Finite and infinite product transformations

Martin Nicholson

Several infinite products are studied that satisfy the transformation relation of the type
fla) = f(1/a). For certain values of the parameters these infinite products reduce to
modular forms. Finite counterparts of these infinite products are motivated by solution of
Dirichlet boundary problem on a rectangular grid. These finite product formulas give an
elementary proof of several modular transformations.

1. B. Cais in an unpublished manuscript [I] shows how to get the product transformation formula
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He also generalizes this approach to more complicated products like
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where (%) denotes the Legendre symbol. Recall also the functional equation for the Dedekind eta product
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The aim of this paper is to generalize these transformation formulas and obtain finite products that reduce
to the above formulas in the infinite limit. It should be noted that the infinite products in ,, are
modular forms, but the generalized products in the subsequent sections are not.

It is assumed throughout this paper that a > 0. However by analytic continuation all formulas are
valid when Rea > 0.

2. Expanding cosech into partial fractions and interchanging the order of summation we get
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An identity equivalent to f(a,y) = f(1/a,~) is given in B as equations (1.5.2) and (1.5.3) with [ = 0.



Now we multiply f(a,~y) by 7y and integrate termwise with respect to . Using the integral
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one can see that the sum
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doesn’t depend on «. Then it follows from the limit v — co that @ is 0. This means that
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or in the form easier to compare with
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3. There is another way to write in symmetric form. We start with
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and then apply Poisson summation formula to the sum over n in the following form

o /n?+y? Z / —;c«/t2+y2 _efZWintdt.

nz—oo Vn2+y n=—00 " \/t2+y

The integral is calculated via formula 3.961.2 from [4] and equals 2K <y\/7r2(2n +1)2+ xQ). Thus
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4. The function
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where it is assumed that v > 0, is analytic in the complex plane with a cut [i7y, +ico). It has simple
poles on the real line at z, = 2n + 1, and on the imaginary line at ¢, = \/(2n+ 1)2/a2 ++2, n € Z.
Consider contour C' in Fig.1, with small circles and semicircles of radii € around poles of h(z). According

to residue theorem fc h(z)dz = 0. Integrals along large arcs are 0 in the limit R — oo. Sum of integrals
along straight horizontal segments in the limit R — oo, € — 0 is

h(z) =

7 _27 dx
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Fig.1

Similarly, sum of integrals along straight vertical segments in the limit R — oo, ¢ — 0 is
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Therefore in the limit B — oo, € — 0

In+1,—mi res h(z) — 2wt res h(z) = 0.
R

Putting it altogether we arrive at
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To convert it to a product one can multiply by may and integrate with respect to v using
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to get the following symmetric relation
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Note. Contour integrals similar to the one considered in this section have been investigated in ch. 1.5
of the book [3 for example in eq. (1.5.1), with the aim of application to lattice sums. We study a more
general integral in section 8.

5. The same analysis as in the preceding section is applicable to the function
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with the difference that the poles are now z, = 2n and (, = \/4n2a=2 +~2, n € Z. The result

h(z) =
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gives a function for which sum equals integral:
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Analogous result is true for . In fact more generally
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A list of functions for which sum equals integral along with references can be found in [I0]. Note that
when v — 0 equation (12]) reduces to the functional equation for the Dedekind eta function , while
(14]) reduces to the Jacobi imaginary transform for theta functions [5].

6. The choice
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with the help of formulas

PR — - — (= nt- —
cos — cos — (—1) 5 (5

/ cosh @ — cosh & ”t V5 n <1 B 2v/5 )

2 dt =
smh mt P 1+ /54 4 cosh %

3™ ™ V5 (n) 7

from [1], leads to
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This is generalization of . From this it should be clear how to get generalized symmetric products
from absolute invariants in section 5 of [I] automatically. However not all formulas seem to be amenable
to such generalization (e.g. see Proposition 25 in [1]).

7. Indeed, lets consider the function
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sinmz /22 + y2sinh ma/22 + 2

In this case, this function is integrated starting from the origin along first half of the contour depicted

h(z) =

in Fig.1. and line segment [0, iv] connecting the point iy on the imagiary axis with the origin. It turns
out that integrals along the real line and part of the imaginary line (i7,+icc) are real valued, while
the integrals along small semicircles and the line segment [0,iv] are purely imaginary. Separating the
imaginary part one arrives at the identity
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Now following the logic of the preceding sections we multiply this formula by v and integrate wrt ~y. It is
possible to do this integration in closed form for each term of the series on the lhs using the integration
formula [1]

/°° sinh s P 1 < . 1 . tanht>
. s = — | arctan — — arctan
. sinh3s V3 V3 V3
! arcta V3
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On the rhs we make the change of variable ¢ — v/t and introduce the notation 7 = 2. Then 1) becomes
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I(s) = \/fsmhw\f v/§ —t sinh 7rom/s —

