. [[H(2), in which there might be many excitations for A at different vacuums
(or, VEVs), with heavy masses in the large g cases( ge ~ 1) and small masses in the small
g cases.

Similarly, we can write

U(x) = exp[—iged(x)] = cos[geg(x)] — isin[geg(z)], (126)

for a scalar P-2 type field ¢, and give ¢ the similar results as the ones below for A*.

2. Fermion mass spectrum
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Like the mass correction in (@) from U, with the term 141, the fermions can get a mass
correction from A*,

(2n+ 1)w

Am ~ aA(A) ~ alA
ge

,n=20,1,2, ... (127)
For instance,

a. if Am is the mass differences between the current quarks and the constituent quarks,
then, by setting

2n+1)aA ow~oE (2n+1)a |
I™ " Am e Am
with Am ~ 1GeV and n = 0, we have a ~ 1.
b. if ¢ ~ 0.01 for the E.W. interaction, then, Am ~ 100GeV, corresponding to the
possible heavy fermions.

(128)

3. Instanton d.o.f is excited

If U is the full effects of gauge symmetry, then it will include the instanton effects. One
of the instanton solution for an non-Abelian gauge field could be written as [§]

Ado) = LomU@RU @), (129)
o(r) = r2 i A2 (130)

So, inversely, we have
()it U™ () = 975 Ap(x) = 0() Ay(a). (131)

that means, if one still choose A, (z) as d.o.f in the g > 1 case, then, it must be combined
with a ¢(r) field to represent the full effects of the U(z)9,U ! (z) term.
On the other hand, when g — 0, we can treat the instanton d.o.f is very heavy and frozen.

4. A seesaw mechanism for gauge symmetry and flavor symmetry

See Fig. [[}H(2), with (I23]), for a vacuum at A = (A);, the potential could be written as
V(A~A) ~ 14 (ge)*(A—A) + ..., (132)

which means the mass of the excitation A’ = A — A; is of order ~ m = ge. So, we can get
the conclusions below:

[. when g — 0,

a. A, is nearly massless, so the gauge symmetry is restored;

b. the instanton could be treated as very heavy and frozen, as discussed for (I31));

c. the VEV (A); are of very different magnitudes, so, through (I27), the fermion masses
would be also of very different magnitudes, including very heavy fermions; this is a kind of
flavor symmetry breaking for fermions;

IT. when g — o0,
a. AL is massive, with the diagonal elements in its mass matrix being large, so the gauge
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symmetry is broken;

b. since the instanton in (I3I]) was excited now, the tunnelling(oscillating) effect would
become strong, so the off-diagonal elements in the mass matrix of A} become large, too; or,
in another viewpoint, now it’s AL that was frozen, and the instanton was the real d.o.f for
mediating interactions; we can treat the instanton massless or nearly massless according to
the absence of heavy bosons in a hadron;

c. the VEV (A); in the neighbour minimum are nearly equal, so, there would be a de-
generate for the fermion mass, or, we can say, the flavor symmetry for fermions would be
restored; besides, it’s now allowed for very small fermion masses through (I27)), which might
be an underlying reason for the feasibility of the “large N.” or “large N;” hypothesis for a
real hadron, and for the possible neutrino-Dark Matter oscillation.

So, maybe this is a new kind of dynamical symmetry breaking/restoring mechanism, with
a seesaw for gauge symmetry and flavor symmetry.

2.9 Matter fields and current
2.9.1 New type matter fields
The matter field ¢ could also be treated as

O(z+en,z) =1—igep(x) + ... (133)

with kinetic energy term (90®)? transforming to (0¢)? for ¢ — 0 case, and, for an interaction
term

addTUIP — o/d'U (134)

the transition of couplings av — o/ would be canceled with the redefinition of wave function
O ~ gp(x) — ¢(x), so indeed we would have

o =a. (135)
For fermion field 1, there is
U(x +en,z) =1 —igep(x) + ... (136)

with kinetic energy term WOOOV transforming to 10y for g — 0 case, and, for interaction
term there would be B -
adU - QWY — o/OU - o, a = o' (137)

However, what we want to present here is for the Currentﬁ
(current) J*(z) = ¢lid"d(x) — 1o d(x) = J*(x) (field), (138)

Let’s illustrate our motivation for the conversion in (I38) with an example, for instance, the
interaction term in([7)

L = —pQ 0 (5T )

~pQ 0TI — (i00) 0] (139

5The expansion could also be taken for a non-Abelian case or tensor current case.
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which is a non-renormalized one because of the vertex, with a momentum included in. So,
if we want to convert this interaction to a renormalized one, what should we do to deal
with the OU - 101 term for 0 > 1 case? If we only take a correspondence of ¢ — ® hence
ad’Udp — 0DTU - (® — 1), it would give trivial substitution for the “coupling”: 9, — Os,
with the non-renormalizable property (with momentum included in vertex) remained.

But, now, within the P-4 framework, after an extension ¢ — @, it’s allowed to further
treat a current J* to a field J#, then the term OU - J*(current) would turn to oU - J#*(field),
and, there would be other terms to represent the interactions, such as 90U - J (field) - J (field).

Moreover, there is the expansion,
, 1
O(r +en,x) = l—zgenuﬂj"(x)Jr..., (140)

where the charge should be [g%], so, that means, when [ge%} ~ 1, the “field” J* would
turn back to the P-4 type field ©, with the conversion OU - J#(field) — OU - id(© — OT),
and, there would be other terms to represent the interactions, such as 9,U - (@TO“@), with
O* an intrinsic operator of the field © to contract with the tensor indices in 9,U.

2.9.2 Current = Field? A possible way for renormalizable gravity.

Is it feasible for (I38)7

Firstly, what’s the difference between a current and a vector field? A field has a E.O.M,
while a current hasn’t; for other things, they could be treated as the same. So, it’s more or

less reasonable for (I38]).

Secondly, reminding the Maxwell equation,
OPAH ~ JH (141)

which would be generalized to a new equaiton
I =0=0"A" =0 (142)

we can say, if J# became a P-2 type field, then, A" would become a P-4 type field (which
would be studied in Section B]). So, it is feasible for (I38), based on the foundation for the
dynamics of a P-4 type A*.

2.10 The van der Waals-potential: the introduction of f dxA is
trivial!

It’s not necessary to construct van der Waals-potential by introducing new media particles

®(bosons or fermions) with new type propagators such as ~ 1/p" with N < 0(which would

be always converted to an N > 0 case by redefining another new field with an equivalent
dynamics), but only need to set restrictions on the interaction terms.
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For detail, firstly, let’s take the symbol £;0) to be the Lagragian interaction term
Looy~PRPR..000®...01%

with the least number of 0P terms, which we call it as “leading order(LO) interaction term”.
Then, for L0y includes N > 1 §®-symbols, we get van der Waals-potential V(r) ~ 1/r¥
(with N > 1) through setting the propagator ~ 1/p?~® with a > 0 for ® , for instance,
~ 1/p®, ~ 1/p* ~ 1/p,and so on, since the amplitude of “2 — 2” scattering process would
be

1 1
M~p® i ®p~ o~ —V(p)
1
3 14+«
= V)~ /d pV(p) ~p T ~ e (143)

Particularly, for a field ® with a propagator ~ p, we can treat ® as an extraordinary field
with an integral equation type EOM

1 1 1 v
7®x:—®x,with7:/d 144
50 = (), with - = [ ay (144

It’s allowed to use an integral equations to be the EOM of field ® in the case of 9P is
ill-defined, for instance, ® or 0® was a singular function.

However, since our quantization framework is canonic commutator, the EOM should
be always constructed through derivative qeuations rather than integral equations. On the
other hand, we could always define a new effective field and its E.O.M as

U E/ dy®(y) = pU = myU (145)

o0

to be the new d.o.f, and the corresponding Lagrangian terms, which could give equivalent
results to the original ®-terms for all orders( by corresponding L10) ~ »OU including one
0-symbols for U to the equivalent original Loy ~ ¥®1) for @), so that, it’s only formally
meaningful but practically trivial to construct fields with integral equation type E.O.M.

3 Field U"

3.1 Lagrangian for U*

Now we take a generalization of U — U*, with the transform property of U* under the U(1)
global group element V' as
Ut — VUrvt, (146)

where the indices ; means the transform is for each component of U*.
With the gauge fixed condition, for a general complex-valued vector field
U=Re[U]+ilm[U] =U; —iUs,, (147)

whose motion obeying the P-4 type Klein-Gordon equation as for a scalar U field in ({0),
the Lagrangian could be written as

Ly = +0,05U0%0°U* — m{UIU* , UTU* < 1, (148)
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or
Lo = +a(aFsy + bF 3,) 0% (aF% 4 bF™") — mbUTU* , UTU* < 1, (149)
with
a+b* =1, (150)

where

P = FPU) = 0°U" — 0'UP | Ty, = Fy(U) = 0°U* 4+ 01U . (151)
Particularly, in the case of b = 0 and my = 0, to get a Maxwell equation, for a specific
irreducible representation of the tensors, we can choose a Lagrangian for F°* as
1
,CU = +§(8QF5M — 85FW)T(6O‘F5“ — 0BFO‘“) — m?]U;EUM
_ T 9o T e
=+ |0uF,0°F = 0,F} 0 Fer| — mbUlU”
= + [801(05Uﬂ — 0,U3)10%(95U,, — 0,Us) — 04(05U,, — @LU[;)T@ﬁ(@O‘U“ — 8“Ua)}
—miUU"
= + [aaaﬁU;aaaﬁUﬂ — 0a0sU0"0"UP — 0,0,UL0°0°U" + 0,0,U}0°0"U°
—0,05US0°0°U" + 0,05UJ0° 0" U + 0,0,UL0°0°U* — aaaMU;aﬁauUﬂ
—mgUU"
= + [(&yﬁgU;@a@ﬁU“ + &I@Ug@aa“(]ﬁ — &ﬁgU;&ﬁ@aU“)
+H(=0,05U 00U — 0,0,UL0°0°U" + 0,0,UL0"0°U" + 030,U50° U
—aaaﬂU;aﬁaﬂUa)} —mbUtv”
= +[oaasUloro'ur - a,0,U0%0r 0| — mbuiU

= 4 [0.03U}(0°0°U" — 2"9°U”)| — m{,UIU"

=+ [0.03U}(0°0°U" — 0°0*U”)| — m{,UIU"

= 45 {[00UL(0°0° U — 00 U] + (5 > )} — mb UL
1 (0% (0% (0% (0%

= +3 {[a0sUj(@°U" — P01 U™)] + |0,0,U} (@007 — 0P um)| b = miufur
1

I
1 o
= ~|»§ (8a85U,I - aaang> O F — m?fUlIUM

1
= +§8aFgM8aF5“ —myUIU", UIU* < 1, (152)
where the underlined indices would be interchanged, and then, we can get the P-4 type
Maxwell equation

(0%g — 0°0,0,)A” =0 (153)

with an extra minus sign by contrast with (40), see Appendix
Note that, for a normal vector field, the sign for mass term in (I48) is “+” so that it’s
“—" for each space component U;, however, here the U, is a kind of higgs field, so that the

31



“_m

sign for mass term should be
E.O.M would be

. Then, the gauge fixed condition and corresponding free

p-U=0= +p'U' —m{U" =0, p = i0, (154)
so, the propagator in momentum space would be

+igh

DUy = —
F( ) p4—m24]+l.€’

(155)

rather than DY (U) = 9" with the same reason as for (G35J).

p m-HE

The interaction term of U* with the matter could be written as
L = —a AW+ P) + i~ P — o ol + U 4 iU - U didvy
B IEGHD 4 B0 Gl + o) + (i — i
—6[
—K 37 [AQ WU)}

+(h1gher order operators), (156)

U+U ) (U-Ut)

) Gl i i)

where € is an antisymmetric real-valued constant tensor, o*” = %[7“, 7], so that for each
pv component, there are ()l = e and (o*)T = o,

The self-interaction term of U* might be written as
se (U+U") e
Lt = —Ay [(Epa + 9pa) (U + UT)pF ’ )F(Uﬁfm)]
—Ay [terms with i(U — UT) | . (157)

where the e in the Ay term is chosen to be antisymmetric. Since there is at least 3 U-field
for the interaction term, there must be at least 1 or 3 d-symbols for constructing a scalar;
however, here we don’t write the terms with only one d-symbol, as U,U,0*U" or U, U"0,U",
because, we’ll see in Section B.4] that they can’t give us a qualified 2nd-order D.E..
Actually, like the definition of the field strength for a non-Abelian gauge field A?, as

Figlh = 0, AGt" — 95 ALt — ig[ ALt ALY, (158)

we might “fabricate” a formally definition of the “field strength F,g, of field strength of Fj,
of UM as the form

Fop TP = (0. Fp,T° — 0,Fp,T°) + [FoT", F5,T"] | (159)

with T" a class of group generator-like operators. However, here we would ignore this fictive
construction of (I59) and (I27), and that would not influence the results we concerned in
this paper (that is, the kinetic energy term of of U* and the interaction term of U* and
matters in the Lagrangian). For detail, the first term for the r.h.s of (I57)

8aFﬁu - 8MF504
000U, — 0,Up) — 9,(0sUs — 0aUp)
= 050U, — 0,U.) = D3, (160)
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would be a “trivial” construction(for the meaning of “trivial”, it means, 0, Fp, — 0,F3o has
only one term in practice, which has been shown in (I52)), although the second term would
include OUQU term would give a nontrivial self-interaction term with multi-derivative for
the U, fields, like the term Ug{UgUg@aFﬁﬂ in ([I63]) a 4-particle coupled term.

For future convenience, as for the scalar U field, for each pu component, we can have the
decomposition

Ut =0y — iUy, (161)
and the self-interaction terms of U* could be written as
LY = —AyUia03U0,,0°0° U — NZUGU,sUL,0°0° UL
+(U, terms) + (U; - Uy mixed terms) . (162)

We don’t consider terms as

Lr = —aA Ul (i0" + 1*)]¢ (163)

in this work.

3.2 Version I: anti-symmetric field strength F),,
3.2.1 Version I.1: the interaction coupled to intrinsic charges
1. Lagrangian
The antisymmetric tensor ), has 6 independent components, so, it might serve as the

contribution from two vector field, the strength {E, B} of an off-shell photon. Note, now
the E.O.M for F,, wouldn’t be true since the U, was off-shell, that is,

020, F" = 0%0,F™ +£0. (164)

However, if U, was on-shell, then F},, has 6-4=2 independent component, which might now
again serve as the on-shell state of a photon. Let’s check whether [}, could serve for the
photon in the sense of the effective interaction form.

