Finite and infinite product transformations

Martin Nicholson

Several infinite products are studied along with their finite counterparts. For certain
values of the parameters these infinite products reduce to modular forms. The finite product
formulas give an elementary proof of a particular modular transformation.

1. B. Cais in an unpublished manuscript [I] shows how to get the product transformation formula
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He also generalizes this approach to more complicated products like
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where (%) denotes the Legendre symbol. Recall also the functional equation for the Dedekind eta product
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The aim of this paper is to generalize these transformation formulas and obtain finite products that reduce
to the above formulas in the infinite limit. It should be noted that the infinite products in ,, are
modular forms, but the generalized products in the subsequent sections are not.

It is assumed throughout this paper that a > 0. However by analytic continuation all formulas are valid
when Re a > 0.

2. Expanding cosech into partial fractions and interchanging the order of summation we get
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An identity equivalent to f(«, ) = f(1/a, () is given in 3 as equations (1.5.2) and (1.5.3) with { = 0.
Now we multiply f(a,3) by 75 and integrate termwise with respect to §. Using the integral
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one can see that the sum
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doesn’t depend on 3. Then it follows from the limit 8 — oo that @ is 0. This means that
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or in the form easier to compare with
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3. There is another way to write in symmetric form. We start with
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and then apply Poisson summation formula to the sum over n in the following form
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The integral is calculated via formula 3.961.2 from [4] and equals 2K (y m(2n+1)2 + a;2>. So
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is analytic in the complex plane with a cut [i3, +i00). It has simple poles on the real line at z, = 2n+1, and
on the imaginary line at (, = \/(2n +1)2a72+ 2, n € Z. Consider contour C' in Fig.1, with small circles

4. The function




Fig.1

and semicircles of radii e around poles of h(z). According to residue theorem [ h(z)dz = 0. Integrals
along large arcs are 0 in the limit R — oco. Sum of integrals along straight horizontal segments in the limit
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Similarly, sum of integrals along straight vertical segments in the limit R — oo, € — 0 is
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To convert it to a product one can multiply by maf and integrate with respect to 5 using
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to get the following symmetric relation
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Note. Contour integrals similar to the one considered in this section has been investigated in ch. 1.5 of
the book [3], for example in eq. (1.5.1), with the aim of application to lattice sums. We study a more general
integral in section 7.



5. The same analysis as in the preceding section is applicable to the function
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with the difference that the poles are now z, = 2n and (, = \/4n2a=2 + 32, n € Z. The result
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Analogous result is true for . In fact more generally
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A list of functions for which sum equals integral along with references can be found in [10]. Note that when
6 — 0 eq. reduces to the functional equation for the Dedekind eta function , while reduces to
the Jacobi imaginary transform for theta functions[5].

6. The choice

2 2 2 2
cOS 3”72 — cos % cosh sma/zi 45" V§+ﬂ — cosh T&vV2_ P20 VZ5+5

sin 7z /22 + % sinh(ray/22 + 32)

h(z) =

with the help of formulas
cos st _ cos = = (—1)”é (E)
5 5 2 \5/’

/ cosh % — cosh &t V5 (1 25 >

5
dt=m(1-
sinh ¢ o 1+ /5 + 4 cosh 2t

from [1], leads to

n=1 1+\/5+4COShM 1+\/5_~_4cosh27r\/n25/a2+’82

n=1

This is generalization of . From this it should be clear how to get generalized symmetric products from
absolute invariants in section 5 of [I]. However not all absolute invariants seem to be amenable to such
generalization (e.g. see Proposition 25 in [1]).

7. Note that in the previous section there were no integrals analogous to integrals I, I}, from section 3,
thanks to the oddity of h(z) they canceled out. With suitable function h(z) this proof can be adapted to

prove as well.



In fact more is true:
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Without presenting all the details of the proof we note the essential steps only. Take
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Clearly h(z) is odd, hence there will not be any integral contributions analogous to I}, and I, from section
3. Besides z, = n this function has simple poles at
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Cn satisfies the relation
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The poles z, are outside the contour of integration, while the poles (,, are inside. Residues at z, = n are
easily calculated and the sum over these residues can be converted to a product with the help of the integral

/ sinh (wat cos ) cos (rasin ) 1. cosh (wat cosf) — cos (rasin 0)
mocos 0 - =—In Ty
cosh (2mat cos §) — cos(2maz sin ) 4" cosh (mat cos ) + cos (rasin @)

Now we calculate the residues at (:

h2) 1 sinh (7704 cos0/C2 + 62) cos (ma, sin f)

res h(z) = ,

#=Cn 2masinmn ¢ cos f sinh (27‘(04 cosO4/C2 + 52> + /(2 + B2 sinfsin(2ra(, sin )
1 (—1)"

~ 4rasin TCn ¢, cos @ + i sin 9\/@%4——52
1 (_1)11711-

" 4rasin TCn /n2/a2 + B2

From this it follows that
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The RHS of this expression has the same form as res h(z), and therefore can be converted to a product
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by integration.

8. The result of this section is quite similar to the previous section
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In this case
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9. So far all products or series have been symmetric. But there are also identities for non-symmetric
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products as well. Here is one such example without proof:
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arise in the solution of Dirichlet and Helmholtz equations on a lattice [6]. These set of o; and jj satisfy
the reciprocal relation
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The proof is very simple and uses the well known formula (see [7], formula 1026):
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The proof is similar to the one in previous section, this time using the well known formula
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13. Here is a less trivial example inspired by the ‘dispersion relation’ cosh§ = Cozsp — cosp on the
triangular and hexagonal lattices [8]: If
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the product on the LHS of is symmetric in n and m. This completes the proof.
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Now, in this last formula the factor
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15. What is the limit n,m — oo of the reciprocal relation , if it exists? If the common value x of
equations (30) is chosen to be close to 2, then «; will be close to 0 for small j. Let x = 2 + 8n2 , then
expanding cos and cosh we get approximately for small j and k
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Next assume that 7 = « is fixed. With these assumptions we have
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The sinh factors are simplified as follows
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Combining equatlons . ) leads to ( . Thus we obtained an elementary proof of the modular trans-
formation . Elementary proofs of modular transformations are known in the literature. For example
o0 222 |z < 1 for an odd integer p > 1.
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