I(s) is a convolution. Thus, if we write

f(t) = m g(t) = m
Then
7[(5) ds = /OOI(S) ds — /TI(S) ds
T 0 0
:O/Oodso/sf(t)g(s—t) dt-I-O/TdSO/Sf(t)g(S—t) dt
:/f(t)dt/g(s—t)ds+/f(t)dt/g(s—t)ds
0 t 0 t
= 7of(t) dt - 7og(s) ds + /Tf(t) dt T/_tg(s) ds
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Redefining « according to o — 2 a, and after this redefining v as v — 7/y/a and introducing a new
parameter 6 4“ the identity takes the following symmetric form:
If af = then

i <ﬁ) arctan \/§ + i ( ) arctan \/§
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Similarly, if af = %2, then

o o
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1
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where y4(n) = sin 5* is Dirichlet character modulo 4.

8. Note that in section 6 there were no integrals analogous to integrals I, I, from section 4, thanks to
the oddness of h(z) they canceled out. With suitable function h(z) this proof can be adapted to prove
as well. In fact more is true:

(=nr
o [ cosh (7r cos 0+v/n2a2 + a»ﬂ) — cos (mnasin 0) 1 tanh %\g@
f(a> - . - <> myy/acosf (19)
n=1 \ cosh (7r cosf+v/n2a? + a’y?) + cos (mnasin @) @/ tanh =5

Without presenting all the details of the proof we note the essential steps only. Take

1 sinh (7T0l cos 9m> cos (razsin 6) 1
V247 cosh (277(1 cos 9m> — cos(2maz sin 6) sinz’

h(z) =

Clearly h(z) is odd, hence there will not be any integral contributions analogous to I, and I, from section
3. Besides z, = n this function has simple poles at

in 6
Cn:nsm +icosf/n2/a2 +~2, neZ

(07

(, satisfies the relation
Cnsin® —n/a =icos /(2 + 2.

The poles z, are outside the contour of integration, while the poles (,, are inside. Residues at z, = n
are easily calculated and the sum over these residues can be converted to a product with the help of the
integral

/ sinh (wat cos ) cos (rasin ) 1. cosh (watcosf) — cos (rasin h)
Ta cos 0 . = 8 .
cosh (2mat cos 0) — cos(2maz sin 0) 4 cosh (mat cos @) + cos (masin 6)

Now we calculate the residues at (j,:

1 sinh (7704 cos 0+/C2 + ')/2> cos (rag, sin )

ngzh(z) 2rasinm(y, (n cos B sinh (27Ta cos 9\/@21 + 72) T \/C% + 72 sin 0 sin(2rag, sin )
1 (="
" dmasint(, Cncos O+ isinfy/C2 +~2
1 (-1t

" drasinm(, - /n2/a? + 42

From this it follows that

(—1)n1 sinh (77 cos0/n?/a? + 72> cos (mza ! sin6)
res h(z) + res h(z)= —— - :
#=Gn #=6n may/n?/a + 9% cosh (27r cosf/n?/a? + ’YQ> — cos(2mza "t sin6)
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The RHS of this expression has the same form as res h(z), and therefore can be converted to a product
2=2zn

by integration.
9. The result of this section is quite similar to the previous section:

(="
~ [ cosh <7r cos 9\/(n + %)2 a? + a'y?> — sin (7o (n + 3) sin 6)
fe)=1]

_f (;) .0
n=0 | cosh (7‘(‘ cos 9\/(n + %)2 a? + a72> + sin (7o (n + 3) sin 6)

In this case

1 sinh (7ra cos /22 + V2> sin (raz sin 6) 1

h(Z) = ’ : )
V22 +79% cosh (27Ta cos /22 + 72) + cos(2mazsinf) COSTZ
and
/ sinh (mat cos 0) sin (Tasin 6) 1. cosh(watcos ) — sin (mrasin 9)
Tacos - =—In 8 8 )
cosh (2rat cos ) + cos(2maz sin 6) 4 cosh (mat cos @) + sin (rasin )

Note that f (s?éve) = 1 trivially for N € N. However f (SQHJIVG) = 1 is quite non-trivial. As an example,
by letting N =1,y =0 1in one obtains the identity

i . in? g\ Xa(n)
o0 (COSh ™ sm40 cosf gin I sin 0)

[1

n=1

hﬂ’nsin@cos@ =1
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where x4(n) = sin 73* is Dirichlet character modulo 4.