The F},, part of Lagrangian for free particle U* could be written as

1
Lo = +50.F},0"F" —myUjU"

1 (6%
= 45 |0u(0s) - aﬂU;)} [0°(0°U" — 0"UP)] — mb U™, (165)

and, the interaction term could be written as

Lr = —a MU+ +iy - Yy
—BO(E + o) i
+(higher-order operators), (166)

For future convenience, we write the interaction terms for Uj" obviously, as

Lr = —a My — Bp(e™ + o) FLY
+(higher-order operators) . (167)
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2. The E.O.M for tensor theory for Version 1.1

See (BTGH3TT) in Appendix [Dl we can get the dynamical equation for the field U* as

02 [02g,, — 0,0,] U™ 222% 941, = (i0)'U, = +mbU” + J° (168)

with the gauge fixed condition 0,U7 = 0, and
J7 = a Ny =280, [Y(e™ 4+ a7 )] . (169)

3. Quantization and the effective potential for Version 1.1

Now we can write an effective potential mediated by U¥. By omitting the ¢ term in
Lagragian (IGH), the amplitude of the process in Fig. @(a) could be written add

. s L S o o\, S +igpA
'ﬂr,i[%/\’fgw\ - 52‘75v(iq59K - iqygf)]ur
g . . a . «a s +igp>\
= U ’L[OQA’YP + 61 (ZCTWC] g:j - 'Lo-ozuqugp )]u ' q4

-ﬂrll'[ozg./\’}/)\ — 62 (wﬁyqﬁgK - igﬁuqygf)]ur

—s' e s +igpA
= U Z[OélA’Yp + /81 (q;l,gg + qagp )]U‘ ’ q4

@ ifonAy = Ba(qug¥ + qsgs)u”

e p L a—y A r
= u*i(oq Ay’ + 2B1q,)u e i(aa Ay — 2690 )u

12

1 1 1
, 2
-1 {4/\ Oéloézw — 2A 0 Ba(vy — ) - QW + 45152@}

oM 2mo" (170)

with the approximate relations below(Gordon’s identity)

/ ]. / .
Wyt = i () i () = p) ), (0 = p+a)
=" lio"q)u’ = @ [2my" — (p+q+p)|u
= @ [2mA* — (2p + q)*] u?
= [10"q] — [2my" = (2p+ )] = —¢"
—[ic"Pqs] — [2my" —(2k—q)"] = ¢", (K =k —q). (171)

Then, by comparing with the Born approximation to the scattering amplitude in non-
relativistic quantum mechanics, see (69)), we can get the effective potential as

4A20410[2 2)\/\0[1/82 T 4/8162 1 2)\/\0[162
r+ log — + — =

Vi) = - (1 =vg),  (172)

8T 272 To A r 272

where —0co < A < +oo was defined in (67), and, particularly, for NR case, A ~ 0. The
interpretation for (I72) would be like (72).

6As in (GF), for simplicity, here we can only consider the contributions from Uy, and, for the contributions
from Us, the result just need a double.

34



There is a combination of a linear and a logarithmic potential for the a; - as < 0 case,
which might be corresponding to the confinement for strong-coupled gauge theory, or the
dark matter effects.

Note that, as we only concentrate the non-relativistic case, we have chosen the definite
spinor basis for the outer-line particles as @* v*u® — §*', that means, the spin orientation
hasn’t changed. That’s very important! On one hand, spin changing would be a kind of
relativistic effects, on the other hand, the “charge” Bo*corresponding to the term v F* )
was a kind of magnetic moment, hence the change of spin orientation would influence the

sign of the coefficient 5 in (IG0).

3.2.2 Matching for the d.o.f: generation of a linear QED
1. Can F(U) ~ 0U serve for the photon?

According to the square form of the kinetic energy term (9F)* and the Coulomb-type
interaction arising from the term ¢ F'(U)v in ([I66), we can say, if U* is a field with propagator
~ 1/p*, then its field strength

F(U) ~0U (173)

could be treated as a particle d.o.f with propagator ~ 1/p? serving for the E.M. force, that
means, F'(U) could be the photon.

Formally, there is a correspondence on the order of derivative:

Field Strength Field Strength

U* s A

(E,B}.

2. An interaction from magnet moment?

Why not? It’s not important that whether an interactions generated by the field strength
would be interpreted as a magnet moment interaction or not; and, the important thing is
the form of the interaction!

we can formally parameterize [, to two vector, as
F.=A,B,—AB,. (174)

So, the effects of F),, could be corresponding to the process in Fig. BF(a), that is, an interac-
tion mediated by two particles. The difference is that, for example, when A, and B, are P-2
type field, F},, gives an interaction of Van der Waals form, which corresponds to the magnet
moment interaction, however, when A, and B, are P-4 type field, F), gives an interaction
of Coulomb form, see Appendix [C, which would correspond to a P-2 type field propagator.

On another viewpoint, mathematically, as for (I06]), we can indeed have a correspondence
between F),, and a P-2 type field A, as

Fu T = Ay Ty =1, (175)
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f\uv] is a 3rd-order constant-valued tensor, anti-symmetric for the uv indices[l Tf we

insert (I7H) into the Lagrangian, it truly generates a kinetic terms for Lagrangian of a P-2
type field Ay, and, for the interaction terms with F},,, the charge/current would get a change,
as

where T’

ot = Pt T = DY, (176)
which is just the E.M. current in QED!

Actually, the charge for a classic potential is purely put by hand, which might not be the
exact charge at quantum level, but just a correspondence.

Besides, as in ([I77)), for the interaction terms in the full Lagrangian (IG6]), we can directly
set U, — 1, (unit vector), F(U;),, — A,, and Uy, could be seemed as frozen. Or, we can
directly omit terms with

o

U, () = / iU, (177)

o0

since there is a depression for these terms from the small A.

3.2.3 Version 1.2: the interaction coupled to momentum

The interaction term could be written as

A . =
£r = 0 (U U+ iU - U, Jiiom
1 —w+vty  —w-vuh, -, . .
_BM [Fwar : + ZFfw )]w(7 ot — 7HZ8 )1/}
+(higher-order operators) . (178)

For future convenience, we write the interaction terms for U{" obviously, as

A _ 1 —w)y -, . )
L1 =~ Uy did"y - B FU (i — 410" + ... (179)
We don’t consider terms as
A -
,C[ = —(IM U{L@/)cr,wl@“w (180)

in this work.
2. The E.O.M for tensor theory of Version I.2: coupled to momentum
See ([B388) in Appendix [D] we can get the dynamical equation for the field U* as
I*U, =mpU" +J°, (181)
with the gauge fixed condition 0,U% = 0, and
JO' - A 'l/_} _>ao

+— 25% 0[P (7710 — AT W] + ... (182)

A

fuy) @S @ nonzero VEV of the torsion tensor of our universe.

"Maybe we can treat T’
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3. Quantization and the effective potential for Version 1.2: gravity?
Now we can write an effective potential mediated by U*. The amplitude of the process in

Fig. @ (a) could be written out(with the underlined terms are generated by the underlined
term in (I78)), a;
: o N L. : 1o
'LMa = u Z{alﬂmkp + Blﬂ(lqagnp + Zq/@gap)[’y itk
I . -
(i g + 1w gor ) [V 1P — 7 1ip™ |}

, A
a” ’i{()éQMi’ipp/ — 62M
1 . . +Z'gpp’
Zﬁl_Q[q : kVp — 457 kp]}u ) 7

ooy s g7
— Y7k pu® - 7

i {—an Tk,
2lq - Py — 4o Py tu"

) A
" {—ay Mpp + Zﬁ2
—i  Najask - p
2Aoq B o ) Y
i Mlz 2{~la pvok” — 4o K + [0 kvop” — a7 D K]}
45,3
+ ]\}22[+q~kq-p—q%ﬁﬁ—q-pMJquk-p]}
2mé* 2ms""’
—i  AN’cionk-p  2MNaiBep - k o Y
- ? ’ { Mz +1 }wz (+QO’7 — 47 )
6162 ss’ rr’
M2 (k- p)g®} - 2mé™ 2mé
o ANk -p 1l 2Aai Bk p o 1
= -t {TE +1 T(+QO’7 — 4o )E
46162 1 ss’ rr’
o (k-p)—} - 2md* 2mé
, {A2a1a2k0p0 1 A2A01 Bokp° 1
~ —-
WE Iq|* WE PE
(183)

461/82]{:0 0 ]- ss’ rr’
with a8, = a1, and the N.R. approximation ¢ - k ~ ¢ - p ~ 0, and the definition for A as
in ([6)

+ 4,77 — @Y ~ (v —vy) g = A|q| ,—00 < A < +o0, (184)

particularly, for NR case, A ~ 0.
Then, by comparing with the Born approximation to the scattering amplitude in non-
relativistic quantum mechanics, see (€9), by omitting the A term according to the optical

theorem, we can get the effective potential as
A%aqak%p°

Vir) = — 185

@ o (185)

In Ref. [I1], a gravity was generated by the antisymmetric F*” of an ordinary vector

field B* with a symmetric energy-momentum tensor, which seemed superficially a little non-

451521470170 1
AT M2 r’

8As in ([[Z0), for simplicity, here we can only consider the contributions from Uy, and, for the contributions

from Us, the result just need a double
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uniform.

3.2.4 Version 1.3: mixing Version I.1 and 1.2 for dark matter effect

With the Lagrangian in (I66) and (I78),

Litas) = —a MG+ ) + iy —v]w
—B(e + " [EG D +iE

+(higher-order operators) ,

and
Ligp = _gMPl . [(U+ UT)M +i(U - UT)H]Q/_}MHQ/J
1w C vean e
Mpianck [Fu+ F W(V i0" —4"i0" )y

+(higher-order operators) ,

@)

where we use the coupling constants as subscripts to denote them, respectively.

We would show that we can list the different kinds of possible potentials generated by
the field U* in a table, see Table-(2)). In the table, we take m as the mass of fermions, and
the word “imaginary” means this term would be absent according to the optical theorem;
for potentials including only {«, 5}, see (IT2)), and, for potentials including only {&, p}, see
([I83). Now we will show the calculations about the mixing effects from both {a, 8} and

{& p}-

OéA ﬁ fmA/MPlanck pm/MPlcmck
QA —a1aa\? -1 | oo - logr _'_MPlank a1&EAN? . ><
(confine) (confine) (conﬁne) (imaginary)
/6 +61/82 ) % MPlank 61£2A logr X
(E.M.) (dark matter) (imaginary)
5152 X
mA/Mpiane Mgk . .
EmA/Mpianck (dark energy) (1n1ag1nary)
pm/MPlanck Pl nk My, P2
(grav1ty)
Table 2: Possible potentials generated by field U*.
From the amplitude
iMy = wi{ar Mg, + Broauliq® gt — iq"gs)
A 1 : o oy s GO
+§1 ”k + P1 M(“]agnp + Zq,@ggp)h/ 1k? — Y ik ]}u : q4
" i{0a Ny guy — Paosn(ia’gl —iq"g))
oDy — P2 (o Gty + 1w o) [ 007 — 2% dp" Jju”, (186)
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it’s apparent to see the {ap, Gp} terms would give an imaginary-valued effective potential.

For the a& term, we have

. +igh”’
iM, = @i{aiAy" gup+§1 mk: ou’ - g4

/

gpp A A ss! !
— —zq—(alAfy gupgg—zzpp —i—fl itk,aaAY" gy ) - 2mé%° 2md

1 A2 ! ’
= —Z'E _Ma1€2(p0 + kD] - 2me* 2mo™

and the effective potential

Ao &(p° + kO)T

Vir) = 87 M

And, for the ¢ term, we have

. A
zMaZQHWmMW%—W%%%lw%M

+ig”” By A .
-1 z{—ﬁgoﬁy(zqﬁgp, —1q gf,) + SQMZ'lppl}u
q*
= —zq—{ﬁﬂqpfg Wpy — &1 mk:pBngp }- 2mé** 2me""’
[2A 1 / /
(Br&e = p261) = —1 {%&<_p +k) - QE:| - 2md** 2mao""
2A\ ) ,
~ — [ﬁﬁt] -2mo°* 2mé""
M |q|

with the definition
(—p+k)-q= Mg,

and then the effective potential

2ANB:16s 1

V)= S |2 8+ (1= 70)

A
U ’5{042/\7 Gup +Eo— ”Pp]} "

(187)

(188)

(189)

(190)

(191)

This term is a logarithmic-type potential (with rq put by hand to balance the dimension), at-
tractive only for A < 0), which might be corresponding to the dark matter effects(the velocity
dispersions for elliptical galaxies required an attractive force F = —VV (r) = v*/r ~ Cy/r
required a potential V(1) ~ log(r/rg), see Ref. [0]). For the sign of A < 0, we don’t know
much about it, but, we can know, if the clockwise rotated galaxies are corresponding to
A < 0, then anti-clockwise rotated galaxies must be corresponding to A > 0, and vice versa.
So, if the universe are rotated, the impulsive version for the potential in (I9I) might also
serve as the dark energy effects. Besides, it’s allowed to treat ry as an adjustable parameter,
and, a large ro of order O(1/Mpjaner) would be needed to generate a strong enough attractive

force with the comparable magnitude with Newton’s gravity.
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3.2.5 Unification II: comments on potentials generated by "

If we combine the potential terms in (I72[ISSI8ITOT]), then, we can say, the field U* with

field strength F* could provide a wealth of interaction information, as shown in Table
The list of potentials generated by U* with field strength F*

1. for the {aa, af, a&} terms, there is a linear potential of order O(a?A?), a logarithmic
potential of order O(afA), and a linear potential of order O( /?2 -), which might be
corresponding to the confinement for strong-coupled gauge theory forncthe attractive case;
surely these terms would be depressed or enhanced by the energy scale A, and, their effects
would only be apparent at long distance range with respect to a Coulomb potential.

2. for the {88} term, there is a Coulomb-type potential of order O(/3%) which might be
corresponding to the ordinary Coulomb potential.

3. for the {8} term, there is a logarithmic potential (with a ry put by hand to balance
the dimension) of order O(B&m MPﬁlnck) which might contribute to the dark matter effects
in the attractive case (see Ref. [9], the velocity dispersions for elliptical galaxies required an
attractive force F = —VV(r) = v?*/r ~ Cy/r required a potential V(r) ~ log(r/r¢)) and
the dark energy effects in the impulsive case; except for A, this term would be depressed or

enhanced by the parameter A\ and a size parameter rg.

4. for the {££} term, there is a linear potential of order (’)(fzszL) which might
Planck
contribute to the dark energy effects. [6] [7]

5. for the {pp} term, there is a Coulomb-type potential of order O(p*m? ) which

2
MPlanck

might be corresponding to Newton’s gravitation potential.

Some notes for the potential

6. the special relativity effects are automatically served by the spinor basis u®(p). Since
the coupling /3 is dimensionless, the [ term in Lagrangian (I60) would be a U.V. renormaliz-
able one in the sense of superficial degree of divergence (or, in the dimensional regularization
framework).

7. apparently, with different settings for the parameters, different part in the total po-
tential would be the dominant part.

