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Abstract:

The article presents our innovative method of deriving dynamics in the Special Theory of
Relativity. This method enables to derive infinitely dynamics in relativistic mechanics. We have
shown five examples of these derivations. In this way, we have shown that the dynamics known
today as the dynamics of Special Theory of Relativity is only one of infinitely possible. There is
also no reason to treat this relativistic dynamics as exceptional, either for experimental or
theoretical reasons. Therefore, determination of which possible dynamics of relativistic mechanics
is a correct model of reality remains an open problem of physics.

1. Introduction

Kinematics deals with the movement of bodies without taking their physical characteristics
into account. The basic concepts of kinematics are: time, location, transformation, speed and
acceleration.

Dynamics deals with the movement of material bodies under the action of forces. The basic
concepts of dynamics are: mass of inertia, force, momentum and kinetic energy.

Kinematics and dynamics are resulting in mechanics. In the article we deal with relativistic
mechanics, i.e. the Special Theory of Relativity, which unlike classical mechanics, also applies to
high-speed.

Currently, only one dynamics of the Special Theory of Relativity is known. In the article we
presented the author’s method of deriving numerous dynamics for this theory. Relativistic dynamics
is derived based on the relativistic kinematics and one additional assumption, which allows the
concept of mass, momentum and kinetic energy to be introduced into the theory.

2. Kinematic assumptions of the Special Theory of Relativity

The kinematics of the Special Theory of Relativity is based on the following assumptions:

I.  All inertial systems are equivalent.
This assumption means that there is no such a physical phenomenon, which distinguishes the
inertial system. In a particular case, it means that there is no such phenomenon for which the
absolute rest is needed to explain. Mathematically, it results from this assumption that time
transformation and position coordinates between any two inertial systems has an identical form,
depending only on the relative velocity of these inertial systems.

II. Velocity of light ¢ in vacuum is the same in every direction and in each inertial system.

III. Transformation of time and position coordinates between the inertial systems is linear.
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These assumptions are often written in other equivalent forms.

Based on mentioned assumptions, it is possible to derive Lorentz transformation on which
the Special Theory of Relativity is based. There are many different derivation ways of this
transformation. Two derivations are presented in monograph [3].

Markings adopted in Figure 1. will be convenient for our needs. Inertial systems move along
their x-axis. The velocity v is a velocity of U, system measured by the observer from U, system.
The velocity vy, is a velocity of U, system measured by the observer from U, system. In the Special
Theory of Relativity occurs that v,/ = —vy,.

(4 Va1
N x» —— U
L]
0
e Vip
1 i . x <—— U
L] I |
o 1 2
Fig. 1. Relative movement of inertial systems U; and U, (v, = —Vvip).

Lorentz transformation from U, to U, system has a form of:

1 Vo

t, = t + X 1
1 \/1_(‘}2/1/0)2 (2 02 2) ( )
X, = ! vy t, +X,) (2)
1 —ﬁ 2/1%2 2
1=(v,,,/¢)
Y1 =Y 21 =2 (3)
Lorentz transformation from U, to U, system has a form of:
1 v
t, = t+ 2 x 4
2 \/1_(‘/1/2/0)2 (1 02 1) ( )
X, = ! (v, + X)) (5)
2 —ﬁ 1/24 1
1=(v,,/¢)
Yo =D Z, =2z (6)

Transformation (1)-(3) and (4)-(6) includes complete information on the relativistic
kinematics.

3. Selected properties of relativistic kinematics

In order to derive dynamics we will need two formulas from kinematics, i.e. (20) and (23)
from kinematics. We will derive them out of transformation (1)-(3).

3.1. Transformation of velocity

Determine the differentials from transformation (1)-(3)
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1 \%
dt, = ———(dt, + 2L dx,) (7)
1 \/1_("2/1/0)2 e
1
dx, = ——(v,,,dt, + dx,) (8)
1 1—(v2/1/c)2 2191, 2
dy, = dy,, dz, = dz, )

From the inertial system U, and U,, the moving body Usj is observed. In U, system, it has a
velocity of vs1, while in U, system has a velocity of v3,. The components of these velocities were
presented in Figure 2.

Vi Uz* Va1 f » ty
5
Vaja ‘
Vi
il :x
z Vi
v
X1 3/2 X2
- Ui Vail U,

Fig. 2. Movement of the body from two inertial systems U, and U..

