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The classical theory of lumped mechanical systems employs the viscous friction mechanisms (dashpots), 

while the loss factors of most solid structures are controlled by hysteresis.  This paper presents analysis 

of the forced vibration of 2-DOF in-series systems with hysteretic friction where one of the 

partial 1-DOF systems plays the role of tuned (or auxiliary) mass damper (TMD). The 

assumption of hysteretic damping is acceptable if the loss factor remains about stable at least in 

the frequency range containing the resonance peaks. The closed-form simple relationships for the 

transmissibility at the resonance frequencies are derived in the “nearby” case where (1) the 

natural undamped frequencies of 2-DOF in-series system are most close to each other and (2) the 

loss factors of the 2-DOF system become similar and equal to the arithmetic average of the partial 

loss factors. The independent parameters are the mass ratio and partial loss factors. The 

relationships become very simple if the mass ratio is high or low compared to the square of each 

partial loss factor. In cases where the ratio of natural undamped frequencies of 2-DOF system are 

moderately lower or higher than in the “nearby case”, the transmissibility peak magnitudes are 

about similar to those for the “nearby” case.  The results can be utilized for the noise and 

vibration control in machinery and buildings.  

Keywords: noise and vibration control, 2-DOF mechanical system, hysteresis, tuned mass 

damper, closed-form theory, machinery, buildings. 

 1. INTRODUCTION 

The vibration effects in 1-DOF and 2-DOF mechanical systems with viscous friction are well 

known [1-3 etc.].  However, most solid structures exhibit non-viscous damping mechanisms: 

hysteresis, structural losses (caused by energy leaks to the adjacent structures), and coulomb 

mailto:acvibrela@gmail.com


 

R. Vinokur.  The closed-form theory of tuned mass damper with hysteretic friction 

2 

friction [4-15 etc.].  All the damping mechanisms can be simulated via a loss factor η  calculated 

from energy considerations.  The loss factor increases with frequency in case of viscous friction, 

does not depend on frequency for hysteresis, and can reduce with frequency if the attenuation is 

caused by the by energy leaks to the adjacent structures.  

If it is not feasible to increase the vibration energy dissipation in a main structure, the damping 

can be provided by a second 1-DOF system attached to the main structure. Such a system is 

referred to as tuned (or auxiliary) mass damper. The theory of 2-DOF systems incorporating both 

main 1-DOF system and 1-DOF tuned mass damper is well known in case of viscous friction [1, 

15-19 etc.]. The goal of this paper is to build a similar theory in case of hysteretic friction and 

develop closed-form relationships which are easy for physical interpretation and noise and 

vibration control of machinery and buildings. Here, the assumption of hysteretic damping is 

acceptable if the loss factor remains about stable at least in the frequency range containing the 

resonance peaks.  

2. MATHEMATICAL MODEL OF 2-DOF IN-SERIES MECHANICAL SYSTEM WITH 

HYSTERETIC FRICTION 

2.1. Description of the mathematical model  

Consider a 2-DOF in-series system incorporating two rigid bodies and two springs with hysteretic 

damping (Fig. 1).  Here, the masses of the first and second bodies are 1m and ,m2 the spring 

constants are 1k and 2k , so the partial undamped natural angular frequencies are given by the 

equations 11p1 mkω  and 22p2 mkω  .  The first spring is attached to the rigid 

base vibrating with the displacement   t)ω i ( exp yY 00  where 1-   i  is the 

imaginary unit,  ω is the angular frequency and 0y  is the displacement amplitude. Hence, the 

stationary vibration displacements of the first and second masses can be expressed as 
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  t)ω i ( exp yY 11  and  t)ω (i exp yY 22   where  y1 and 2y  are the relevant 

displacement amplitudes. The complex spring constants can be defined as 

 
p111 η i1 kK    and   p222 η i1 kK   where p1η  and p2η  are the partial loss 

factors associated with the first and second springs [5].  Here, the second 1-DOF system plays the 

role of a passive tuned mass damper [1, 15-19]. In most real structures, the loss factor is below 

0.1, so it makes sense to suggest 05.0ηp1   for estimation purposes. The loss factors of 

common tuned mass dampers used to be much over 0.05 but still well below 1.  But sometimes 

the role of TMD is played by a system with similar loss factor (like in automotive vehicles with 

the auxiliary cooling module attached to the main radiator via vibration isolators). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. 2-DOF in-series system with the hysteresis damping (the lowest body simulates a shaker, 

the dampers are not shown). 
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Basing on the above, consider 