10. So far all products or series have been symmetric. But there are also identities for non-symmetric
products as well. Here is one such example without proof:

0 tanh 7y /a2n2 + 1 1 n
H 4 = exp /ln (tanhw t2+}1) dt » . (21)

3 -1
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This can be reformulated as the expression

ﬁ tanhy/a?n? + %

= (1- e%\/nTH)(*l)“

«

being independent of «.
11. The coupled equations defining «; and [y,

. 1
_1 E— 1L

cosh a; +COSM 2>
n

= cosh B + cos (1<j<n, 1<k<m) (22)

arise in the solution of Laplace and Helmholtz equations on a lattice [6]. These set of o; and S, satisfy
the reciprocal relation

n m
H 2coshma; = H 2 cosh nfy. (23)
j=1 k=1

The proof is very simple and uses the well known formula (see [7], formula 1026):

m - 1 2
gm—1 H (coshoz — CoS M) = cosh ma. (24)
m
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Indeed, denoting by x the common value of the equations

ﬁ2coshma] HQ om—1 H (coshoz] — oS m(k ;11/2)>

j=1
mn T ] 1/2) 7 ( 1/2)
=2 | | | | — _— = _—
ma (x COS n COS m

This expression is symmetric in m and n and therefore imply .
12. Similarly, if

' k
coshaj+cosﬂ:cosh6k+cos7r— (1<j<n, 1<k<m) (25)
n m
then
ﬁ sir'lhmozj _ ﬁ siTlhan. (26)
e sinh o S sinh By

The proof is similar to the one in previous section, this time using the well known formula

m—1 .
wk sinh ma
mel h _ — — 2
| | <cos a — cos m) o (27)
e U —-1/2) B (k—1/2)
Qg ™y — k (K — .
hta = — <7< < k<
cosh 5 COS 5y cosh 5 €08 —— (1<j<n, 1<k<m) (28)
then . .
| | coshmay = | | cosh nf. (29)
=1 k=1

In this case, besides one needs

H cos W = \2/3 (30)
j=1

2
cosp

14. Here is a less trivial example inspired by the ‘dispersion relation’ cosh§ = — cosp on the

triangular and hexagonal lattices [8]: If

a; m(25 — 1) (2 —1) & 71'(2k: -1) m(2k — 1)
<cosh 5 + cos — s = cosh — +c¢ i cos —— — (31)

for1<j<n, 1<k<m,then

H (cosh mao; + cos m77(2j—1)> = H <cosh nP + cos mr(2k:—1)> . (32)
j=1

2n 2m
k=1

To prove this relation, according to the following generalization of

gm—l1 H [cosha — COoSs <y + M)} = cosh ma — cos my, (33)
m
Jj=1

we write

n

11 (Coshmaj n COSH) ﬁ ;ﬁl [coshozj — cos <7r(2;'n— D ml:n_ 1)”

J=1
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_ on(zm-1) l”jli[ [Cosh G <7r(2;71'n— 1) N m(2k — 1))] [Coshz + cos <7r(2j —1) N m(2k — 1))] |

2m 4n 2m

Denote the common value of equations by x. Then

ﬁ [Cosho;j oo (w(zin— 1) N m(2k — 1))]

- 2m
:ﬁ T w21 (2 =1) | w2k - 1)
i1 Leos ”(247;1) 4n 4n 2m
oo £ (25 — 1) (2k —1) (25 —1) 72k —1)
=% Jl;[l [aj 2 cos 1 cos T cos in im ,
ﬁ cosh & 4+ cos (FRI=1) | 7k =1)
e 4dn 2m
:H m2‘ : _Sinﬂ(z]—l) +sin <7r(2j—1) B 7r(2k—1)>
i Lsin m( o ) 4n 4n 2m

o ﬁ [x o W(gin_ 1) i W(2jfm_ 1) o (w(Qin— 1 W(an; 1))] .

From these two formulas, it is obvious that the product on the LHS of is symmetric in n and m.
This completes the proof.

15. If
] k
coshog—l—cos.l7 :coshﬁk—i—cosL, (1<j<2n, 1 <k<2m), (34)
2n 2m
then _ .
ﬁ tanh mao; (=1 B ﬁ tanh n g (=1 (35)
. sinh o B sinh 83 '
j=1 k=1

Denote the common value of equations by x. First, note that ao, = P2, and as a result is

equivalent to
2n—

H (tanhma >( b’ 2ﬁ1 (tanh n,Bk>(_ )

i sinh a; P sinh B,

Here we use and to write the product on the lhs in symmetric form:
2n—1

—1)7 . n—1 .
H tanh ma; (1) sinh a9, 1 H tanh mag; sinh agj_1
sinh o tanh maog,—1 - ; sinh ap; tanhmaog; 1
]:

j=

. n—1 w(m—1/2
sinh a9, —1 cosh aigj_1 — cos m(m=1/2) — /2)

tanhmazn—1 -+ cosh ag; — cos T2
]:1 2] m

—1m—1 k—1/2
T cosh Qgj_1 — COS % cosh aigj — cos L’“
x w(h—1/2) ﬂk
J=1 k=1 cosh agj — cos == == coshagj_1 — cos 7>
1 sinh a9,,—1  sinh ﬁgm_l
cosh a1 — cos w tanh magy,—1 tanh nBo,—1
—1m—1 i—1/2 k—1/2 ;
nolml, cos U /)—COS% x—cos%]—cos’:n—k
x 7(h—1/2) ~(—1/2) 5
i i x—cosﬂ cos B2 g cos LA cog TR

m n m
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Now, in this last formula the factor