The body velocity Us in inertial system U, has the following components

X dx dy z dz
Viia =d_122’ Vi) zd_tj’ Viia =d_122 (10)
The body velocity Us in inertial system U has the following components
. dx dy . dz
Vin _d_l‘llj Vi zd_tll’ Vin _d_l‘ll (11)

When to equations (11) we put differentials (7)-(9) then we will receive

1
ﬁ("zndfz +dx,)
N -, /c
Vi = 12/1 v
— (dt, + 2L dx,)
\/1_(V2/1/c)2 e
d
Wy = (12)
2/1
m(dtz +7dx2)
2/1
s dz,
Vi = 1 v
——(dlt, +%dx2)
1-(v,,/c)’ ¢

1.€.
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o Y +dx, /dt,
3/1 —
v
1+%(dx2 /dt,)
dy,/dt
Vi =4/l= (v, /c)? v 22 =2 (13)
1+c2—£1(dx2/dt2)
dz,/dt
Vi :\/1_("2/1/0)2 v 2
1+cz—g(dx2/dt2)
On the basis of (10) we obtain the desired velocity transformation from U, to U, system
N V3, +V
Vi = 3/2 ; 2/1
1+ V3/2‘2’2/1
c
2 v;
Vi == (v /o) —=F (14)
ViaVan
=5
VZ
vin =41=(v,, /c)? ——
ViaVan
=5
In special case, when U; body moves parallel to x-axis then occurs
Vi = Vi Viiy = Vi, Vi =3, =0, Vi =3, =0 (15)

Then velocity transformation (14) takes the form of formula to sum-up parallel velocities

Vi TVon

Vi =

(16)
1+ V32Van
2
c

3.2. Change of velocity seen from different inertial systems

The body is inert in Us system and performs a momentary acceleration to U; system. The
body movement is observed from U, and U, systems. The velocities of inertial systems are parallel
to each other. We adopt markings shown in Figure 3.

V21— =V)q1/A— Var Var ,
dvsi=vsyi—vi dvip=vyn—vin my | V3L Y32 Ui
_ Vi Vv
dvi dvsn dviz=vas | my B2 Uy
V3| vap

.
21 Us
V31 | V3n Vy/1 = constans U
!

Fig. 3. Increases in the velocity seen in inertial systems U, and U,.

We will determine the differentials from formula (16)
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Vs tVan Vi,V \%
3/2V201 2/1
14‘("3/2"2/1)/02 I+ c’ (a2 tva) 2
dvy, = J dvy,, = 2 dvy,, (17)
V32 1+ V32Va11
e
2
1— Vo
2
_ C
dvy,, = > dvy), (18)

Vi,V
3/272/1
[1 2 j
C

If Us system is U, system then it is necessary to replace index 3 with 2. We will receive

dvy) =dvy,, Vi, =V,y,=0, dvy,=dv,, (19)
On this basis, the formula (18) takes a form of
dv,,
20
2277 (v, /¢) (20)

Relation (20) is related to the change of body velocity seen in the inertial system U, in
which the body is located (dv,2), and the change of velocity seen from another inertial system U,
(dvan).

3.3. Time dilatation

If motionless body is in U, system, then for its coordinates occurs

@y 21)
dt,
Based on time transformation (7) we receive
dt,
a ! ppadny Zoodh 1 (22)
dt,  J1=(v,, /ey ¢ db dt,  \1-(v,,/c)

On this basis we receive the formula for time dilatation of motionless body with regard to U,
system
dx,

—2=0 = dt,=41-(v,,/c) -dt, (23)
dt,

4. Dynamics in the Special Theory of Relativity

All dissertations will be conducted only for one-dimensional model, i.e. all analyzed vector
values will be parallel to x-axis. Each derived dynamic can easily be generalized into three-
dimensional cases.

In order to derive dynamics in the Special Theory of Relativity, it is necessary to adopt an
additional assumption, which allows the concept of mass, momentum and kinetic energy to be
introduced into the theory. Depending on the assumption, different dynamics of bodies are received.

The mass of inertia body resting in inertial frame of reference is determined by my (rest
mass). The mass of inertia body mass U,, as seen from U, system, is determined by m,, (relativistic
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mass). It is worth to note that the relativistic mass in this case is an inertia mass that occurs in the
Newton’s second law, rather than mass occurring in the formula for momentum, as assumed in the
Special Theory of Relativity. In this way, we have adopted a different definition of relativistic mass,
than adopted in the Special Theory of Relativity. Such a definition of the relativistic mass is more
convenient in deriving dynamics.