8. the logarithmic potential is determined by both the charge and the velocity of each
particle, so, is this a new way to combine the E.M. and gravity?

9. both the logarithmic and linear potential would not influence the transmit of the free
photons since the E.M. field is a kind of source-free field, but the hyper-hyperfine structure
of the optical spectrum of atoms would be influenced.

10. the logarithmic would give corrections to the impulsive/confined effects generated
from the linear potential part, so that would lead to a nonlinear red-shift, which might give
an approach to understand some cosmological experiment data, such as, an indications of a
spatial variation of the electromagnetic fine structure constant [10].
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Unification 11

By comparing (I72) and (I85), not like the method in ( [[274]), where the unity between
E.M. force and gravity are realized with only two energy scale: A and M, here, we can unify

this two kinds of forces by defining a new different energy scale, which has been proposed in
Table ([2)):

[“each O-symbol for the matter field ¢ in (93] should be tied with an energy scale M”],

with )
M = MPlank (fOI‘ aw or 81/})7 (192)

as a supplement to (@) for the postulation. Of course, directly to see, the two couplings in
([I72) and (I8H) would spontaneously become equal at a large enough energy scale, as the

case in ([74]).

3.3 Version II: symmetric field strength FW for SR Gravity

Although there is a potential form for Newton’s gravity generated in (I83)), the current in the
corresponding Lagrangian is not the traditional energy-momentum tensor, since the former
one is an antisymmetric tensor while the latter one is a symmetric one. Now we’ll check
whether the symmetric FW corresponding a symmetric current could serve as a Special Rel-
ativity(SR) gravity or not.

1. The interaction Lagrangian

The symmetric tensor fﬂ,, has 10 independent components, so, it might serve as the
contribution from the field strength of an off-shell gravitons. Note, as for F),, in ([I64), the
E.O.M for I, wouldn’t be true since the U, was off-shell, that is,

>0, F" = 9%, F" #0. (193)

However, if U, was on-shell, then, combining the traceless condition, FW would have only
10-4-1=5 independent component, which might now again serve as the on-shell state of a
graviton. Let’s check whether F,, could serve for the graviton, in the sense of the effective
interaction form.

With the Lorentz gauge fixed condition, see Appendix [D], the F;w part of Lagrangian for
free particle U* in an irreducible complete-symmetric tensor representation could be written
as

1, =t agbu 4 7t
Ly = +§8aFBM8 F —mUUMU“

—(U+UT S
A [ea(U + UYL 0 T )

1
= +5 [0} + 8,0} [0 (@ Ur + 0U%)] — miufur

Ay [, (194)
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and, the interaction term could be written as

Lr = —aa (U +UN,+iU - Uiy

1 — T —(U—-UTY. —
B [F " i, (20" m 40+ 40 )y

+(higher-order operators), (195)

where Fg) = F,,(U) is the field strengthﬁ Note, the term

on—shell

N a4 1 v
Ly = gudb(y"10” — 19" my ) === 0 (196)

E.O.M

is just the full Lagrangian of a matter field, so we need set m # imw in (I93), and, we can
just set
m =0 (197)

according to the following result in (203]).
For future convenience, we write the interaction terms for Ul obviously, as

)

A - I —n) - y . .
Lr=—a— Uy pid"y — BM ng Y(=2g""m + Yo" + M0 )Y + ... (198)

M
2. The E.O.M for tensor theory of Version II
See ([388) in Appendix [D] we can get the dynamical equation for the field U* as
Uy = mpU" + J7 (199)
with the gauge fixed condition 0,U7 = 0, and
= e iy
= 4a— Y
M
1 _
+ - 26M O [h(—=29™"m + ~7id™ + 4707 )] + ... (200)
3. Quantization and the effective potential for Version 11

Now we can write an effective potential mediated by U*. The amplitude of the process in
Fig. @ (a) could be written out(with the underlined terms are generated by the underlined

9The symmetric energy-momentum tensor should be
T = i) — 0"y

rather than here

P(y7id" +4H10")0,

but the results would be the same for NR approximation case.
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term in (I93])), ad!d
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with a8, = a1, and the N.R. approximation ¢ - k ~ ¢ - p ~ 0, and the definition for \ as
in (&7)
— oY + @Y = (v —v2) g = ANg|,—00 <\ < +o0, (202)
particularly, for NR case, A ~ 0.
Then, by comparing with the Born approximation to the scattering amplitude in non-

relativistic quantum mechanics, see (69), by omitting the A term according to the optical
theorem, we can get the effective potential as

_A2a1a2k0p0 4P Ba(4m® + K°p°) 1
r

Vi) = st | Ar M2

(203)
where we have set m = 0, see (I97).
As our expectation, for two particles with the same kind of charges, this potential is

apparently constituted with a linear impulsive part, and a Coulomb-type attractive part,
each of which might correspond to the dark energy effects [7] (since this effect should only

10As in ([IT0), for simplicity, here we can only consider the contributions from Uy, and, for the contributions
from Us, the result just need a double.
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display at the cosmological level, by treating the upper limit of the distance L ~ % for the
theory corresponding to the I.R. energy scale A as just the size of universe), and the ordinary
Newton’s gravity, respectively. The special relativity effects are automatically served by the
momentum p and the spinor basis u*(p).

Now we can say, the introducing for phantom in Ref. [6] [7] and for U or U* field in this
paper could give equivalent results for impulsive force rather than attractive force, where the
former one contributed a imaginary unit ¢ in the current(the “charge”), or a whole minus
sign in the kinetic energy, with the propagator of graviton maintaining, while the latter one

P2 = —p? pt T o
a space-like momentum p. Indeed, phantom and {U, U*} are all non-traditional field, the
former one has a negative kinetic energy term, while the latter one has a negative mass
term(as a higgs field rather than the conventional quantum fluctuation fields).

contributed a minus sign in the propagator of U or U*, as <1 ~ 1 ) — (1 ~ L ) for

If m # 0, it might partly serve as the /—¢ term in Einstein’s General Relativity(GR).
We will introduce the \/—g term in next section.

3.3.1 Matching for the d.o.f: generation of a linear gravity theory
Can F(U) ~ 90U serve for the graviton?

As discussed for F'(U) in Section (3.2.2)), according to the square form of the kinetic
energy term (OF)* and the Coulomb-type interaction arising from the term F(U)v in
([I93), we can say, if U* is a field with propagator ~ 1/p*, then its field strength

F(U) ~ 0U (204)

could be treated as a particle d.o.f with propagator ~ 1/p? serving for the gravity, that

means, F'(U) could be the graviton.

If our E.O.M with 0* is true, maybe we can partly understand why Einstein gravity is
secretly the square of Yang-Mills theory. [I2] That is, gravity is generated by a field A* with
a E.O.M 9*A* = 0, which is the square of ordinary gauge field with a E.O.M 9?A* = 0.
There is another viewpoint for this “square”, see Section .11

3.3.2 Unification III: which is for gravity, F},, or FW?

By comparing (I85) and (203)), we can see that both F},, and F, could generate a gravita-
tion, with a crucial reason that, a vector field U*#, either with a field strength F},, or FW, is
corresponding to the same propagator at the tree level with the same gauge fixed condition.
Now we would ask: “which one would be the real origin of gravitation, F,, or F,,?”

If we treat F),, being the only origin of both E.M. and gravitation, then the matter
current would be an anti-symmetric one, which is not consistent with the traditional energy-
momentum tensor, unless it’s allowed for a new type of current to generate gravity. If
it’s truly allowed, then, within this framework, we can discuss the unification of E.M. and
gravitation in the viewpoint of currents. As we know, these versions of gravity theory would
be non-renormalizable because of the vertex including a momentum in, however, if we adopt
the procedure in the Section 2.9.2] they would become a renormalizable one. Moreover,
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another interesting result would come with this renormalization, that is, a unification, which
could be illustrated with the “excitation of d.o.f” again: with treating the two currents,

BB + o and G (i —ior

in ([I66]), as two field d.o.f of a same complex field (see Section 2.9.2), we might say, the dif-
ferentiation between the two coefficients, the E.M. constant § and the gravitation constant
%, happened in the case of the latter one “field” frozen, which would serve for the gravity,
while the unification between them happened in the case of the latter one “field” excited,
with the former one “field” was always excited serving for a E.M. force.

On the other hand, if we take F),, and F, to serve for E.M. and gravitation respectively,
then the field U* would not have a field strength defined in a definite irreducible representa-
tion, that is, the field U* would not be a pure Maxwell field. However, this property of U*
would also take us a chance to unify E.M. and gravitation, that is, to combine them into a
single field. Within this framework, U* has a mixed-type field strength, af),, + bFW, which
would give a different magnitude for the coupling coefficients when F),, and fﬂ,, coupled to
two currents with the same magnitude, say,

(aFy) - B0 ) and  (bFy,) - Blb(1#i0" +~"id" )]

Anyway, in both the two viewpoints above, we might say, with respect to the E.M. con-
stant e, the smallness of the gravitation constant (related to the energy scale Mpjaner), was
from the smallness of coefficient b with respect to a in (I49), that is, we can consider a
relation for Mpianer = $Mpw.

And, under our consideration, for the black holes, there is nothing extraordinary for it
by contrast with the ordinary matter, since the black hole is just a particular concept in the
sense of “the first cosmic speed” of this object at the classic mechanics level, which would
not be a well-defined concept at the quantum level since the “force” on a particle/field would
be ill-defined. Of course, there might be some correspondence for the black holes concept at
the quantum level:

a. which might be the non-perturbative/confined point of the coupling constant, that
is, % ~ 1, according to (203)). Let’s take an estimation for it: if there is a logarithm
enhancement for the running/walking (asymptotic behavior) of the coupling constant, then
the non-perturbative point need not be at k° ~ M at alll

b. which might be the formation of a stable or meta-stable bound state, including mass-
less particles and driven by only the gravity, in that case, one can always treat a “black hole”

as a short-lived (“fast-evaporated”) bound state!

3.4 U" out a nutshell: generation of a non-linear QED

As for the scalar U field shown in (82), with the boundary condition [0?U]p # 0 for the
nontrivial P-4 type differential E.O.M 0*U* = ... of U*, certainly we can’t generate a P-2
type linear E.O.M 9*U* = ... for U~

For short, see ([[63), if i0 < Ay and (F*) > F* — (F*), then we can get an approxi-
mately linear E.O.M for a free “P-2” type field U*. For detail, that is, if the characteristic
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energy scale u ~ py for physical processes is far less than the energy scale Ay, then (IGH)
would be reduced to

Ly — —Ay |€pa(U + UT)’)F (U+UT) 6°‘Fﬁ vivh T (cyclic for indices)| — m4UUjLU“, (205)

and now, for an intuitively view, if F* has a large nonzero vacuum expectation value
(F*) = Fe* > F* — (F*) then the main part of this kinetic energy term would include
only two 0 symbol, with the form ~ UJOU, so we can get an approximately linear E.O.M
for a free “P-2” type U(1) gauge field U*, see Appendix [Dl

Firstly we get the nonlinear E.O.M for my = 0,

_AUX(;LJ )(aB) - 0” FUMJFUT) 0, (206)

through the Euler-Lagrangian equation, where the tensor

T U+Ut
6F§Z+U ) €an(5 )

_ A
X(NU)(OCB) = |:_€ﬂ + €p)\F(Up+UT)gaBg,uo

7& Ep)\F)\p [_5pu5)\ﬁ5>\05pa - 5p05)\a5)\u5p6 + gaﬁgua] (207)

is symmetric for the indices (po) and (af) (denoted with a round bracket), respectively.

Now, we can return to the point expressed at the beginning of this section, that is, if F'*?
has a large nonzero vacuum expectation value, (F*?) = Fe? + ... > F» — (F*), then we
can get the approximately linear E.O.M for a free “P-2” type U(1) gauge field U*,

0, F* =0, with (F*) > F» — (F*) (208)

otherwise, we can only get a nonlinear E.O.M (206]) with self-interaction for even a U(1)
gauge field U*.
Note, if we roughly set

PFMU + U =0, F(%UT 40 (209)

that might not give an nontrivial E.O.M, since the constraint of (209) is too strict, by con-
trast with the Bianchi identity, 0 F°* + (cyclic for indices) = 0.

4 Field U"

4.1 Lagrangian for U*: a form like GR

By taking the Minkovski space as background space, if we take the generalization of U —
UM = UYF, with the transform property of U* under the global group element V as

U — vumvt uw = U —iusr, (210)

where the indices uv means the transform is for each component of U*”; besides, the gauge
fixed condition and E.O.M are

PuU" = p,U" = 0= —p'U" = —myU™, (211)
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with the propagator in momentum space as [2]

vpo —t "+ 0"
D7 (U) = 212
F ( ) p4 iy 2 ) ( )
then the corresponding Lagrangian for the higgs-type tensor field U*” should be
1 (0% v 17
Ly = _gaapgwa FPo 4+ my U, U™

—AY [(U + U (U + U gud F ity + (---)z‘(U—UU] L ULU™ <1, (213)

where
Fﬁuv = +8BUMV + avUﬁu + 8uUﬁu> (214)
Fl, = +0.Ul,+0,Ul, +0,U], (215)
ny = nﬁpruv = 7" (+05Uu + 0, Usu + 0,Upy) - (216)

The term Ul U ; LOF Arv in ([2I3) is a special 3-particle interaction term, and we will return
to consider this term in sections below, while for here we set Ay = 0.
Formally, by coincidence, if
U =G = — g (217)

is the metric tensor of the space-time, we can find
Fy, ~ 2T, or Fau, ~ 20, (218)

where I' is just the Christoffel connection
Do = 5 (=008 + DG + 0. ) (219)

7 (=08 + Dl + Ouin ) (220)

P;ﬁw - gﬁprwv =

N~ DN~

where the minus sign in the underlined term is from the different definition for the metric
tensor, see (2I7)). For the detail, we just need see the definition of the affine connection I':
firstly, see the definition of a “translation”

AM(P — Q) = A*(P) — T, AY(P)dz™, (221)

and, secondly, with the unitary property A?(P — Q) = A%(P), we can get a D.E. (to the
order of (dz)!),

augu)\ - gaAFSM - guargfu =0 (222)
so, the different definition for the metric tensor would influence the contraction of indices

and then give an extra minus sign.