1 1

-1/2) E m
cosh apy,_1 — cos % T + cos 5 + CoS 5~

sinh s, —1  sinh B2, 1
tanh moon —1 tanh nﬂzm_l
the double product. So both sides in (4) are symmetric when m and n are interchanged, and hence they

is obviously symmetric when m and n are interchanged, and so is the factor and

are equal.

16. What is the limit n,m — oo of the reciprocal relation , if it exists? If the common Value x of
equations (34) is chosen to be close to 2, then «; will be close to 0 for small j. Let x =2+ 8n2 , then
expanding cos and cosh we get approximately for small j and &

T/ j2 + 2 1 n?
0y = g B gkt

Next assume that m,n — oo such that 7 — a. With these assumptions we have

2n—1 . x >\ (-1
. —1)d TN/ % + Y
n%r_r)loo (tanh 'maj)( = H (tanh 2) ) (36)
m/n—a j=1 7j=1
2m—1 o] 77\/]432/@274‘ (*1))c
Jim T (tanhng) D" (tanh 2”) . (37)
m/n—>a k=1 k=1
The sinh factors are simplified as follows
2n— 2n—1 )
H sinh a] = H [(cosha;j — 1)(cosh o + 1)](71)”2
j=1 j=1
2n—1 . . (_1)1/2
= H [(x—l—cosm> <x+1—cosm>]
e 2n 2n

[ tanh[narccosh(x — 1)] tanh[n arccosh(x 4 1)] 1/2
~ | sinh[arccosh(z — 1)]  sinh[arccosh(z + 1)]

Now it is easy to calculate the limit

[12%;" (sinh ozj)(fl)j

7j=1
im -
e T st )
. tanh[n arccosh(z — 1)] tanh[n arccosh(z 4 1)] 1/2 tanh 5 (38)
= lim =\ ——=.
n;m=oo | tanh[m arccosh(x — 1)] tanh[m arccosh(z + 1)] tanh 757
m/n—a

Combining equations . ) leads to . Thus we obtained an elementary proof of the modular

transformation (|1f). Elementary proofs of modular transformations are known in the literature. For
00 n —PxP
n=1 1—zp

example Apostol [9] gives an elementary proof for 3 |z| <1 for an odd integer p > 1.

17. If

21y 21k
coshaj+cosg:coshﬁk+cos5i, (1<j<bn, 1<k<bm), (39)
n m

then

o Vi &) o 25 +)
H<1_1+\/5+4coshmozj) _H<1_1—|—\/5+4coshnﬁk> 7 (40)

j=1 k=1
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or alternatively

ﬁ coshma; — cos 275” iin[ coshnf), — cos 27;‘” (41)
;=1 coshmay — cos 475” -, coshnfy, — cos Ak
This is finite version of . Its proof is similar to the proof of equation in section 14.
18. If ‘
j k .
coshaj+cos6—n :coshﬂk—i—cosG—m, (1<j<6n, 1<k<6m), (42)

then

ﬁ 2 coshma; — /3 ) ﬁ <2cosh nBy — \f>X12(k) (43)
ot 2 coshmayj + V3 bl 2 coshnfi + V3 ’
1ifl = £1 (mod 12)

where x12(l) = ¢ —1if I = £5 (mod 12) , is Dirichlet character modulo 12.
0 otherwise

19. If
' k
cosh oy +cos 2 = cosh B +cos ——, (1< j<dn, 1<k<dm), (44)
4an 4m
then "
4in XslJ dm xs (k)
1T V2 coshmay — 1 10 < 2 cosh nfy, — 1) | (45)
i1\ V2coshmay +1 % \V2coshnfy, + 1

1if I = +1 (mod 8)
where xg(l) =< —1if [ =+3 (mod 8) , is Dirichlet character modulo 8.
0 otherwise
Formulas in sections 17 and 18 are finite versions of propositions 27 and 28 in [1].
20. If

219 27k
cosh2a; + cos . — cosh 281 + cos i, (1<j5<3n,1<k<3m), (46)
3n 3m
then ,
ﬁ L 3sinh may; <) B ﬁ 1 3 sinh ngy o(k) (47)
) sinh 3ma; N sinh 3n8, ’
j=1 k=1
where ¢(1) = 2 cos 2;:1.

Infinite version of this product is

c(n)
3sinh 3sinh 22 9
aH( smhan) BH( smh,Bn) ’ af =
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