25.0 η05.0 p2            (1) 

The differential equations of motion can be written in the form 

  

 

 









0.YYKYm

,YKYYKYKYm

12222

012121111





                (2) 

The characteristic equation for this dynamic system is quadratic relative to the unknown
2ω   

 
  0  )η i(1 )η i(1 ω ω

 μ)(1 )η i(1 ω )η i(1 ω  ω-ω mm

p2p1

2

p2

2

p1

p2

2

p2p2

2

p1

24

21





 (3) 

and has two roots  

  η i1   
~

1,2

2

1,2

2

1,2         (4) 

where 1 and  2 are the undamped natural angular frequencies of the 2-DOF system,  

 η1 and 2η are the relevant loss factors, and the mass ratio 

1

2

m

m
μ           (5) 

The undamped natural frequencies 1,2  and loss factors 1,2η  of a 2-DOF in-series system could 

be calculated using the quadratic formula [20] in Eq. (3) but the approximate expressions derived 

in the sections 2.2 – 2.4 are simpler and still quite accurate.  

2.2. Undamped natural frequencies of 2-DOF in-series system 

Applying the Vieta's formulas [20] to Eq. (3) and using Eq. (4), obtain 

      

   









. η i1 Ωη i1 Ω  μ)(1 )η i(1 ω )η i(1 ω

, η i1  η i1 Ω Ω  η i1 η i1  ω ω

2

2

21

2

1p2

2

p2p1

2

p1

21

2

2

2

1p2p1

2

p2

2

p1

 (6)       
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The products p2p1ηη  and 21ηη  are small enough to be ignored compared to 1 (in particular, 

if  0.05ηp1  and  0.25 ηp2  then 101.0ηη p2p1   ), so the first of Eqs (6) can be 

reduced to the form 

. )]η(η i[1   )]η(η i[1  ω ω 21

2

2

2

1p2p1

2

p2

2

p1           (7) 

Equating the real and imaginary parts on both sides of Eq. (7), obtain:  











.ηηηη

,    ω ω

21p2p1

2

2

2

1

2

p2

2

p1

              (8)  

Equating the real and imaginary parts on both sides of the second of Eqs (6), obtain 











.ηη   η μ)(1 ω ηω

,    μ)(1 ω ω

2

2

21

2

1p2

2
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2

2

2

1

2
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2
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      (9)  

Using the firsts of Eqs (8) and Eqs (9), calculate the undamped natural angular frequencies  

  D ωΩ 2,1p12,1             (10) 

where 12 ΩΩ  and 

 ,  r    1   1   
2

b1
 D2,1 


           (11)  

, 
b] [1 

b 4
  

μ  1

1
r

2
        (12) 

  , μ1 p  b 2          (13) 

.
ω

ω
p

p1

p2
          (14) 

Using Eqs (11)-(14), express the ratio of the undamped natural frequencies  1 and 2  as  
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 1
r

1
   

r

1

r11

r11
    

 

 
   q

2

1 








     (15)  

where the parameter r is defined by Eq. (12).  

2.3. The “nearby” case where the undamped natural frequencies of 2-DOF in-series system 

are most close to each other  

According to the well-known inequality  4uvv)(u 2  for the positive values u  and , v  

the parameter r  defined by Eq. (12) attains its maximum  

μ  1

1
 rmax


          (16) 

for every given μ  if  

. 1  b           (17a) 

Using Eq. (13), transform Eq. (17a) to the form 

   
μ  1

1
p




        (17b) 

where p is the ratio of the partial undamped natural frequencies given by Eq. (14). Using Eq. 

(15), calculate the derivative 

  1
r1

1
  

r 2

1
   

dr

q d
3/2












       

which is positive, so the parameter q grows with the value r and attain its maximum  

μ μ 1   qmax            (18) 

at the maximum value of parameter r . Therefore, under the condition defined by Eq. (17b) the 

undamped natural frequencies of 2-DOF in-series system are most close to each other for the 
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every given mass ratio .μ  The “nearby” case was studied earlier [13, 14] but only to analyze a 

relatively high vibration of the auxiliary mass.  

Using Eqs (10), (11) and (16), express the undamped natural frequencies in the “nearby” case as 

 .  
μ1

μ
   1  ωΩ p12,1


          (19) 

The relationships between the ratios 21/  q   and p1p2/ωω  p   for various values of the 

mass ratio 12/mmμ   are computed and plotted for comparison in Fig. 2 where the magnitude 

and location of the maxima are in good agreement with Eqs (17b) and (18).    