However, there is a new result, that is, if we still take the form I' ~ UQU as the gauge
field to construct a gravity theory, then, from the Lagriagian (2I3]), the EOM of gravity wave
would be

I, =0= "G, =0, (223)

rather than the Einstein gravity wave equation in weak-field approximation as

G =0, (224)
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which is deduced from the Einstein equation or the corresponding action:

G = Ry, — %R’gﬂy —0& S= / d*z\/—GR, (225)
where
R = ¢"R,, (226)
Ru = R, (227)
Ri;w —8VT§M +0,I%, — e, + 00, (228)

are the scalar curvature, Ricci curvature tensor and Riemann curvature tensor, respective-
ly. If our E.O.M with 0* is true, maybe we can partly understand why Einstein gravity is
secretly the square of Yang-Mills theory. [12] That is, if we treat the E.O.M 9*U* = 0 for
the classic gravity field, it is just the square of a E.O.M 9?A* = 0 for ordinary gauge fields,
see (2324, differing from the case in Section B.3.11

For the self-interaction of U*”, like the definition of the field strength for a non-Abelian
gauge field A?, as o - - -
gt = 0o Ajt" — O At — ig[At', Apt!], (229)
and the “field strength F,g, of field strength Fj, of U*” in (I59), we would give a definition
of the field strength for F,z,, of field strength Fj,, of U* as (anti-symmetric for av)

Fogpwr = (=00 Fpu + 00 Fpa) — 1% (Fopw Fora — FopaFpor) - (230)
with the correspondence to (220227228])) for the indices as
Faﬁ;w = RUaB,ul/ ~ Rﬁ,ul/om (231)
U Fogyr = Ry~ Ry, (232)
U" Ry, =Ry ~ R. (233)

We could also designate
FU#[ZF&T'Q] = FO;U/FﬁU/a - FouaFBo/u (234)

for some simplicity. Then the Lagrangian could be written as

1

Ly = —5Flgu M +myULU™
A (U + U (U + U0 iF ) + (diwom)| (235)

However, here we would ignore this kind of construction for (230) and the Lagrangian form
in (235), and that would not influence the results we concerned in this paper (that is, the
kinetic energy term of of U*” and the interaction term of U*” and matters in the Lagrangian).

For the detail, although the first term for the r.h.s of (230)

—0aFpu + 0y Fpa
—0, (—85(]#,/ + 6,,U5ﬂ + @LU@/) + 0, (—85(]“& + 80,U5“ + a“Uga)
= 0.05U 0 + 0,0,Use — 0a0,Usy — 0,050, (236)

would not be a trivial construction, however, if we choose the gauge fixed condition 9,U"" =
0,U" = 0 for deducing the E.O.M, then the construction for (236)) is really trivial.
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4.2 Version I: U" coupled to intrinsic charges

1. The interaction Lagrangian

Like the case of U in (72)), we can write the dynamical EOM of U* in the form as
IU = Jo (237)

where J,,,, is not the energy-momentum tensor 7),, in Einstein equation, and the correspond-
ing interaction term

Ly = —aQA[(U+ U +i(U — Uiy
R U+Ut . U-Ut o uv av vV uo
—BQUIFLTD 4+ i FU IO (0t 4 ™ 4 )
+(higher-order operators) . (238)

The second term in ([238) means that U*” doesn’t affect the kinetic energy of matter field
Y through its VEV (U*) ~ n* = diag(1, —1,—1, —1). For the definition of field strength

Fg;{jm) = Fou (U + U, see [216).
We don’t consider terms as
L1 = —aN U H0,00,5(1%i0" + )i (239)

in this work.

2. The E.O.M for U* of Version 1

With the Lagrangian (2I3238), we can get the dynamical equation of U* from the
Euler-Lagrangian equation (1), see ([4I6]) in Appendix [D] as
— 0, = —mb U+ I (240)
with the gauge fixed condition 9,U" = 0,U" = 0, and
7= +aQA Y
—=3BQIY(V21op + Yollrp + Vpllor )Y - (241)

3. Quantization and the effective potential for Version I

Now we can also write an effective potential mediated by U*”. The amplitude of the
process in Fig. @ (a) could be written a

iM, = a¥i {Oq A ; Wnypn“”
O A )

Ut/ _5 Ui/ (Buv — vBp) + (Buv — Nﬁ’/)]} 2

i Ly T

gt + i€ 2

ligs

HAs in GRI7ZAR0OI), for simplicity, here we can only consider the contributions from Uy, and, for the
contributions from Us, the result just need a double.
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with (vg—v1)-q = A|gq|, a1fs = aefy , and, —0o < A < 400 was defined in (67), particularly,
for NR case, A ~ 0.

Then, by comparing with the Born approximation to the scattering amplitude in non-
relativistic quantum mechanics, see (69), according to the optical theorem, we can get the
effective potential, as

A24a1a2 1086162 1
r+ -
4 T r

V(r)=+

: (243)

Apparently, it’s impulsive for two particles with the same charge. And, we can find the effect
potential form of U, in ([243)) is same as the one of U in ().

4.3 Version II: U" coupled to momentum

1. The interaction Lagrangian

In the case of weak field approximation, still by taking the Minkovski space as background
space, the action is written as

S = / d*z L. (244)

and, another version of the interaction term of U* could be written as

Lr = —aQA(U+ U +i(U = U)u) - G (m + 440" +i0")
—BQIFUHUN 4 i pW=UD] zﬁ[%(n“%a‘” + it 4 nHid”)
s (MO AR 0 iOF) + (10800 o
QU +U1) +(U = U]V ()
—5@% [F(U+UT) + Z-F(U—Uf)]aw/kuw)
+(higher-order operators), (245)

with the definition of field strength Fégj v Fopw (U +UT) in [2I6). As in (I37), we set
m = 0 in (245). And, for a simple calculation, we only consider the terms below,

L = —aQALU +U") 4 iU~ U"]w) - dar(2#i0° +"i6")0
—AQUFVHY i F U], @z?[%(nﬂ“wa i 0 ). (246)
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The V(1)) tensors are constructed from the interactive term V (1), such as:

a. the scalar-scalar type current-current-coupled term V (¢) = ginp¢

(including the mass term V(1)) = myi1) as particular case),

b. the vector-vector type current-source-coupled term V() = e@'yuwA“,

c. the vector-vector type current-current-coupled term V(1)) = G%ﬂw - ahyHap,
with the corresponding construction for

a. V() = givroribe,

b. Vi (3) = eyt AY,

c. V(@) = Gy - e,
respectively. Similarly, we construct

a. Vo (y) = gt e,

b. Ve (i) = eyt A”,

¢, Vo (i) = Gy - oy,
respectively, where {g, e, G} are coupling parameters and v is the velocity of matter field .
Apparently, if {g, e, G} are small, then contributions from these terms could be omitted. We
might designate the operation of V(¢) — V# (1) as “current-ization” (converting an energy
density scalar to an energy current tensor).

We don’t construct the U, V(1) terms as
V(’QZ)) ' TI' [UMV + U;];V]

or

V() -\ ~det(Uy + Ul).

since the two forms might lose the information of U, for the strong field cases.

2. The E.O.M for U* of Version 11

With the Lagrangian ([2I3240), we can get the dynamical equation from the Euler-
Lagrangian equation ([31), see (#22)) in Appendix [D] as
— 'U,, = —m{U? + J°° (247)
with the gauge fixed condition 9,U" = 0,U"" = 0, and

_1
I = QA (Y510, + 0 )0

—-38Q0- (¢ [%(%pi@r + Nrpi0y + Nrei0p)|0) + ... (248)

Actually, we can treat the A term as the cosmological constant term, see the corresponding
linear impulsive potential in following (250).

3. Quantization and the effective potential for Version II
Now, omitting the contributions from U, V# (¢) terms in (245]), with the Lagrangian

RI3244), we can write the effective potential mediated by U*” corresponding to the ampli-
tude of the process in Fig. @l (a), a

) sz Hopvp |
iM, = ﬁsi{alAn il ;” 1 S (HiR i)

12As in ([242), for simplicity, here we can only consider the contributions from Uy, and, for the contributions
from Us, the result just need a double.
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with (ve —v1) - ¢ = A|q| and a1 5y = anf5.
Then, by comparing with the Born approximation to the scattering amplitude in non-
relativistic quantum mechanics, see (69)), we can get a similar form for the effective potential

as the one in (242),

A%4on0ok®p” 186100k " 1

Vir) = M2Ar T MPAr r

(250)
where a;9, 812 > 0, and, —oo < A < 400 , particularly, for NR case, A >~ 0, as in (242)).

Apparently, it’s impulsive for two particles with the same charge. And, we can find the
effect potential form of U, is same as the one of U in ([72).

4.4 Matching of d.o.f: generation of a linear 3rd-order tensor ver-
sion QED

1. Detection and matching of d.o.f

If the metric tensor g"” corresponds the U* field in this section, then the gauge fields
would not be g" but Fy, defined in (2I6) or I}, defined in ([220), and, g" is just the BKG
effect (rather than field strength) of F7), or T,

For the detection of gravity wave, by a analogy of the relation between the gauge field
A, and BKG field U, we can say that the Christoffel connection field Fﬁy is a good d.o.f (the
real graviton) rather than g, in the weak coupling case, however, since g, with two tensor
indices corresponding to a quadrupole moment effect has been quite difficult to detect, the
Fl’)y with three tensor indices would be more difficult to detect!
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2. The generation of a linear 3rd-order tensor version QED

In the weak field approximation, we can parameterize U*” as
UM (z,x +€) =1 —igenqg, A + ..., (251)

where A“"" is a spin-1 particle for the index a.

By comparing (243) and [250) with (72), we can find that the effect potential form of
U, is same as the one of U. So, by treating each component of U, as a scalar U field, and
taking the field strength F, defined in (2I6]) to correspond to the gauge field, like (I0G),
maybe we can use the new field

(eleoe] _ clopal)

AZ‘V = 5

Alpolu) = () F5, . d(x) () = 1, (252)

to generate a linear QED with respect to the index « for each pr component of A7, where
the square and round brackets are used for the anti-symmetric and symmetric indices, re-
spectively. And, with the kinetic energy term form (0F)?, the E.O.M of a free A, would
be

PRAS, = m2A%, . (253)

4.5 UM out a nutshell: the generation of Einstein’s GR
4.5.1 A classic field U*

Assuming UM is a real-valued field, we can define the decompositions

u = g =g 4+ (254)
uy = =g ="+ (V=g - 1)n", (255)
Ur = uf” +uh” =20+ B + (V—g — )", (256)

for a general case of ([250)), it’s allowed to set the mixing angle as tuning parameter, as
UM =cosf - u” +sinf - ub”. (257)

Here, for dealing with the complex term /—g = \/—det(g*) = /—det(u}"), we introduced

a new tensor field ub”(actually a scalar one, nevertheless with the consistent propagator
form and attractive forces with u[”) as a “gauge singlet” (while the spin-2 uy in a adjoint
representation) of the underlying gauge group corresponding to the interaction mediated by
U =u + us.

We don’t introduce a spin-1 field for U* in (256]), since that would correspond to an
anti-symmetric tensor, which could be corresponding to the vector U* case, as shown in

(I06) or (T73).

Then, for the weak field approximation, we could concentrate only on the fluctuation
part of UM as

Un = o e (258)
Vi = " 4 (=g — 1)n. (259)

23



Based on a flat space background, with the coupling constant such as gravitational constant
G absorbed in the kinetic energy term of U*” or V# the Lagrangian term L, without V¥
and the interaction term Ly with coupling to V#*” could be written as

Lo = "0, — ymy, (260)
Ly = hW"Py,id0
+(v=g = D" P,id ) — (V=g — 1)pmi) | (261)

L=Ly+Ly = QWQ/;%Z@V?/J — pmy)
+(V=g9 = 1)(g = W Y,i0,¢ — (V=g — 1)pmy)
= V99" V1,10, — /—gypmy
—(vV=9 = V)" y,i0,¢

VL V=99" ,i0,0 — /—gym (262)
then the action would be
5= [ dey=g (9" inidub — imu) . (263)

like the term given in Ref. [13].

Besides, we list two more points about u; and us:

1. Are u; and wus independent? Yes! Since that u; could determine usy, but not vice
versa.

2. What is uo, and how to detect us? Surely u; and us are both massless particles,
however, from the interaction Lagrangian term, their effects are mixed together and not able
to isolated from each other.

Generally to say, there could be many different ways to construct the action (or kinetic
energy term) of the field U or V# which surely depends on one’s interpretation on the
interaction and the d.o.f, for instance, we might treat (262)) as a nonlinear ¢ model type
theory, then the transition to a theory based on a curved space background would be s-
traightforward by taking u{” = ¢g"” as the metric tensor and hiding the effect of u4” in the
space measure, just as the Einstein’s version.

4.5.2 UM out a nutshell: generation of a non-linear tensor field theory

As in (2059206) in Section B4l Einstein’s GR would be a non-linear E.O.M for tensor field

UM out of a nutshell.

In our framework, the Einstein’s version indeed holds just as a particular case, with some
evidences listed below:

1. From (225), Einstein’s action

1
S = /d4x\/—gR(g“”) = /d4x Zm,,ug‘”R(ul) (264)

is a mixed term of u; and wuy, without the pure terms for u; and wus.
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2. From (223]), even in the flat space, Einstein’s action and equation
S = / (d4x\/—g) R — /d4xR: /d4xgwgﬁuRO‘BW
1
G = R — §Rguv — R,, =0~ (g099),, =0 (nonlinear D.E.) (265)

is a non-linear differential equation(D.E.) constituent with only multi-field coupled terms(for
kinetics information mixed with interaction information) rather than an linear differential
E.O.M of field g, with the crucial term p"g,, with N a positive integer (for pure kinetics
information)

g =0 (linear D.E.), (266)

which seems like the former one (263]), Einstein’s GR, is an uncompleted version for the
E.O.M, but only a part picked from a complete dynamical E.O.M. For a more obvious view,

just like (208 208), we can take the E.O.M of a non-Abelian gauge field for example, as
D FM 4 gez‘jkAszW _ v
= 0,(0"AY — " A™) + geijkAi(a“Ak” — QWA
(ifio~k<l)— geijkAi(a“Ak” —QrAMY = gV (267)
Actually, the action for free graviton in flat space in (263]), is just corresponding to
the second term in the complete Lagrangian (2I3)! Well, the term UWUagR?]ﬁ " is truly a

3-particle interaction term, but, it’s really a term with the least number of derivative for
generating the E.O.M, Ry, = 0, although which is a non-linear one as in (263).

3. Besides, if we define U = uy + ug as in (256]) for the complete information of gravity,
then the term .
L=y Ry = o0 1105 R (268)

is really the term with the least number of derivative for including complete information
from both u; and us, otherwise, for instance, either nang‘lﬁW or nu,,Rg‘fW would lose the
complete tensor-information of ;.

4.5.3 Is that true for g, = U,,?

Note that, in (258),
U = o 4 (269)

strictly speaking, the n* term separated from U* would contribute to the complete inter-
action rather than be roughly omitted for the strong field cases especially, or contribute to
mass corrections for particles for the weak-coupled cases.

I. Indistinguishability between metric g,, and field U,,.

If we define the Minkovski metric tensor as

Ny = Nuv + <UMV>> (270)

where 7, could be treated as the absolute flat background space metric tensor independent
of (U,), then the complete metric tensor for the space could be

Juw = ’F]uu + U;u/- (271)
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That means, the VEV of U,, could contribute to the mass of particles. Besides, if there is
multi-vacuum structure for Uy, then all the different VEV of U, might contribute to the
mass of particles.