For force, momentum, and kinetic energy, definitions identical as in classical mechanics
apply.

The body of m( mass of inertia is in U, system. It is affected by force F,, that causes
acceleration of dv,,/dt,. Therefore, for the observer from U, system, the Newton’s second law takes
a form of

av,,
dt,

24)

Fy,=my-a,,=m,

For the observer from U, system, mass of inertia of the same body is m,/. For this observer,
the force F/; acts on the body, causing acceleration of dv,1/dt;. Therefore, for the observer from U,
the Newton’s second law takes the form of

dv,,,

dt,

(25)

Fyy=my,-a,,=m,,

For the observer from U, system, the change of this body momentum can be recorded in the
following forms

dv,,,

dp,,, =F,,-dt, =my-a,,, -dt, = m, dt, =my-dv,,, (26)

2

For the observer from U, system, the change of this body momentum can be recorded in the
following forms
dp,,, = F,, -dt, = dt, =m,, g =m,,d 27
Dy = Loy Al =My, -Gy - Al = m2/17 L =My, -avy, (27)
1
where:
- dpyp 1s a change of body momentum with rest mass my in the inertial system U,, measured
by the observer from the same inertial system U,
- dpy 1s a change of body momentum in the inertial system U,, measured by the observer
from the same inertial system U;.
Kinetic energy of the body is equal of the work into its acceleration. For the observer from
U, system, the change of kinetic energy of this body is as follows
dv dx
dE,; = F,), -dx,;, =my, -ay), - dx,, = mzuﬁdxm = mzuﬁd"zu =My -V, dvy, (28)
1 1

where:
- dFE,; 1s a change of kinetic energy of the body in inertial system U,, measured by the
observer from the inertial system Uj.

4.1. STR dynamics with constant force (STR/F)

In this section, a model of dynamics of bodies based on the assumption that the force
accelerating of the body (parallel to x-axis) is the same for an observer from every inertial system
will be derived (hence indication F).
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4.1.1. The relativistic mass in STR/F

In the model STR/F we assume, that

E,=F, (29)
Having introduced (24) and (25), we obtain
Fodvy, vy,
m =m, 30
2/1 dtl 0 dtz ( )
On the base (20) and (23), we have
Fodvy, dvy ), 1

- : G1)
o d, ’ 1_(V2/1/C)2 \/1—(\/2/1/0)2 -dt,

Hence, we obtain a formula for relativistic mass of the body that is located in the system U,
and is seen from the system U}, when assumption (29) is satisfied, as below

m, =m ! b (32)
S EET TP

4.1.2. The momentum in STR/F

The body of rest mass my is associated with the system U,. To determine the momentum of
the body relative to the system U; we substitute (32) to (27)

1

PR dv 33
1_(Vz/l/c)2 2/1 (33)

2 2 \3/2

3/2
_ 3

} dv,, =myc
(c"=vy,

dpy, =my, -dv,, = mo{
The body momentum is a sum of increases in its momentum, when the body is accelerated
from the inertial system U (the body has velocity 0) to the inertial system U, (the body has velocity

Vo), 1.€.
Vo 1

F 3
Papp =myC J T2 2 a2
o (¢@=vy))

vy, (34)
From the work [1] (formula 72, p. 167) it is possible to read out, that
dx B X
J‘(az —xz)m - az\/a2 —x ’

After applying the integral (35) to (34) we receive the formula for the body momentum in U,
system and measured by the observer from U, system in a form of

a#0 (35)

Von m,

= 0 V.
2 2 \/1_ /) 2
C —Von (Va1 /€)

F 3
Py, =mC (36)
2/1 0 cz\/ /1

This formula is identical to the formula for momentum known from the Special Theory of
Relativity, for the same reasons as in the case of momentum. This is because the dynamics known
from the Special Theory of Relativity is derived from the assumption (29). It was adopted
unconsciously, because it was considered as necessary. The awareness of this assumption allows to
its change and derives other dynamics.

7 www.ste.com.pl



Derivation method of numerous dynamics in the Special Theory of Relativity
Szostek Roman

As already mentioned above, the definition of relativistic mass adopted by us is different
from the definition adopted in the Special Theory of Relativity. In our case, the relativistic mass is
the one, which occurs in the Newton’s second law (25). In this particular case, it is expressed in
terms of dependency (32). In the Special Theory of Relativity, the relativistic mass is the one, which
occurs in the formula (36) per momentum.