 

  

Fig. 2. Relationship between the parameters 21/  q   and p1p2/ωω  p   for various values 

of 12/mmμ  : (a) , 01.0μ   (b) , 05.0μ   (c) , 20.0μ   (d) . 80.0μ    
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2.4. Loss factors of 2-DOF in-series system 

Substituting Eqs (10)-(13) into the second of Eqs (9), obtain 

     . η b η
1b

2
η  r    1   1 η  r    1  - 1  p2p121 


    

Solving this equation together with the second of Eqs (8), calculate the loss factors of 2-DOF in-

series systems 

   
  r1 1b 2

η-η  1b
  ηη

p2p1

2,1



         (20) 

where the parameter r is defined by Eq. (12), the average loss factor   

 .
2

η η

2

η η
η 21p2p1 




        (21) 

As follows from Eq. (20): 

if 0b   then p21 ηη   and ,ηη p12           

if   b then p11 ηη   and ,ηη p22     

if  1  b  then . ηηη 21    

Thus, in the “nearby” case both loss factors of 2-DOF in-series system equal the average loss 

factor defined by Eq. (21). For illustration, the loss factors  1η  and 2η  described by Eqs (20) are 

plotted as functions of the independent parameter p1p2/ωω  p   for 05.0ηp1   and 

,25.0ηp2   and two values of the mass ratio :/mmμ 12  0.05 and 0.40 (Fig. 3). 

3. TRANSMISSIBILITY FUNCTIONS FOR THE MAIN AND AUXILIARY SYSTEMS 

3.1. Analytical expressions for the transmissibility functions  

Using Eqs (2)-(4) and the first of Eqs (6), calculate the ratio of the displacement amplitudes 
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1y and 2y  to the displacement amplitude 0y : 

    

   
 

Ψ(ω)

η i1  η i1 
  

y

y

, 
Ψ(ω)

η iωω-1    η i1 
  

y

y

p2p1

0

2

p2

2

p2p1

0

1



















    (22) 

where the polynomial 

      ].η iω-[1  ]η iω-[1 Ψ(ω) 2

2

21

2

1     (23) 

 

 

Fig. 3. Loss factors 1η  and 2η  of 2-DOF in-series system vs. p1p2/ωω  p  if the partial loss 

factors are 05.0ηp1   and :25.0ηp2    

(a) , 0.05μ  ;η1   (b) , 0.05μ ;η  2   (c) , 0.4μ ;η1    (d) . 0.4μ ;η  2   
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It is noteworthy that Eqs (22) are valid too if the base does not move but the vibrating force 

  t)ω (i exp FF 0 is applied to the first body and .K/F y 100   

Using Eqs (22) and (23), calculate the transmissibility functions for the first (main) structure 

 
 

Φ(ω)

Η(ω)  η1 
  

y

y
)(ωT

2

p1

0

1
1


      (24) 

and for the second (auxiliary) structure 

, 
Φ(ω)

)η1 (  ) η(1 
  

y

y
)(ωT

2

p2

2

p1

0

2
2


      (25)  

where the functions 











. η ]) ωω( -1 [ ) H(ω

}, η ]) Ωω( -1 [ {  } η ]) Ωω( -1 [ {Φ(ω)

2

p2

22

p2

2

2

22

2

2

1

22

1

  (26) 

To demonstrate the main trends, the results given by Eqs (24) and (25) could be compared with 

the transmissibility function of the main 1-DOF system alone 

, 
η ]) ωω( -[1

  ) η(1 
 ) (ωT

2

1

22

1

2

p1

0



      (27) 

which is derived from Eq. (24) by suggesting that , ωΩ 11   , 2   and  . 0η2    

From Eq. (27), the transmissibility of the main 1-DOF structure at its resonance frequency 

. 
η 

  1 

η 

  η1 
 ) (ωT

p1p1

2

p1

p10 


       (28) 

3.2. Computation and graphical comparison of the typical transmissibility functions   

The transmissibility functions given by Eqs (24) and (25) are computed and plotted in Figs 4-9 

vs. the dimensionless variable p1ω/ωξ  for the mass ratio values 2.0μ   or 02.0μ    
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which are typical for machinery and buildings, respectively.  Here, the partial loss factor 

is  05.0ηp2  or  25.0ηp2  for the tuned mass damper and  05.0ηp1  for the main 

structure, so as follows from Eq. (28), the peak transmissibility of the main structure alone is 