However, if we don’t configure a flat background space metric tensor 7, independent of
(Uuw), that is, 7, = 0, then, in the case of very strong gravity, since (U,,) = 0, all matters
even the graviton, do not have the kinetic energy term 7j,,0"¢'9”¢ hence the E.O.M. At
that time, we would ask what is the d.o.f, and how to define the particle? Maybe we should
turn to Section 2.9 that is, now the current is the real field!

It’s difficult to check whether 7, = 0 or not, since it is usually mixed with U,, ~ (U,,)
for most cases. However, the point of Einstein’s equivalence principle is just to define
N = 0 and 7, = (U,,), that means, the flat background space was defined as gravity field
takeing the VEV. So, in the case of very strong gravity, when the decomposion of

Guv = N + h;u/

is unavailable, with %, the fluctuation effects corresponding to gravity, that might generate
the picture that all matters do not have a kinetics term 7, 0"¢'0" ¢, with a doubt on what
matters should be. And, just in the case of very strong gravity, we might detect the breaking
of Einstein’s equivalence principle.

II. what is ¢"”, metric tensor or gravity field? Either-or!

The energy-momentum tensor are part of generators (“charge”) of the Lorentz group [14],
whose corresponding global group parameters could be a constant 2nd-order tensor ¢,
which could be parameterized to be proportional to the metric tensor of Minkovski space,
€ = Cny, rather than the coordinates. In this sense, the physical correspondence of ¢,
could be treated as the “light speed”, which corresponding different kind of space, and might
not be unique. However, after localization, ¢,, — £,,(2), it is not metric any more but just
a field. So, there is no necessary reason for us to interpret the field g, () = 1., + e, (x) as
the metric tensor. In analogy with the case of electromagnetic field, that is, a global group
parameter, labeling the electric quantum number of particles, becomes the electromagnetic
field after localization.

So, what is ¢g"”, metric tensor or gravity field? Now, it’s Either-or! If g"” is metric
tensor, only being used to raise and lower the indices, then the theory is purely a geometric
dynamics (dynamics in curved space), without the need for a gravity field, but just a need
for constraint conditions to represent the curved character of the world, for instance, the
Einstein equation is just a most fundamental constraint. If ¢g"” is a field, then, it isn’t innate
to be all the metric tensor but just a field defined on the space background. Ultimately, the
two kind of description should be equivalent. To be a field, g, doesn’t directly impact the
curvature of space, but indirectly impact the space by coupling to the kinetic energy term
of matter, according to the equivalence principle(kinetic energy for inertia, interaction for
acceleration). Or, we can say, to take g"” for a covariant derivative and for a curved space
background metric tensor, should be equivalent.

The mass terms with no tensor indices interact with gravity field by coupling to a scalar
field, /—g, constructed with g,,. Why is \/—g rather than other scalar variables? Because
v/—g represent the core properties of g,,, that is, on one hand, the core character of a
constant tensor €, as the group parameter is the light speed, which could be corresponding
to g, the determinant of £, for the most simpleness, on the other hand, the substantial
deviation of g,, from ¢, after a local Lorentz transformation, is the diagonal elements,
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more especially, the gop and g33 component. Like the generalization of U — U*, we can treat
vV/—9 = g, as a similar generalization.

Now that we have treated g,, just as a ordinary field, we should forget the concept of
curved space, and take the integration measure just as d*x rather than d*z/—g, for avoiding
double counting of the effects of field g,,,. And, all the indices should be raised and lowered
by 7., as they are defined in the flat Minkovski background space.

III. An n* for convenience.

Nevertheless, taking a flat space background independent from the gravity field is a good
choice for convenience to construct theories, on the other hand, the evolution of the (local
and topological) structure of space could be represented in a flat background space frame-
work by modifying the parameters and constraints of a theory, including the dimension of
space which might inevitably need to evolute as a dynamical operator in some cases, rather
than treating the metric tensor g"” with a definite rank as all the mixed information for
space and gravity, which might be troublesome and probably insufficient for some cases. In
a word, the metric tensor g"” serves for all the information of the space, but the gravity field
U* isn’t innate to be all the ¢g"” but just a field defined on the space background.

5 Massive {U,U",U"} for superconductor

5.1 Effective potential for Cooper pair

q
(M, K.T) ahale
k1 o ky ko 3
(a) (b) it (o) 2

Figure 5: The Feynman diagrams for the evolution of a Cooper pair.

In Ref. [15], a constant valued evolution amplitude(or, a square-well type potential in mo-
mentum space) was introduced as
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M~ =i s [0(k] = Tkol) — O(k| = [Ku])]

1

with k= §(k2 — k1), |ko| < |Kk| < |k (272)
for the evolution of electron pair, that means, the pair maintains through an effective 4-
fermion-contacted interaction or an mutual interaction mediated by the vacuum, see Fig.
Bl(a). Now we write ([2Z72) in the ¢ space, where g = ky — k) = — (ko — k%) is the momentum

transfer between two electrons. With the relations

1 1

=gk = k) =glky —q) = (K + @)l = K = q. [ko| < {[k[,[F'|} < [km| (273)
= 0<[g=K — k[ < ([kn| — ko), (274)
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we have )

. . € .
M~ i 5 (0(la] = al) — 0(lal —[g:l)], with |@i] <g], (275)
with |g1]| = 0 and |gs| = |kn| — |ko| = m, M an unknown mass for balancing the dimension,

and the corresponding effective potential in coordinate space as

Vi(r) ~ ]\64—22% [(Iga|7) - sin(|gz|r) = (lgi|r) - sin(lgu|r) + cos(|gs|r) — cos(|g:|r)]
e? 1 )
= e [(mr) - sin(mr) + cos(mr) — 1] . (276)

It’s allowed to model the evolution amplitude ([270) as a “2 — 2”7 scattering amplitude,
with the time-like s-channel and space-like t-channel as

; - \2 i + \2 2 F 2
IMs_channet ~ (i€) K= (M — Z%)Q ~ (ie)”(2m)o (K= — (M — 15) )
2 r r
~ i TR (M =i+ 0K — (M %))
with K2 > 0, (277)
: 00 - 2
) .\ g 1€ .9 1 . 9
IMichannet  ~ (’LG) q2 2 ~ (]2 2 ~ —1e W’WIth g <0 (278)

respectively. Then we get two points:

1. In the time-like channel [277), see Fig. BH(b), M could be seemed as the mass and I’
the width for an effective quasi-state |M) which mediated the evolution of electron pair, or
the M in (273), and K the time-like momentum approximately constrained in the vicinity
of the shell K? = M? to concentrate only the resonance enhancement part of the whole
amplitude (or, only the effects from the pole of the propagator ~ i/(K? — M?)) rather than
the K? < M? part as in Ref. [15].

2.0n the other hand, if we treat the quasi-state |M) as a bound state constituted by the
electron pair, then we can model (275) to be (28], which is corresponding to a scattering
process mediated by a scalar particle, see Fig. [B}(c), with the propagator ~ i/(¢* —m?) rather
than a symmetry-broken version QED with a massive photon propagator ~ —igh” /(q*> —m?),
for the reason that the Coulomb type potential is impulsive for two electrons while the
Yukawa type is attractive.

Now we will move on to our model in (7] and ({IG0). As in ([2I72R43), we can get the

amplitudes for massive {U, U*, U},

. . 1 , 4| la|?
Mo ~ —i|—Aajas————— — iAo o Ml
1Mo v < a1a2|q|4—m4+ie v a1ﬁ2|q|4—m4+ie + 51529 gt — m? + ie
2mo* 2meé’" (279)
. . 1 4| la|?
My~ —i (4N ——————— — 2Md o 4 43, fy——
o Z < T e a162|q|4—m4+i6 ’ 6162|q|4—m4+i6
2mé** 2mo" (280)
. . 1 . [ [ells
My ~ —i- [ —dogoapA’——————— — i 18A N fy————— + 1083 fp———
R ' ( e lg|* — m* + ie ! a162|q|4—m4+i6 * 6162\q\4—m4+i6
2mo*s 2mo™ (281)
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and, in the finite temperature case with picking up the real parts of the integration
results in Appendix [C] we can get the non-relativistic effective potentials (according to the
optical theorem),

A20z10z2 —mr )\AOQBQ —mr
Vo(r) = — FY— (cosmr —e ™) — W[ (e + sinmr)]
512 —mr
+—(cos mr+e ™), (282)
&7r
4N%0 o 2AN o 35
Vi(r) = 7877m12r2 (cosmr —e ™) — 787rm1r 2 cos mr
4 ! Q!
+%(cos mr+e ™), (283)
AN20 o B 18AN o B .
Vo(r) = —Wy(cosmr—e m”)—i-wﬁ@[ (e + sinmr)]
]_08 el
+¢(cos mr+e ™), (284)

8mrr

where we can still treat A ~ 0 so that the potentials would include only the ;35 terms.
Now, we write two new potentials: one for a sign opposite,

Vi(r)=—-Vo(r), (285)

and one for a combination,

Vi(r) =Vo(r) + Va(r), (286)
which would be used for a comparison in the figure below. The shape of potentials in (276]),

282 283) and (285H286]) are roughly plotted in Fig. ([@l).

V()

0.5¢

-0.5¢

Figure 6: The shape of different potentials. With setting < M2 — Bba _ 45162 — 1085 B

8w

and m = 1, the thin-solid, dotted, dashed and thick-solid lines are for (IZED (M) (283)
and (280), respectlvely.

Mathematically, the reason for why the massive photon A* in a symmetry broken version
QED couldn’t give attractive potential as U*, is the different forms so that the singularity
structure of the propagator for A* and U*, for the former one a single pole while the latter
one two poles.

13See Section 222 the discussions about poles in propagator.
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5.2 What are {U,U" U"}?
What are the quasi-particles {U, U*, U*} with mass m?

1.According to Fig. [ the shapes of ([270) and (282)) are truly similar, so, we can employ
U to serve for the attractive forces in the s-wave pairing superconductors(low-temperature
superconductors).

2. Where is the effects from photon/phonon? Both U and U* aren’t photon, and, in
our framework, “photon/phonon” is a false concept, while only the {U,U* U} fields are
real. However, as in (I0I)) we treat QU for massless U as the photon, here, from (282,
based on the fact that it’s attractive for even the same kind of charges, we can consider the
fluctuation QU for massive U as the phonon, and U as a kind of field(or quasi-particle) with
its corresponding “charge” for interaction is electric charge.

3. From ([I72283), we can consider U as a kind of field(or quasi-particle) with mass m,
and and its corresponding “charge” for interaction is a kind of moment, see ([IG0]).

4. Surely it’s allowed for the combination of the two effects from U and U* in the same
system. From Fig.(G), we can see that both the field U and U, could mediate attractive
interaction for two particles, the former one only for the charges while the latter one only for
the magnetic moments. We define the combined potential (286) to serve for the attractive
forces in the d-wave pairing superconductors(high-temperature superconductor).

5.The field U filled the coordinate space as a media for transferring interactions between
electrons in the condensate matters, with impulsive forces generated by massless U when
m ~ k,, — ko was small enough to be ignored, while attractive forces generated by massive
U when m ~ k,, — ko couldn’t to be ignored.

6. The core differences between U and U* are their masses and the couplings 5. If the
couplings are corresponding to electric charges, then what is it that determined the mass?
As in Ref. [I5], there is m ~ k,,, — ko, where ky corresponds to the Fermi surface, so that, we
might get the relations below:

the stronger fluctuation of Fermi surface
< the larger m (m ~ k,, — ko)

< the larger region for the allowed momentum ¢(since ¢ < m) . (287)
However, there should be

[@87) <« the closer distance allowed for the two electrons

< the stronger interaction between the two electrons, (288)

because of the non-perturbative properties for the Cooper-pair system, which would be dis-
cussed below.

5.3 Supplement to the matching for d.o.f

1. A~ 09U = U ~ [dzA.
Now that A ~ OU could be corresponding to the photon, see ([I0I]), we can again confirm
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that U ~ [ dzA could be corresponding to a string, see (22).

2. U~ AA?

That is to ask:

“Could {U,U", UM} be treated as spin-0, spin-1 and spin-2 bound states of di-photon,
respectively? Or, is there exist the effects for massive/massless photon condensation in a
symmetry maintained/broken version for QED?”

We should note that, as discussed in Section .83 only in the sense of that U is a group
element or a classic field, the parameterization, of taking Ud,U" as the very one allowed
gauge particle degree of freedom I',, U9, U" =T, is valid. However, in the sense of U is a
particle, the term (U@U")1 in fact gives an effects mediated by two particles, U and UT.
Or, in another viewpoint , the parameterization of U9,U" = T, indicate the existence of a
composite gauge particle I', with the flavor quantum number {U, U}, although a massless
bound states(with zero bound energy) is very bizarre.

3. U~ AA?
In the viewpoint of anti-particle, according to (26) and (7)), U might be a composite of A4,
with A a tachyon(possibly corresponding to the quantum entanglement effects) or a phantom.

5.4 An origin of non-perturbative property.

With the Schrodinger equation, Cooper had given the binding energy of the ground state

for an clectron pair [15], as
1

ebl9® — 1
The exponential form rather than a polynomial form indicates the sensitivity of the depen-
dence on the coupling ¢ for the energy Fy. For the reason, we might concentrate on the
multi-vacuum structure of the potential, see Fig. [@] that is, when ¢ is small, the “position”
and existence of the ground state would even be sensitive on the depths of the potential
well(corresponding to the magnitude of g), needlessly to say the energy of the state or the
perturbative calculation in the vicinity of ¢ = 0. Contrarily, when ¢ is large, the “position”
of the ground state would be “frozen” in a definite well, so now the energy E, seems able to
be computed perturbatively in the power expansion of 1/g in the vicinity of g = oc.

Eg ~ (289)

5.5 Cooper pair — Cooper cluster?

Now that we have the effective potential, it’s allowed to take further consideration on the
multi-body problems. We won’t give a complete calculation, but give some discussions.

As discussed in Section 2.6.2] the multi-body processes in Fig. 2(d) could be renor-
malized by the restricted kinetics phase space in our framework, and, since there exist an
attractive force between each two electrons, it should be allowed for the existence of Coop-
er’s electron chain or cluster, just like the baryons with attractive three quarks for the
non-Abelian gauge theory case.

Is it in a stronger or weaker binding for (tetra/multi)-electron clusters than for Cooper’s
electron pairs? Well, that need a calculation to give a certain answer.
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6 Conclusion

An introduction for a new class of higgs type fields {U, U*, U*} | with a fourth order (P-4
type) differential equation as its equation of motion, motivated by the linear potential in the
lattice gauge theory, could provide a wealth of interaction forms, with some postulations on
convergence being taken.