4.1.3. The momentum in STR/F for small velocities

For small velocity v,/; << ¢ momentum (36) comes down to the momentum from classical
mechanics, because

F
Vo <<€ = Py R, ), (37)

4.1.4. The Kkinetic energy in STR/F

We will determine the formula for kinetic energy. To the formula (28), we introduce the
dependence for the relativistic mass (32)

1

F _ _F _
dE,, =my, v, -dv,, _moL o)
= (v, /0)

3/2
_ 3 Van
} Vydvy, = myce dv,,, (38)

22 32
(¢ =vy)

The kinetic energy of body is a sum of increases in its kinetic energy, when the body is
accelerated from the inertial system U, (the body has velocity 0) to the inertial system U, (the body
has velocity v,), i.e.

Va1

Ef =mc’ | 20 dv (39)

) (¢’ _"22/1)3/2 o
From the work [1] (formula 74, p. 167) it is possible to read out, that

xdx B 1
vI.(aZ_‘X_Z)?}/Z _\/az_xz

After applying the integral (40) to (39) we receive the formula for the kinetic energy of the
body in U, system and measured by the observer from U, system in a form of

- mc[; - %J S Y}
C

(40)

3 1

Ef,l =myc ——
2 2
Vo' —x

This formula is identical to the formula for kinetic energy known from the Special Theory of
Relativity, for the same reasons as in the case of momentum (36).

2 2
0 —Vaou 1=(v,,/¢)

4.1.5. The kinetic energy in STR/F for small velocities

Formula (41) can be written in the form

A=y 1=y, /) 1+ 1=(v,, /)’
=0/ 1+ f1=(v,, /c)

Fo_
E), =myc

(42)
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2
m,v. 2
rF_ 0"2/1
Ey = 5 ) > (43)
% %
2/1 2/1
1—2+\/1—2
c c
On this basis, for small values v,/1 << ¢ we receive
2 2
m,v 2 m,v
v, <<c = EI ~—"2 =02/ (44)

2 141 2

4.1.6. The force in STR/F

Due to the assumption (29) value measurement of the same force by two different observers
is identical.

4.2. STR dynamics with constant momentum change (STR/Ap)

In this section, a model of dynamics of bodies based on the assumption that the change in
momentum of the body (parallel to x-axis) is the same for an observer from every inertial system
will be derived (hence indication Ap).

These dynamics seem particularly interesting, because the conservation law of momentum is
a fundamental law. Assumption that the change of body momentum is the same for every observer
seems to be a natural extension of this law.

4.2.1. The relativistic mass in STR/Ap

In the model STR/Ap we assume, that
dpy}, = dpy, (45)
Having introduced (26) and (27), we obtain
mYdv,,, =mydv,,, (46)

On the base (20), we have

(47)

Ap _
my)dv,,, =m,

Hence, we obtain a formula for relativistic mass of the body that is located in the system U,
and 1s seen from the system U, when assumption (45) is satisfied, as below

1

1_("2/1/0)2 (48)

Ap
my, =m,

4.2.2. The momentum in STR/Ap

The body of rest mass my is associated with the system U,. To determine the momentum of
the body relative to the system U; we substitute (48) to (27)

_ 2
dv,, =myc

Ap AP — e,
dpy), =my), -dv,,, =m, 1 o) 2 2
= (v /) C —Vou

dv,,, (49)
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The body momentum is a sum of increases in its momentum, when the body is accelerated
from the inertial system U (the body has velocity 0) to the inertial system U, (the body has velocity

Vo), 1.e.

1
Pl =mc’ j ————dvy, (50)
0

¢~V
From the work [1] (formula 52, p. 160) it is possible to read out, that

J~ dx :ilna+x’ 220 51)

2 2
a - —x 2a

a—Xx

After applying the integral (51) to (50) we receive the formula for the body momentum in U,
system and measured by the observer from U, system in a form of

1 c+x|” mye c+v
po :mocz—ln| | =—"1In = (52)
2c |c—x||0 2 €~V

4.2.3. The momentum in STR/Ap for small velocities

Formula (52) can be written in the form

c/
rp _MoVyy € In CHVyy | movznln (I+v,,/c) ™" (53)
2Ty _ N (-v,, / )c’/Vzu
Van C=Vy Von/c
1 /vy
(1+ ;
ap _ MyVa) €V
21T In =7 (54)
2 1 2/1
1—
c/v,),
On this basis, for small values v,/; << ¢ we receive
A myVy € MoV, 2
Vi <<e = py) len e :Tln(e )= mgVy, (55)