.2005.0/1) (ωT p10    To estimate the role of the ratio p, the results are plotted for 

three of its values: (a)  μ  11/   as given by Eq. (17b) for the “nearby” case, (b) 

 μ)  1(1/  as in the “classical” case [1, 15], and (c) 1p  (the partial undamped natural 

frequencies coincide). It is noteworthy that 1. μ  11/ μ)  1(1/    

 

Fig. 4. Transmissibility vs. p1ω/ω  ξ  for the main mass if 

, 2.0μ  : 25.0η,05.0η p2p1    

(a)  , μ  11/p  (b)  , μ)  1/(1p  (c)  1.p   
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As seen from Figs (1)-(9), the results are not much affected by such a deviation of the 

parameter p above and below its “nearby” value.  Hence, the effect of the mass ratio and loss 

factors on the transmissibility may be estimated just in the “nearby” case. 

 

Fig. 5. Transmissibility vs. p1ω/ω  ξ   for the main mass if , 2.0μ  : 05.0ηη p2p1   

(a)  , μ  11/p  (b)  , μ)  1/(1p  c)  1.p   

 

As seen in Fig. 4, the effect of TMD with a relatively high mass ratio and partial loss factor 

, 2.0μ (  ) 25.0ηp2   is quite positive: the transmissibility of the main structure at both 

resonance frequencies is about 4 (much below 20) (ωT p10  ).  But if the TMD partial loss factor 

is low ) 05.0η ( p2   for the same mass ratio 2.0μ  , the transmissibility of the main 

structure at both resonance frequencies grows up to 10 (Fig. 5).  On the other hand, if the TMD 
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partial loss factor is relatively high ) 25.0η ( p2   but the mass ratio is as low as  02.0μ   

(Fig. 6), the transmissibility at the first resonance frequency is about 7 (almost twice that for  

2.0μ  ) and there is no second resonance peak.  Such a partially degenerate case for the 

auxiliary system was described in paper [14] with the following conclusion: the second resonance 

peak disappears if   3/22

21 2 / ]/ΩΩ[1   η   where the average loss factor  η is given by 

Eq. (21). A similar effect can also occur in the main structure but at a higher loss factor. 

 

Fig. 6. Transmissibility vs. p1ω/ω  ξ  for the main mass if 

, 02.0μ  : 25.0η,05.0η p2p1    

(a)  , μ  11/p  (b)  , μ)  1/(1p  c)  1.p   
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Fig. 7. Transmissibility vs. p1ω/ω  ξ  for the auxiliary mass if 

, 2.0μ  : 25.0η,05.0η p2p1    

(a)  , μ  11/p  (b)  , μ)  1/(1p  (c)  1.p   

 

The transmissibility of the auxiliary mass for  2.0μ  and  25.0ηp2   (Fig. 7) is 12 and 5 

at the first and second resonance frequency, respectively.  But if the TMD partial loss factor is 

low ) 05.0η ( p2   for the same mass ratio 2.0μ  , the transmissibility of the auxiliary 

structure at its resonance frequencies increases trice as much (Fig. 8).  If the TMD partial loss 

factor is relatively high ) 25.0η ( p2   but the mass ratio is as low as  02.0μ   (Fig. 9), the 

resonance peaks of the auxiliary structure merge together with a transmissibility of 26 (Fig. 9).   
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Fig. 8. Transmissibility vs. p1ω/ω  ξ  for the auxiliary mass if 

, 2.0μ  : 05.0ηη p2p1   (a)  , μ  11/p  (b)  , μ)  1/(1p  c)  1.p   

 

4. CLOSED-FORM SIMPLE EQUATIONS FOR TRANSMISSIBILITY AT THE 

RESONANCE FREQUENCIES  

4.1. General relationships for transmissibility at the resonance peak amplitudes 

For simplicity suppose that the resonance frequencies of 2-DOF in-series system coincide with 

the appropriate undamped natural frequencies. This is true for 1-DOF systems with hysteretic 

friction [12] but if the loss factors are relatively small, this suggestion is also reasonable for 2-

DOF in-series systems with hysteretic friction, in particular for the frequency response of the 

main structure.  For the auxiliary structure, the second resonance frequency can notably shift 

down from the appropriate undamped natural frequency if the average loss factor is high [14].  
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Fig. 9. Transmissibility vs. p1ω/ω  ξ  for the auxiliary mass if 

, 02.0μ  : 25.0η,05.0η p2p1    

(a)  , μ  11/p  (b)  , μ)  1/(1p  (c)  1.p   

 