In the case of U coupled to the intrinsic charges of matter fields, electromagnetic (E.M.)
Coulomb potential with an extra linear potential and Newton’s gravitation could be generat-
ed with the operators of different orders from the dynamics of U, respectively; that the two
kinds of forces appear in a single model with a relation on the coupling coefficients, might
be seemed as a kind of unification; besides, the linear potential generated in the E.M. case,
would correspond to the confinement/dark energy effects. Meanwhile, a nonlinear Klein-
Gordon equation could be generated as a low energy approximation of the dynamics of U.
Moreover, in the weak field case, the gauge symmetry could superficially arise, and a linear
QED could be generated by relating the field strength of U to the corresponding gauge field.

For the matter fields, with the multi-vacuum structure of a sine-Gordon type vector
field A* induced from U, a seesaw mechanism for gauge symmetry and flavor symmetry of
fermions could be generated, in which the heavy fermions could be produced. Besides, after
a P-4 generalization, by treating the fermion current as a P-2 type field, a possible way for
a renormalizable gravitation could be proposed.

The Coulomb potential in electromagnetism and gravitation could be generated by the
anti-symmetric part F* of the field strength of a P-4 type vector field U*, when F*” is
coupled to the intrinsic charge current and momentum current of the matter fields, respec-
tively; and, it might be seemed as the second kind of unification for E.M. and gravitation by
generalizing the two currents as the two d.o.f of a same field; except for the Coulomb part in
each case, there is a linear and a logarithmic part in the E.M. case which might correspond
to the confinement in strong QED, while there is a linear and a logarithmic part in the
gravitation case which might correspond to the dark energy effects in the impulsive case and
dark matter effects in the attractive case, respectively. Besides, the symmetric part £ of
the field strength of U* could also generate the same gravitation form as the F'* case; so,
it might be the third version for unification if we consider F* only for E.M. and F' only
for gravitation as two parts of a same field strength with different proportions, respectively.
Moreover, a nonlinear version QED could be generated as a low energy approximation of the
dynamics of U*, and a linear gravitation could be generated by relating the field strength of
U* to the corresponding gauge field.

There could be a linear 3rd-order tensor version QED generated, with the field strength
For of a P-4 type tensor field UM corresponding to the gauge fields; for something out
our expectation, one thing should be noted, that is, at the quantum level, there wasn’t an
attractive potential generated by U* as in the case of GR at classic level, but an impulsive
Coulomb-type one combined with a linear part. Besides, Einstein’s general relativity could
be generated as a low energy approximation of the dynamics of U*”. For an antisymmetric
tensor U, that could be corresponding to the vector U* case.

For the massive {U, U*} in finite temperature case, attractive potentials for particles with
the same kind of charges could be generated, which might serve as candidate for interactions
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maintaining Cooper pairs in superconductors, with the U case for the s-wave pairing ones
by taking the electric charge as interaction charge, and the U* case for the d-wave pairing
ones by taking the magnetic moment as interaction charge; etc.

About the framework of model-building itself, if the results in our calculations are effec-
tive for the real physical processes, then it would be said that the 1/p* framework is a more
effective and more general one, by contrast to the the 1/p? one.

From the redefinition for the d.o.f, x — ¢ = e for the first quantization in quantum

mechanics, and ¢ — U = €' in this paper, could we ask, whether there is a principle about
this redefinition of d.o.f (maybe we can call it “exponential-ization” or “wave-lization”)?
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A The covariant derivative
See Ref. [2] (the Chapter 15 in it).
The comparator U(y,z) and the definition of D,

Define the transformation property of the matter field ¢(z) as
Y(x) = V(z)p(r) = Dy (x). (290)

The derivative of ¢ (x) in the direction of the vector n* is defined by the limiting procedure

1
W0 = i [z + en) — ()] (291)
€E—
while the covariant derivative as
1
Dyt = lim=[4(z + en) — U(z + en, 2)9(2)], (292)
€E—
where '
Uy, ) = ), (293)
is defined as an abstract comparator U(y, x), with the restriction
Ulw,x) = 1, [U(z,y)]" = U(y, ), (294)
and ' A
Uly,z) — WU (y, z)e @), (295)

Note that, generally the value of U(x, z) can’t be directly derived from the product U(z,y)U(y, 2),
and we denote that by U(z,y)U(y, z) # U(z, z) for simplicity.

U(y,z) defined as Wilson line and Wilson loop

The U(y,x) can be realized in different forms, for example, the so-called Wilson line,

defined as
Up(y, ) = exp {—z’g/ dz“AM(x)} , (296)
P

where the subscript P means the integral is taken along any path P that runs from z to yor,

the expansion form
Uz +en,x) = 1 —igen” A, () + O((ge)?) (297)

when an arbitrarily extracted constant ¢ is small.
Sometimes, to obtain locally gauge invariant bricks, we take the path P in (296 ) to be
a closed one, and then we get the Wilson loop, defined as

Up(x,z) = exp [—ig 7{3 dz“AM(a:)} , (208)

where P is a closed path that returns to x. Similarly, one can work out the the expansion
form for Up(z, x) according to the Stokes’s theorem, for instance, by setting the path is the
small square in the (1,2) plane

Up(z,z) = exp {—ig/da‘“’ﬂw} (299)
>

= 1—ie’gF+ O(e%). (300)
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where Y is a surface that spans the closed loop P, do*” is an area element on this surface,
and

F, = 0,4, — 0,4, (301)

is the field tensor.
And now, consequently, we can get the transformation property

Up(x,z) — @ Up(x,z)e @) (302)

and, particularly for the Abelian group case here, we have
Up(z,x) = Up(x, ), (303)
showing the gauge invariance of Up(x, x), and, for the non-Abelian group case, we just have
Tr(Up(xz,x)] — Tr[Up(z, ). (304)

Apparently, U(y, z) is introduced as the simplified version of Up(y, z) (since Up(y, x) is
not only the function of  and y but also of the path P, while U(y, z) is only the function
of x and y corresponding to € and n), and, Wilson loop Up(x, x) is a kind of special Wilson
line Up(y, x)( since the value is invariant when the endpoint, where the integrand function
A, (z) takes a limited value, was taken out).

U(y,z) in the expression of D,

Apparently, there are

WD = Time [B(e + en) — Uly, 2)0(@)], (y = 2 + en)

= lim (Yo + en) — Ul 2)9(w) + Ul 2)(x) — Uy, 7)o (z)]
= lim L [We 4 en) — () + UG 2)[U(y) ~ Ul lo(@)] (305
= 0 [0,0(2) + Uly, )0,U" (g, 2)0 ()] , (306)

It should be paid some attention to (B0H), in which the factor

Ux,y) —Ulz,x) =U(z,y) = Uly,y) = [U(y,2)] " = [U(z,z)]"
(with U(y,y) = U(z,z) = 1), (307)

was picked out since we have treat the second variable x to be the only argument of Up(y, x),
that is, we should keep the first variable the same.

Actually, Up(z,y) is more general than Up(z, x), since for some Up(z, z) there would be
Up(z,z) = 0 in the case of lattice size a — 0.

Reminding the definition of the connection field as a MaurerCCartan 1-form of the gauge
group element V|

B,(z) = V@)3,V!(x), (308)
we can get the traditional definition of covariant derivative from (B06])
D, =0,+B,, (309)

and get a map from (B0d]), see the underlined term, as

Ulz,y) = W) & V(z) = @@ (310)
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B

B.1 my = 0
See Ref. [2].

We have

and

/

d3q .
(2m)3

o0

Integration formulas for Fourier transformation

—iqr 1

3
/ d’q G g 1 1
)? \qP
/ zqr _

e @2

1

d iqr _ —iqr\

472 ZT/O ale ‘ )q

1 [
da "
An2ir / e

1
42ir (im)
1

Ar’

(311)

(312)

1
lql*
2€iqr

iq-T

—e 1

(313)

here we use the differential property of the Fourier transformation to get (813]) from (B12),

asl]

Note, for the integration

e 1
d —iqry\ _—
472y 0 a(e ) q3

d
4m2ir /0 ¢
d
2m3r /0 ¢
.2 sin qr

o [

1 5 [  sinz
5T dz —
2m2r Jo z

zqr o

zQsm qr

sin qr

=7>07

(314)

if we choose the contour contain z = 0, then Res=0; but, the integration shouldn’t be 0 ! So, that reminds
us the contour may not be the right one!
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< im-sign(z) |, (see Eq. (B10))

dn
ind—an(Q) & a"f(z)
d* 1 1
ZQd—q2§ =23 < 2 -im - sign(x)
1 o —irz? (z)
— - sign(x
¢’ 2 °

Besides, we have

42ir

429y

/ P w1
—e —_—
@2 gl

1 [ elr — e~
ﬁ/ dq q2,7—3
™ Jo wgr q

1 o0

) ) 1
/ dq (6zqr o e—zqr)_2
0

q

q2

—00

[—i2r(logr + vg — 1)] (Euler constant vz ~ 0.577)

1
———(logr+~yg —1).

272

1 — (-
/ dge'?” {M} (0 is the Heaviside step funtion)

42y

(315)

(316)

(317)

In a intuitive view, since there is q% [0(q) — 0(—q)],—o ~ 6(q), the constant in ([BI7) would
arise from the d(¢) in the integrand function; and, in the sense of derivative for the Fourier

transformation, as shown in (BIH), a logarithm is allowed to arise in this integration.

B.2 my 75 0

Firstly, we do the expansion

Then, with

we can get

1 1

¢ —mitic  (¢—q0)(q— @)@ — as)(a— qw)

qay = =M — € q(2) = UM + €, g3y = =M + 1€, gy =M — 1€

(a2 — am))(a@) — 43))(42) — q)) = —idm?,
(463 — 9))(a3) — 92)) () — qra)) = —4m?,

/ d3q iq-x 1
€ .
m)?C gt —m* +ic
1 [ el — i 1

- | a
472 J, 74 iqr q* — m* + ie

1 o0 ) )
_ / dq (6zqr o 6—zqr) q
0

4m2ir q* —m* +ie
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1 Foo -
= / dge*" g

Adm2ir | gt —m* +ie
1 ’ q
— d wgr
Am2ir 7{; ¢ gt — m* +ie
1 :
= 2mi(Res(g) + Ress))
1 )€1 g e”
© A4rr —idm3 —4m3
1 —mr —imr
= 8rmr (—e te )
1
= S [(cosmr —e™™") — isinmr], (322)
Tm2r

where the contour of the integrals fc was closed above in the complex plane and the residue
of the simple pole at g and g3y were picked up.

GaPC Tl = mitie

1 oo 26iqr _ efiqr q
= 75| de— :
472 J, iqr q* — m* + ie
1 o0 . . q2
_ d iqr __ _—iqr
Am2ir /0 ale c )q4 —m* + e
1 +00 ) 2 2] — (-
= 1 /OO dg et {q c£4<z>m4 i Zz)]] (0 is the Heaviside step funtion)
1 .
= I 2mi(Res ) + Res(s))
— 27.”( q(22) elq@)r _q(23) elq(S)T‘ )
4m2ir —idm3 —4m3
1 ( - —mr 4 7imr>
= —ie e
8mTmr
1
= 3 [cosmr —i(e”™" + sinmr)], (323)
Tmr

and

(2m)3 lg|* — m* + ie

1 0o 2€iqr _ e—iqr q2
= — dqq . .
472 J, iqr q* — m* + ie
— d wgr . —qgr
4m2ir /0 ale ‘ )q4 —m?* 4+ ie
Ar2ir | q* — m* +ie
1 .
= 7 2mi(Res2) + Res(s))
3 iqiayT 3 _iq(3)T
1 qion€ (2) qran€ (3)
4m2gr —idm3 —4m3
_Z'm367mr _m367imr
= —271 : +
42gy i —idm?3 —4m3 )
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1 )
_ _(efmr_'_efzmr)

8mr
= —/[(cosmr + e~ ™) — isinmr]. (324)
8mr
C Loop integrations
C.1 Loop integrations A
Define )
L= [dl———. 2
= My )
With the Feynman parameters(F.P.) and Wick rotation(W.R..), we can compute I; as

L = /d“lﬁ

{EP) / d'l / ST 1i;)aél) — 9?2 15522);(2))

_ 6/ dwx(1 - ) /d4l I —lx)(l—Q)2]4

- 6/0 - | d4l{[z—<1—x>q]21+[x<1—an2}4
B 6/0 drz(l - z) /‘W {l’2+[56(11—5€)]‘12}4

wny o /O | Py (11_33)] i

= o[ a0 [a0 fau GeoT

L3
= i12m? / dx:c(l—x)/ d|lg |L4
0 0 (% + A?)

N 1 A2 2
(L1 2'127T2/ drz(l — ) ;3'“3
(g > p) 0 12 (A% + p?)
1 A2 3 2
- mQ/ dea(l— ) SO (326)
0 (A% 4 p?)
with the variables
P <0=>A=—[z(1-2)¢*>0, (327)
I=l=l-1-2)qg&el=0I+(1-1)q, (328)
and the relations ;
q-l=—qp-lp , QE'ZEZZQEljga (329)
=0
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where the 4-dimensional Euclidean [g-integration was taken in the spherical coordinates,
denoted as [2]

r = r(sinwsinf cos ¢, sinwsin b sin ¢, sin w cos b, cos w)
with 0 <w,0<m, 0<¢ < 2m, (330)
d*z = drr®-dQ = drr® - (dwsin® wdf sin 0de), (331)

/ dQ) = 27% (332)

Since there is only infrared divergences in this integration like ([9]), here we impose a
very large p (say, p > «/\) as the infrared cutoff to renormalize the infrared divergences,
with the result of the integration

+o0 lE3 dl
/u (lg? + A2t "

+oo g2 2l 1 400 I 2
- / 7(2)‘”13:_/ ﬁdlﬁ
v (157 + A% 2 2 (5" +A?)

1 +o0o t 1 “+o00 Z—AQ
- = dt== d =t4+A? t=2z2—A?
2/u2 T A Q/MQJFA2 R (z + A%, z )

1 +o00 1 AQ +oo 1
2 pu24+A2 z 2 pu24+A2 z

B 1 |: 1 :|+oo A2 |: 1 :|+oo

2
N e B e

B 1 A?
42+ A2 6(u2+ A2
A? + 32

S R 35
Let’s finish the integration of x, as
1 A2 3 2
I = i7T2/ drz(l — 1) %
: (87 + p2)
¢*(z — 1)z + 3u?
(¢(x = Da + p2)°

1
= i7r2/ dxx(l—x)
0

= i7r2/1dxf(x),
0

it 1
= -5[(2allog|1—xa|—2a110g|—xa|)

(¢%)?

20,2 2&2 4 as as
e — 1 22 (z, —1)?

(201 log |1 — x| — 2by log | — xp])

x
2bs 2_()2 . @ b3 ]
Tp Tp i (zp—1)?