4.2.4. The kinetic energy in STR/Ap

We will determine the formula for kinetic energy. To the formula (28), we introduce the
dependence for the relativistic mass (48)

1 V.
_ 2 W
2 Vv, =myc

Ap o AD . _
dEy}, =my), v, -dv,, = mol ) > 2
- (v /) C Vo

vy, (56)
The kinetic energy of body is a sum of increases in its kinetic energy, when the body is
accelerated from the inertial system U, (the body has velocity 0) to the inertial system U, (the body
has velocity vy1), i.e.
V21 v
By =myc’ .[ Tsdv,), (57)

0 € — Vo
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From the work [1] (formula 56, p. 160) it is possible to read out, that

X 1
dx =——Inla’ —x* 58
I a’—x’ 2 ‘ ‘ %)
After applying the integral (58) to (57) we receive the formula for the kinetic energy of the

body in U, system and measured by the observer from U, system in a form of

Van 2 2
EY = —moczéln‘cz -2 = —%m(c2 —v2)+ %m(cz) (59)
2 2 2
By =My © My, b (60)
2 ¢ =V 2 1=(v,,/¢)

4.2.5. The kinetic energy in STR/Ap for small velocities

Formula (60) can be written in the form

2 2 2
myv,,, C 1 m.v 1
EY =020 d =Tl 2({/)2 61)
2 v =/t 2 = (v )T
A myv; 1
Ejz/p1 = 0"2/1 ln (C/vz/l)z (62)
{ 1 }
-
(c/v,,)
On this basis, for small values v,;; << ¢ we receive
2 2
A m,v 1 m,v
v, <<c = E) ~ 02— 02 (63)

2 1/e 2

4.2.6. The force in STR/Ap

Body with rest mass myg is related to U, system. It is affected by force that causes
acceleration. For the observer from this system, the acceleration force has in accordance with (24)
the following value

dv,,
° dt,

Fyy=m (64)

For the observer from U, system, acceleration force has in accordance with (25) the
following value

dv
Bl =my, —d;/l (65)
1

If we will divide parties’ equation (65) by (64), then on the basis of (20) and (23) we will
receive

FzA/[; _ m2A71 % vy, _ m2A71 (1=(v,, /c)?)*"? (66)
2/1
Fy,  my dty dvy, m
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On the basis of (48) we obtain a relation between measurements of the same force by two

different observers
FzA/]; :\]1_("2/1/0)2 F,, (67)

The highest value of force is measured by the observer from the inertial system in which the
body is located.

4.3. STR dynamics with constant mass (STR/m)

In this section, a model of dynamics of bodies based on the assumption that body weight is
the same for an observer from each inertial reference system will be derived (hence indication m).

4.3.1. The relativistic mass in STR/m

In the model STR/m we assume, that
My, = m, (68)

Therefore, for the observer from inertial system Uj, the body mass in U, system is the same
as the rest mass.

4.3.2. The momentum in STR/m

The body of rest mass my is associated with the system U,. To determine the momentum of
the body relative to the system U; we substitute (68) to (27)

dpy,, =my), - dv,,, =mydv, (69)

The body momentum is a sum of increases in its momentum, when the body is accelerated
from the inertial system U, (the body has velocity 0) to the inertial system U, (the body has velocity
Vo), 1.€.

Vasi

Pan =My JdVZ/l =MyVy ) (70)

0

In this relativistic dynamics the momentum is expressed with the same equation as in
classical mechanics.

4.3.3. The kinetic energy in STR/m

We will determine the formula for kinetic energy. To the formula (28), we introduce the
dependence for the relativistic mass (68)

m — m —
dEy, =my) vy, - dvy, =mgv, ,dv,, (71)

The kinetic energy of body is a sum of increases in its kinetic energy, when the body is
accelerated from the inertial system U, (the body has velocity 0) to the inertial system U, (the body
has velocity vy/1), 1.€.

Van 2
m m,v
Ey, =m, jv2/ldv2/1 :OTM (72)

0
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In this relativistic dynamics the kinetic energy is expressed with the same equation as in
classical mechanics.