Using Eqs (19) and (17b), derive four helpful intermediate relationships for the nearby case: 

   , μμ1 μ21μ μ 1  
μ μ 1 

μ μ 1 
 

Ω

Ω 2
2

2

1 












    (29) 

   , μμ1 μ21μ μ 1 
μ μ 1 

μ μ 1 
  

Ω

Ω 2
2

1

2 












    (30) 

 , μμ1 μ1μ)(1
 μ 1 

μ μ 1 

ω

ω

ω

Ω
 

ω

Ω
2

p2

p1

p1

1

2

p2

1 

































   (31) 
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 . μμ1 μ1μ)(1
 μ 1 

μ μ 1 

ω

ω

ω

Ω
 

ω

Ω
2

p2

p1

p1

2

2

2

2 



























   (32) 

 

Fig. 10. Functions (a)  μ) (1 and (b) μ) (2  in comparison with 

 (c) 0.062525.0η 22

p2    and (d) 0.0225.15.0η 22     

 

Substituting Eqs (29)-(32) into Eqs (24) and (25), calculate the transmissibility at the resonance 

frequencies of the main structure 

   
, 

η/2

η
  

η 2

1
 

η/2

η
  

η 2

η1
 )(ΩT

2

1

2

p21

2

1

2

p21

2

p1

11

















  (33) 

   
, 

η/2

η
  

η 2

1
 

η/2

η
  

η 2

η1
 )(ΩT

2

2

2

p22

2

2

2

p22

2

p1

21

















  (34) 
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and at the first resonance frequency of the auxiliary structure (TMD) 

   
. 

η/2

1
  

η 2

1
  

η/2

η1
  

η 2

η1
 )(ΩT

2

1

2

1

2

p2

2

p1

12










  (35) 

where the functions  

 
 

 
,  

μ μ 1 μ  )μ  (

μ μ 1 

μ
μ μ 1 μ  )μ  (

2

2

2

2

1



















      (36) 

are plotted in Fig. 10, and the average loss factor η  is given by Eq. (21). The transmissibility at 

the resonance frequencies, given by Eqs (33) – (35), depends on three parameters: the mass 

ratio μ  , partial loss factor p2η , and average partial loss factor η . These relationships are plotted 

vs. the mass ratio μ  for  05.0ηp1  and  25.0ηp2  (Fig. 11) or 05.0ηp2   (Fig. 12). 

Generally, Eqs (33)-(35) are in good agreement with the Eqs (24) and (25) at the resonance 

frequencies. They are simple, and can be further simplified for relatively low or high mass ratios.  

4.2. Approximate expressions for relatively high mass ratios 

From Eqs (36),  μ) (  ,
4

1
μ) ( 21   if . μ   In this asymptotic case, 

, ηημ) ( 2

1

2

21,2  and Eqs (33)-(35) become very simple and straightforward: 

, 
η 2

1
 

η η 

1
)(ΩT)(ΩT

p2p1

2111 


      (37) 

.  
η

1
 

η η

2
 )(ΩT

p2p1

12 


        (38) 
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Fig. 11. Transmissibility at the resonance frequencies vs. the mass ratio μ  if  

: 25.0η,05.0η p2p1    

(a) )(Ω T 11 , (b) )(Ω T 21 , (c) )(Ω T 12 , (d) . 20 )(ω T p10    

 

According to Eq (37), the transmissibility at both resonance frequencies for the main structure of 

2-DOF in-series system with a relatively high mass ratio is similar to the peak transmissibility of 

a 1-DOF system where the loss factor equals the sum of the partial loss factors.  In particular 

if p1p2 ηη  , the transmissibility ,
2

) (ωT
  

η 2 

1
)(ΩT)(ΩT 10

p1

2111   so the original 

resonance peak is reduced by half. To produce a much higher attenuation, the second partial loss 

factor should notably exceed the first partial loss factor ( )ηη p1p2  . One more important 
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conclusion comes from Eq. (37) if p1p2 ηη  : no real vibration attenuation is accomplished in 

this uncommon case, because . ) (ωT  
η 

1
)(ΩT)(ΩT 10

p1

2111     

 

Fig. 12. Transmissibility at the resonance frequencies vs. the mass ratio μ  

if :05.0ηη p2p1    

(a) )(Ω T 11 , (b) )(Ω T 21 , (c) )(Ω T 12 , (d) . 20 )(ω T p10   

 

To estimate a lower bound of the application range for the simplified Eq. (37), compare it 

numerically with Eqs (33) and (34) if , 25.0η,05.0η p2p1   and . 0.05ηη p2p1   In 

such typical cases, Eq. (37) calculates the transmissibility of 3.3 and 10 which is in good 

agreement with the plots in Figs 10 and 11 if 0.04μ   and 0.01,μ  respectively. This 
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makes Eq. (37) convenient for fast engineering estimations. It should be noted that the asymptotic 

value of transmissibility, expressed by Eq. (38) for the first resonance frequency of the auxiliary 

structure, is achieved at a much higher mass ratio. 