—1
(LR.) im? < 7t ) w21 <—q2) (334)
. - - —— - ,
tezm  (¢%)° \4p? 4qt \ @

+ o+ +




where

r) = z(l—x
B 1 ai a2 as
(@ e —r.)  (r—wa)? (2 —xa)?
by b b3 ]
+ + + 335
(x—xp)  (x—xp)%  (x— 1) (335)
with
1 1w 1 1 pw?
- _ |z _ — - - > 336
L 5 1 p <0, xy 2+ 1 P > 1, (3)
and
(1 — Daa[3p® + ¢*(xq — 1)z4]
a3 = — )
(Ta — xp)?
I 3u? (22 + 2xq(1y — 1) — xp) — *(wq — D)y (22 — dx0my + T4 + 213)
2 - (l‘a _ fL’b)4 bl
0 — _3u2 (22 + 24 (42 — 3) + (2 — 3)xp) + ¢* [22 (627 — 62y + 1) + 224(2 — 3x3) 73, + 77
(Ta — x3)° ’
P Dy (312 + ¢*(wp — 1))
3 (l‘a o fEb)3 Y
b 312 [xa(22p — 1) + (25 — 2)as) — (x5 — D)y (—4z0my + 27, + 77 + 13)
2 - (xa _ .rb>4 ’
bl = —Qaj.
(337)
C.2 Loop integrations B.
Define 1
L= [ dl . 338
l / B(l—q) (338)

With the Feynman parameters(F.P.) and Wick rotation(W.R.), we can compute I; as

o= /d4ll2[l—q
e [ [
- / w0 =) [ T = S AT
Bl /Oldx[Q(l—x)]/d4l’ 7 1A2}3
(W.R.) ! 1

—

el =) [ s
—z’/o dx [2(1—$)]/d41Em
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l
= / dx [2(1 — x)] /dQ/d|lE| i ||2i|A2}3

) T
= —i(2m )/0 dx [2(1 ff)]/o d|lg| {2 + A2}

(LR.) e o (1 A% + 242
—)(ZE o —i(2m )/O dx [2(1 — )] {—4 e MQ)Q]
= —im? 1 r(l—2x M
_ /0 dz (1 - ) [(AQ - NQ)Q} (339)
where
l'=l-(1-2)¢ & I=1I+(1-21)q, (340)
P <0 = A’=—[1-2)—(1-2)%¢>0. (341)

Since there is only infrared divergences in this integration like (79)), here we impose a very
large u (say, u > aA) as the infrared cutoff to renormalize the infrared divergences, with the
result of the integration

+o0 lE'g dl
/u (12 + Az

_ /*‘”Mdl :1/*°°Ldlz
p (157 +A2)3 P w2 (g7 + A2)3 v

1 +o00 t 1 +o00 —A2
— _/ 7dt:—/ i 3 dz (Z:t—i—AQ,t:Z—AQ)
In

2/ o (t + A2)3 2 P2 A2 z
1 [t 1 A? 1

. —/ Sdr - ~dz
2 U2 +A2 Z 2 U2 +A2 z

B 1( 1)+oo AQ( 1 )+oo

2 Z) 2y 2 222 24 A2
_ 1(#) A_Q(;)
C2\(2+AY)) 2 \2(u2+ A2

_ ( 1 A2 )
22+ AY) 42+ A2
2 2
— LMQ . (342)
4 (A% + p?)

Let’s finish the integration of z, as

L= —m2/01dx(1 — ) {(iziiﬂf}
S
= —m2/0 dx f(z)
= —in?. ﬁ {[a1 log(1 — z4) — a1 log(—x,)] + (x“i - %)
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+ [by log(1 — ) — by log(—xp)] + (

)

(LR.) o, 1 (q ) 1 <—q )
— —im - +in? - — | —- 343
(g > u) (¢%)* \ p? ¢\ p? (343)
where
fo) = (- [LEE DA
(¢*(z = Dz + p?)
. 1 aq a9
(@®)? [(& —2a) (v —2a)?
SR I (344)
(x —xp) (v —mxp)?]
with
1 1 p? 1 1 p?
SR — B 4
Ta =3 1 q2<0,xb 2+ 1 q2> , (345)
and
B € Vi GE 0
(Ta — xp)? ’
ul - 20 (xq + 1y — 2) — ¢*(wq — 1) (22 — 301y + T4 + 1p)
B (Ta — x3)? ’
o - @ = DR 4 ¢z — Dy
(2q — ) ’
o 202 (wa + @y — 2) + ¢° (3wa7) — Axap + Ty — 1) + 1) . (346)
(g — )3
C.3 Loop integrations C
Define
I —/d4l vl (347)
L Hil—q*
With the Feynman parameters(F.P.) and Wick rotation(W.R.), we can compute I; as
1
I = /d4l Ve l) o5
| v @R o

(F.P.) . 1 N z(l —x) r'2+2)
/d ! l)/o ! (22 4+ (1 —z)(1 — ¢)?2]" T(2)T(2)

_ 6/ drz(1 —x) / le +(1 —lx)(l—Q)2]4

_ 6/0 d:pxl—x/ 1—1‘)(]]1_'_[(1_3:)] ¢}
LoV 6/0 dz z(1 — z) /d“l/ 1_x)q>]{zf2+[x(11—x)]q2}4
= 6/0 dr (1 — ) /d4l {12 [gc(vli x)|g*}



1 4 1
+6/0 dra(l—=)-[(1-x)v-q] /d : {12 + [2(1 — 2)]¢?}"

1 4 1
= o [dnati—o - [

1
(W.R.) . 4 1
16/ derx(l—z)-|(1—2x)v-q /dl
e e T PO
1 3
- 5]
= 26/ dez(l—2x)-[(1 —xz)v- (] /dQ/d|lE| I
i12 /1 dex(l—2x)-[(1—x)v- / d|l \ Lel”
g i — —
; q] E AQ)
1 2
O 1902 (v-q)- / dz [#(1 — z)?] —A 3 3
(5 > p) 0 12 (A% + p?)
1 2 2
= in?(v-q) - / dz [z(1 — x)?] L?)M:S : (348)
0 (A% + p2)
with
l'=l—(1-2)qg&el=1I+(1-21)q. (349)
Let’s finish the integration of z, as
1 2
o= e [ dele- o) S
0 (A% + pi?)
1 _ 2
= ) [ el - LEZDIEI
: (@@~ Do+ p?)
1
— inq) [ dof),
0
. 1 1
= ir'(v-q)- r2 {[2a1 log(1 — z,) — 2a; log(—1,)]
20,2 2(12 as as
+(l‘a_l - xa)+ <x3 - (xa_1)2)
+ 201 log(1 — ) — 2b; log(—3)]
262 262 b3 b3
+($b—1 _$_b) i (90_5_ (xb—1)2>}
(trR) ., 1 ( q® — 3q4,u2)
— ir(v-q)- -
(iz > 1) v-a) (¢*)? 8t
(a<mw . 1 (3(]4) 3 w-q (—QQ)
s i a) - S\ 0 T 350
( Q) (qg)g /~L2 8 <q2>2 /~L2 ( )
where
2 2
q(r—1)x+3u
f@) = [ - o LTI
(¢*(z = Dz + p?)
o 1 aq a9 as
(@ L) (m-w)? (2 w)?
by by b3
+ + 5+ 5| (351)



with

1 1 pu? 1 1 p?
=s -7 =-+5-5 2
=y (1@ <Om=5t im0t (352)
and
(7o — 1% [3p° + ¢* (w4 — 1)z]
a3 = )
(g — )3
o = (rq — 1) [Bp?[2a(2 — 3zp) + 23] + ¢* (0 — )T (222 — BToy + T4 + 213)]
B (Tq — xp)* ’
1
al = CRErAH {31” [2(3xy — 2) + x4 (3; — 8y + 3) + (3 — 2x3) 2]
a b
+¢*(z, — 1) [2f + 23(1 — 5y) + 22 (102 — 5z + 1) + dag (1 — 233) 2 + 27 }
(= 1) 3 + P ay — 1))
b3 = — ,
(Ta — x3)?
B o— (zp — 1) [ 2092y — 3) — 62p) — (2 — 1)y (—DTaxp + 274 + 227 + 1)
B (Ta — x3)* ’
1
bl = Gy {31” [2(3xy — 2) 4+ x4 (327 — 833 + 3) + (3 — 23) 2]
a b
+q2(:cb - 1) [ x, (10$L’b — 81y + 1) + x,T (—51’5 —dxy + 4) + x%j (xg + xp + 1)}} )
(353)
D The derivation for E.O.M
We write the Euler-Lagrange equation in (37) here, as
8£U 8£U 8£U
-0 0,0,—————=0. 354
ou o M a@,0,0) (354)
D.1 Scalar U
From (B) and ([7), we can have the expansion
Ly = —0"0"U0,0,U — AU+ U +miU'U
= —9,0,Utg" ¢ 0,,0,U — At (U + U + miUTU (355)
and the variational derivative
8£U by
T — AT ””68U——86U 356
then the term
oLy
PO ———— = -0'U. 357
o(0rorUY) (857)
For the interaction part, we have the expansion
Ly = —aQ AU + UMy — BQUPU + Ju' )y
+(higher-order operators)
= —aQ 'AYUNY ~ BQUHOUNG o + .. (358)
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where the corresponding to the higher order terms and irrelevant terms in all this
section, and the variational derivative

oL
oo UT)
= —BQU(+0ur)g" Yt + .
= —BRQYY Y+ ..., (359)
then the term
T a‘c _ T () ~T _

with the current conservation law 0, (Qﬁfw) = 0. Indeed, if we do the variational derivative

oL

5 = —aQ A (U + UMy — BQ (U + UNyrap + .. (361)
% = —aQ AU+ U — BQ VI, (U +UNy* + ..., (362)
we can get the E.O.M for the matter field ¢ as
(@ —my)e = aQ7AU+ U+ BQIU + UMy (363)
1/7(55 —my) = aQ 'AYU +UY) + BQ YA, (U + UMy 364
( 1 v (364)

then, with the E.O.M, we can truly get the current conservation law [2]

Or (b970) = 1TV DY TP = DY+ IO
= i [myt + aQ'AD(U + UY) + BQUO(U + U] ¢
—it) [mytp + QA (U + U + BQ 8, (U + Ut )y#y] -
=t [dmy + aQ T AP + U + BQUA(U + U] ¢
—it) [myyp + QA (U + UM + BQ O, (U + Ut)yy] -
_ 0. (365)

with the definition of [2] "
0

WO =0y (366)

Besides, we have the term

O(Ly + L)

oo = Mo+ mpU—aQ Ay, (367)

Then, we can get the dynamical equation for the field U as

— U = A —mpU + aQ A (368)
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D.2 Vector U*
D.2.1 Ay =0 case

From (I52[I65)and (I6G), by setting Ay = 0, we have the expansion
1

Ly = 0.F}0°F" —myUlU"
1 I (03
= 3 |0a(0:U] - ang)} [0°(0°U™ — 0"U®)] — mbUTU*
1 [ aa/ ! !
il _&x(aﬁUl - @UM 9° 9" 9" (00 (03 Uy — 0, U]

—méUlgﬂﬂlUH/
1

= = 10.05U1 g ¢ 9" 005Uy — 0,0,U59° 6% ¢ 009Uy

2

—@ﬁg U;g‘m/gﬁﬁ/gw/ 8(1/6“/ Uﬁ/ + &y@ﬂU;go‘a/gﬁﬁ/g’ml 8(1/6“/ UB/

—méUlg“ﬂl UH/ s
and the variational derivative
oLy
9(0ro7U?)
1

_ - [5M55T(5Mgm’ 9% G 00 0 U — 0000, 0359°% 9% " 000 05 U

2

—5a)\5575“0gaa/g56/gﬂ'u/ 8(1/6“/ Uﬁ/ + 50{,\5“755090‘0‘/956/5]““/3&/ a,u/ Uﬁ/]

1
= 5 [030:U; = 0,U; = 59,U. + 0,0,U,]
= [0:0,U, — 0,0,U,]

then the term
8£U
9(0ro7U)
= [84UU — 828067UT} =0 [8292 — 8(,87] U-

L0 51y, = (i9)'U,

1o

with the gauge fixed condition 0,U% = 0.
1. F,, part: a generation of QED

For the interaction Lagrangian in ([IGf]), we have the expansion

Ly = —a AP+ — B + o) [Fu(U) + Fu (U)]0
+(higher-order operators)

= —a AU ) = B e+ 0)"™ 9" (O], — 00U )0

+...,

and the variational derivative

0L

e = B 1[’(‘5#1/ + Uﬂu)g““/gyy/(dﬂ'Tél"U - 5V/75ﬂ'0)w + .

o(07UT?)
= -2 ﬂ(em +0")+ ...,
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then the term

oL I (~TO TO
am = =280, [b(e77 + 0™ )] . (374)

Besides, we have the term

O(Ly + L)

out? _m%féuag““/ Uy — Alﬁ(@wg"“/’yﬂ/)di

= —myU" —a Ay (375)
Then, we can get the dynamical equation for the field U* as
U, =mpU° +J° (376)

with B -
J7 = a Ny =280, [U(e™ + o™ )] (377)
and the gauge fixed condition 0,U7 = 0.

For the E.O.M, another convenient method is rewrite the action as(ignoring the mass

term here) [2]
S() = /d4l’£U

- / d'z [%aaFg“aaFﬂﬂ}

_ % / . [%(aﬁU; _ 8MUg)] [0 (7" — 907

_ %/d‘lx {%[(aﬁUg — 9,Uo"(0°U" — o'U”))
—(0U} — 0,UN)da[0°(0°U" — 8“Uﬁ)]}

- /d%« {(0sU1)0a[0°(0°U" — 9UP))
~(OU0ul0r (07U — U7 |

_ —%/d‘lx {s{Uf0ulo (0"U" — U]}
~Ul03{0a[0°(0°U" — 0"U”)]}
—0,{Uf0.[0°(0°U" — o"UP)]}
+ULD 0.0 (@ U" — 007}

- 2 / d' {+U105{0,10°(0PU" — 0 UP))}
_Ugau{aa[aa(aﬁ(]u _ @MUB)]}} (378)

where the underlined derivative term were omitted, and then we can get the E.O.M by the
Euler-Lagrangian equation.
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For the free propagator, with the E.O.M in (B76]), we can get the equation for Feynman
propagator D}’

(0 gy —mpy + . ) D (x —y) = 626 (z —y) (379)

or (p4gW —mp + ... )DY(p) = ion (380)
which has the solution (o )
~ +i(gh + ...
DY (p) = —>——~
F<p> p4—m?‘]+ie’
where the “...” denoted the gauge free term which would be omitted in the Lorentz gauge
condition. As the case for (E3[R9), please pay attention to the extra minus sign in D% (p)
by contrast to the propagator of a P-2 type vector field.