4.3. Approximate expressions for relatively low mass ratios 

If , 0μ  Eqs (36) are reduced to  0, μ μ) (μ) ( 21  and the mass ratios can be so 

small that 

 . ηημ) ( 2

2

2

11,2          (39) 

Using the condition (39), simplify Eqs (33)-(35) as 

 
, 

η

η
  

 η η 

η 4
 )(ΩT)(ΩT

2

p2

2

p2p1

p2

2111 


     (40) 

 
 . 

 η

1
  

 η η 

4
 )(ΩT

22

p2p1

12 




      (41) 

At first glance, the transmissibility expressed by Eq. (40) can be very low in the uncommon case 

0ηp2    but such a formal approximation may not be valid since it can be in contradiction 

with Eq. (39). If ,ηη p1p2   the transmissibility values calculated by Eqs (40) and (41) are 

notably over those resulted from Eqs (37) and (38).  In particular if ,ηη p1p2   Eq. (40) 

calculates ) (ωT  
η 

1
)(ΩT)(ΩT 10

p1

2111  which is the peak transmissibility of the main 

structure alone. To provide a reasonable attenuation, the TMD partial loss factor must notably 

exceed that for the main structure. This requirement is important for the building applications 

where the effective mass factor can be rather low: about 0.01 or less. 
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5. CONCLUSIONS 

The forced vibration of 2-DOF in-series system with hysteretic friction is analyzed in case where 

the first and second partial 1-DOF systems play the roles of main structure and tuned (auxiliary) 

mass damper (TMD), respectively. The assumption of hysteretic damping is reasonable if the loss 

factor remains about stable at least in the frequency range containing the resonance peaks. 

Generally, the partial loss factor of a tuned mass damper should be much over that for the main 

structure but sometimes the role of TMD is played by a system with a similar loss factor: for 

instance, in automotive vehicles where an auxiliary cooling module attached to the main radiator 

via vibration isolators may serve as TMD.  

The closed-form and simple relationships for a transmissibility at the resonance frequencies, 

given by Eqs (33)-(35), were derived in the “nearby” case (described by Eq. (17b)) where (1) the 

natural undamped frequencies of 2-DOF in-series system are most close to each other and (2) 

both loss factors of the 2-DOF system get equal to the arithmetic average of the partial loss 

factors.  The transmissibility peak magnitudes in cases, where the ratio of natural undamped 

frequencies of 2-DOF system are moderately lower or higher than in the “nearby case”, prove to 

be about similar to those for the “nearby” case.  

The independent parameters are the mass ratio and both partial loss factors.  

Two limit cases are analyzed: for the relatively high and low mass ratios. If the mass ratio is 

relatively high (over 0.01-0.04 for most practical cases), the relationships given by Eq. (37) for 

the main structure and by Eq. (38) for the auxiliary structure become quite simple. In particular 

by Eq. (37), the transmissibility at both resonance frequencies for the main structure of 2-DOF in-

series system is similar to the peak transmissibility of a 1-DOF system where the loss factor 

equals the sum of both partial loss factors. In this case, a notable positive effect is achieved even 

if the TMD (second) loss factor is similar to the partial loss factor of the main structure: the 

transmissibility of the main structure is reduced by half. Certainly, the higher the TMD loss 

factor, the lower the transmissibility at both resonance frequencies.  
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If the mass ratio is relatively low (about 0.01 or less), the transmissibility is given by Eq. (39) for 

the main structure and by Eq. (40) for the auxiliary structure. In this case, no positive effect is 

achieved if the TMD (second) loss factor is similar to the partial loss factor of the main structure. 

Here, for real improvement the TMD loss factor should notably exceed the partial loss of the 

main structure; this condition is important for the building applications where the effective mass 

factor used to be rather low. 

The closed-form and simple equations developed in this paper are easy for physical interpretation 

and can be helpful for the noise and vibration control in machinery and buildings.  
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