(381)

43

2. F;w part: a generation of SR gravity
The E.O.M for a free U* in F,,, case would be the same as in F},, case.

The Lagrangian for free particle U* in an full-symmetric irreducible representation could
be written as

1 T e et = =109 =107
Lo = 12 [(leﬁu + 03Fau + auFaB)T(aaFBM + 7 F 4+ O'F Bﬂ N m?]U;U“
1 e | o T apEer | o T auEed
= 5 | Ty T + 0. 0™ + 0.F 5, 0 F)
(05 F) O F" 4 9F O°F™" 4 05F. 0" F)
(O F 50 F " + 0,F 0 F™" + fowaﬂf‘w)] —mbUiU*
1 - - - - - 1o’
= = [OuF LT + 0,FL, 0T + 0,00 F™)
= A =t e = ase
+(0uF5,0°F™" + 05F,, 0°F " + 0,F, ,0°F™")
(0. F 5, 4 9 F ' F 4 aﬁgﬁaafﬁ“)] —mbUiU*
%(aafguaafﬁ“ + 0. F 5 O F" 4 0,Fy, 0" F") — mbUiU”
= DO 0T+ F 4 ) - iU
— %aﬁgu[aa(aﬁw + "UP) + 0°(0°U* + 0"U®) + 0*(0°U* + 9°U?)]
—mgUU"
= SO0 0T + 00U 1 0% U) — mi Ul
1 _
= 5aofjm(fmvﬁ“ + %00 — mpUlU*, UIU* <1, (382)

where the underlined term could be omitted with the Lorentz gauge condition 9,U% = 0.
After an expansion,

1 _
Ly = +50.F0"F " — myUiU”
1
= +5 [0a(05U + 0,U5)'0° (95U, + 0,Up)] — myU[U*
1 1% (0% (0% (0%
= +3 [aaaﬁU;a U™ + 0,03U0°0"UP + 0,0,UL0°0°U" + 9,0,U%0 8“U6]
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—m4UU;U“
1 (0% 163
= 45 [20a05UJ0°0°U" + 20,0,U10"0"U"] — my, ULU*
= +0.0U(0°0°U* + 0°0*U”) — my;UTU* (383)

we can know that the propagator would now be the same as that in the F),, case, with the
Lorentz gauge condition being taken.

For the interaction Lagrangian in (I93]), we have the expansion

A
L = —QMU,ﬂM)z@“w

1 —an -
—B— FU) (29" m + 7 id" + 70" ) + ..

= ot U it
B T g (2 i 0
= o U it
-3 % (0uUs + 0,U)g"" 9" b(=2gum + iy + ywiO ) + o, (384)

and the variational derivative

8£ ]_ ! I/l// - . .
8(87(2—) B _ﬁﬂ (0r0vo + Our 0o ) 9™ 9 (=2guwm + YoriO + YwiOy )1 + ...
1 -
= —QBM W(=2¢""m + ~7i0" + T ) + ..., (385)
then the term
oL 1 - , .
—— = 28— 0; |Y(-2g9"° 750" + 710 . 386
Or o) B3 O [V(=2077m + 77107 +77id7)¢] + (386)

Besides, we have the term

oL
oue

A A
= _QM 5W¢9W wlau’d) = _O[M 77be8 wa (387)

Then, we can get the dynamical equation for the field U* as

U, =mpU° +J° (388)
with
Ja o + A 'QE 7.80
= Ofﬂ P07
1 _
= 26 0, [B(=207Tm +37i0 + 570V + .., (389)

and the gauge fixed condition 0,U% = 0.
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D.2.2 Ay # 0 case: generation of a nonlinear QED
For the Ay term, we can have the expansion

Ly — —Ay [epa(U + UT)pFﬁ(gJFUT)aO‘F(%‘JFUT) + (cyclic for indices)} —myUIU* . (390)

so we have the variational derivative
oLy
9(0ro7U?)
0 t
[ G — T (U+U) o B
_ a(aAaTUT"){ Av [epaU + UNES Do FR | 4}

oo ’ / 8 T

= —AUg gﬁﬁ gML W [Epa(U + UT)ng(gw )(aa/aB’Ull - aa’aﬂ/Ug/)] + ..
/ / / T

= —Ayg™® gﬁﬁ g [epa(U + UT)PFEZ*’U )(50/)\55'7'5M'0 — 504’>\5u’7'55’0)] + ...

e [0+ DR 0y U] 4

= —20pep [(U+ U FEYHD] 4 (391)
with the term
o e —2A e ) 0MO" [(U + UT)PF<U+U*>] + ...
9(0ro7U) p e
= 2\ [(U 4yt )pFT(OUJFUT)] v (392)
and the variational derivative
oLy
o(07UT?)
9 (U qa B
- FoTT (v [epu(U + UYL F ) + )
0 1
_ T U") qa 18
= T (Ao [eu(@ + U 0o F | + )
/ ! ! a T
_ ao’ BB i T 1 (U+U")
= —Ayg* g7 g B U [Epa(U+ U (90U — 0wUg )00 Fg, ] T

— _AUgOéa/gﬁB/gMM/ |:€pa(U + UT)p(éﬁ”r(Sp/o' _ 5u’755/g)8aF[§5+UT)i| +

= —Ay [em((] + U*)”(B“FT(UUWT) _ 804FO(TU+UT))} T

— oAy [epaw + UT)ﬂaaF;gW*)] . (393)
with the term
T a‘CU T ave’ T
T sy = e U+ UTYior FHOD]
= —2Ape,d” [(U 4yt )PaaFﬁgW*)] b (394)
Besides, we have the term
8£U . ’ U+Ut o
U —my " g U — Ay [epaégplgu+ 0 F(BUMJrUT)} e

T 103
= —m,U, — Ay [empﬁ(gw )9 F(@“WT)} + ...

= —m{U, — Apega [F(U+UT)8QF6“ (395)
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Then, we can get the dynamical equation for the field U* as
—QAUGPAaAaT [<U + UT)pF U+UT)]
4 (U+UT) na 28
—miU, — Avesa [FBM ) F(U*;UT)]

= —2Ape,0” [(U + UMY FUHY )] + (cyclic for indices) . (396)
Let’s continue the simplification, for the first term in the Lh.s of (394, it is

eI [(U + UhP R U+U*>] T

= —2Ay0" [pr\aA(U + UT)pFT(aUJrUT) +en(U + UT)”aAFT(ff*U*) + ...

— —2AU87[ (€pr — exp)ﬁ)‘(UJrUT)p} FUHUD 4

= —Apepd” [PNU + UNY — 07U + UN ] FUHUD

:
= Ay [ F o FYHY )} + o
T t T '
= —Ay _Ep)\a F(AUP+UT)FT(UU+U '+ € (U+UT)8 o )] L
(C.DI) = —AU _gﬂ¢/g6@/€¢ ¥ aaF(ﬁ[;L+UT)gaH/g0£/F(U+UT)

+gp/¢/gx e F(U+Uf)gaﬁg"“8aF%l+UT)} o

- _AU guqﬁ’gﬁgo’e ga/@’gaf’F(U+UT)

/ B
+gpl¢/g)\/¢/€ <P F(U+UT)gOéBgUM:| a FUH-FUT) +

[ T
@ep1n = —Apy _eﬂgFo(ngU ) 4+ Ep/\F(U+UT)9aBgou} o FUHJFUT) ; (397)

where “C.D.I” denotes the operation for “changing the dummy indices” ,and the term un-
derlined is just the r.h.s of ([B90). If we set my = 0, then we have the E.O.M

_ U+Ut a B
0 = —Ay |:€M5FO(CU+ )+ep,\F(U+UT)gaggw} -0 F([ﬁm)

(U+ut) o B
—Avésaly, O F

_ U+Ut (U+Ut) B8
= Ay |:—E“5F( U _ ¢ . +€P)\F(U+UT)ga5glw o F(J:LUT)

~ Ao X uoap) - O F (398)

U+Ut)

where the terms “(cyclic for indices)” were dropped since the indices aSu are in fact dummy
indices, and the tensor

_ t U+Ut A
Ko ap) = [—%Fégw T Rl ISR
7& Ep)\F)\p [_5PM5)\55>\050(X — 5,;05)\@5)\“5/)5 + gagg,w] (399)

is symmetric for the indices (po) and (af) (denoted with a round bracket), respectively.
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D.3 Tensor UM
1. From (2I3H210) and ([238), that is,

1
Ly = =30uF, 0 F — NG (U + UMy (U + U0 PP + my UL U™, (400)

Buv
where
Fgﬂy = —0—35(]“,/ + 6,,U5ﬂ + 8ﬂU5y, (401)
Fl, = 40U}, +0,Ul, +0.U}, (402)
Fuﬁu - nﬁpruV = nﬁp (+8BUMV + avUﬁu + 8,[]51,) ) (403)

we can expand the first term of Ly as

1 / / / /
L1 = _gaaFﬁTleaa gﬁﬁ 9" G O Fgo oy

1 ’ / / /
= 5 |(+H0u0:UL, + 0:0,Uf, + 0.0,U1,)9°" 97 9" g™

(40005 Upry + 0010 Ugryr + Ot O Upry )]
= 2 [T P g (100

+H(+0a05U},) 9 677 " 6" 000 0y Uy
+(4+0,0s UL,)g“o‘/gﬁﬁ/g““/g””lﬁalaul Ug
+0.0,U5,9° 9% g " (+-00 O Uy o)
+0,0,U5,9° 97 9" " 00 0y Uy
+6a81,Ugﬂga“lgﬁﬁlg““/g””lﬁa/8,/ Usy

+0a0,UL, 9% 677 " g (+ 00 05 Uy
+aa8ngugaalgﬁﬁl9W,gW/aa' O Uty

+0,0,U, gyg‘ml g°? I g““/ g””laa/ DuwUg| (404)

then we can do the variational derivative

0Ly
a(erarUT?)
= _% (+5a>\5675u05up>gaalgﬁﬁlgwlgyyl("‘aa’aﬁ/Uu’V’)

+(+0ax 08700 51//))90[&/96[3/9##/9””/6&’ O Upr
+(+0ax057000p) ° 97 9" 6" 0o O Upray
+0ar0r0350,09°% G g G (4000 D Uprr)
+5a)\51/7-5505upgaalgﬁﬁlg%u,gyylaa’ Oy Uﬁ’ﬂ’

07007 0600,109°" ¢°% g"** 6" 0 0,0 Uy
+00r0,0850,,p9°% g7 M G (4000 D Upr1)
+00r0,r05000,09°" 677 g 6" 0 0, U

00002080009 GO G G Dt 0,0 Uigro

g
g

1
= =31 (+030:Usp) + (+1) - 020,Urg + (+1) - 05Uy
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+(+070, U, ) + 000, U, + 0,0,U,,
‘|‘(+8)\60U7p) + 6A8pUUT + 8)\8¢Uap]

= —(0r0:Uy,) + 0305Usy + 0:0,Uss) (405)
and get the term
o KU (050, Usy + 050 Usy + 3D,Uir)
P UT)
I _90970,0,U,, = —0*U,, = —(i0)*U,,, (406)

with the gauge fixed condition 9,U* = 9,U" = 0.

2. For the mass term, we have the expansion
Ly =+myUl,g" " U . (407)

and the derivative
oLy B
outor

3. For the free propagator, with the E.O.M in (422), we can get the equation for Feynman
propagator D7

180,00, ¢ Uy = +miy U . (408)

1 Vpo .

—[0" = mi + 15 (Gupuo + GuoGup) D (w = y) = i85 (@ — ) (409)
1 NUYpo .

or —[p* = mi + ... )5 (Guplve + Juagup) D" (p) = i), (410)

which has the solution

TNV po 1 —1
D" (p) = 5 (GupGvo + GuoGup + ) (411)

pt—mf +ie’

where the ... denoted the gauge free term which would be omitted in the Lorentz gauge con-
dition. As the case for (GIBI6N), please pay attention to the extra minus sign in D% (p)
by contrast to the propagator of a P-2 type tensor field.

4. For the L£; part, we have the expansion for Version I in (23§]), as (for simplicity, here we
treat UM as a real-valued field)

»CI - —OZQA UWQETIW@/)
—BQUEL) (Y™ + 0™ + N + ...
= —OéQA Uuuguulgyyl@n,u/u/w
_BQ’&(+604U;W + 8VUCW + auUaV)g(m/glm/gW/ ("70/77;;’1/’ + Y Narv + %/’U;/O/)@Z) ‘|'(4-12)

and the variational derivative

oL
0(0-Usp)
= _6Q@?(5a75uaéup + 51/750405MP + 5u7'5a05up)gaa/glm/gyyl(’7/&’77#’7/’ + T Narv' + ’YV'nM'a')w +o
= —BQU(G™ 9" g" + 97" 9" g™ + g7 g™ 9" ) (Ve + Vet + Vo) A+
(413)
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with the term

8£] / / /
87_7 - _ 87— Ta! O'/J, oo’ pu' TUv oo Ty
20.U,) BROY(g Vg g g g™ g g
'(’YO/,OM’V’ :F Y Mo v! + ’YV'nM’a’)w + ...
= —35Q3T¢(%%p + Yollrp + fypnm)w + ... (414)
Besides, we have the term
0Ly p v’ p T op
oUor —aQA 0,50,,9" g7 Vb = —aQAN Y0P . (415)

Then, we can get the dynamical equation for the field U,, with interaction of Version I as
— 'U,, = —m{U? + J°° (416)
with
I = +aQAd Y
—3BQIY (Vellop + Vollrp + Voar )V (417)
and the gauge fixed condition 0,U" = 0,U" = 0.
5. For the £L; of Version II in (246]), with ([2I3H216]), we have the expansion as (for simplicity,

here we treat UM as a real-valued field)

-1
Ly = —OzQAUW)%pM

~BQEL) Il

P | . )
= —aQAU.L)g" g”" Q/JM(’)/“/Z&/ + Y10 )1
—BQ(+0aUp + OUap + 0,Uo ) g™ g g

B

(10" 4+ ~"i0" )

(30 + 130+ 0 ]

T]“/V/iaa/ + ’f]a/,/iaﬂ/ + T]a/ﬂ/ia,,/)]lp + ..., (418)

and the variational derivative

0L
5(0,07)
= _BQ(+5a75u05up + 5V7’5a05up + 5u75aaaup)g guu gW/

[ (nu w100 + Nary 10 + N ,,za )]w + ...
1
[ (nu 100 + Narpr 10y + Ney 10| + .. (419)

with the term

OL; 1 . .
O o tor) — 0ROVl (opiOr + 11rpi0y + 1rgiDp)10) + ... (420)
Besides, we have the term
L Sl .
ouer = QAT (1610p + 1050 (421)
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Then, we can get the dynamical equation for the field U,, with interaction of Version II as
— 0,y = —myU"" + J7 (422)
with
I = +aQ N5 (3i0, +7,i0, )b
—38Q0: (v [%(%pi@f + Nrpi0s + N7i0,)|Y) + ..., (423)

and the gauge fixed condition 9,U" = 0,U" = 0.
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