4.3.4. The force in STR/m

Body with rest mass my is related to U, system. It is affected by force that causes
acceleration. For the observer from this system, the acceleration force has in accordance with (24)
the following value

F =m dvy,

= 73
2/2 0 dt, (73)

For the observer from U; system, acceleration force has in accordance with (25) the
following value

dv dv
Fm — mm 2/1 _ m 2/1 (74)
2/1 2/1 dtl 0 dtl

If we will divide parties’ equation (74) by (73), then on the basis of (20) and (23) we will
receive

Fy), _dt, dv,y, —(1=(v,, /¢)?)*"? (75)
= = 2/1
F,, di dv,,
1.€.
F =1-(v,, /0)2)3/2 “Fy), (76)

The highest value of force is measured by the observer from the inertial system in which the
body is located.

4.3.5. Discussion on the STR/m dynamics

Obtaining a relativistic dynamics, in which there is no relativistic mass, and equations for
kinetic energy and momentum are identical as in classical mechanics can be surprising, because in
relativistic mechanics it is believed that the accelerated body can achieve maximum speed c.
However, this dynamics is formally correct.

If the body velocity v,/ reaches ¢ value, then according to (76)

F), = (1_17)3/2 F,,~0 (77)

In the inertial system U, in which the body is located, can be affected by acceleration force
F>p of any, but finite value. However, from a perspective of the inertial system U), towards which
the body has ¢ velocity, the same force is zero. This means that from a perspective of U, system, it
is not possible to perform work on the body, which will increase its kinetic energy indefinitely.
From the relation (72) it results that the kinetic energy, that a body with mass m, and velocity ¢ has,
a value has

o= m,c
max
2

(78)
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4.4. STR dynamics with constant force to its operation time (STR/F/A?)
In this section, a model of dynamics of bodies based on the assumption that the force that

accelerates of the body (parallel to x-axis) divided by the time of operation of this force is the same
for an observer from every inertial system will be derived (hence indication F/Af).

4.4.1. The relativistic mass in STR/F/A¢

In the model STR/F/At we assume, that

F /At
F2/1 :FZ/Z

79
dt, dt, (7)
Having introduced (24) and (25), we obtain
mf//lm vy, L = m, dvy ), L (80)
dt, dt, dt, dt,
On the base (20) and (23), we have
vy,
Frac vy _ 1=y, /)’ (81)

v dtlz " (I=(vy, /C)z)dtl2

Hence, we obtain a formula for relativistic mass of the body that is located in the system U,
and is seen from the system U}, when assumption (79) is satisfied, as below

2
i enf ]

4.4.2. The momentum in STR/F/At

The body of rest mass mj is associated with the system U,. To determine the momentum of
the body relative to the system U; we substitute (82) to (27)

2
1 1
dp;//lm = m;//lm “dvy, = mo{—z} dv,, = moc4ﬁdvz/1 (83)
1=(v,,/¢) (¢ =vy))

The body momentum is a sum of increases in its momentum, when the body is accelerated
from the inertial system U, (the body has velocity 0) to the inertial system U, (the body has velocity
Vo), i.e.

Van 1
oy =mc j 3 (84)

2 2
o ("=

From the work [1] (formula 54, p. 160) it is possible to read out, that

_[ 2a’x X 1 1|a+x|’ 420 (85)
(a

= + n
-x*)’ 2d’(a’*-x*) 4a’ |a—x

After applying the integral (85) to (84) we receive the formula for the body momentum in U,
system and measured by the observer from U; system in a form of
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pé://lAt:mOc4|: X N 1 I (c+x)}

n
2c¢(c*=x*) 4c® (c—x)

_ moc{ fvz/l . +lln (c+vy) (86)
2(c”=vy) 4 (c—vy)

0

c

2vy
! +1n(c”2“j (87)

1
2 1_("2/1/0)2 C=Vy

Fiar
Prn =MyVy

4.4.3. The momentum in STR/F/At for small velocities

Formula (87) can be written in the form

1 1. ((I+v,,/c)™
p;//lm =MV, )y 2 +_ln(( - )c/Vz/l j (88)
20-=(,,/0)) 4 (I=v,,/¢)

1 clvyp

e
FIs o +n ClVan 89
P 0V2/1 2(1—(\/2/1/6’)2) 4 1 ) /vy (89)

c/vy,
On this basis, for small values v,/ << ¢ we receive

; 1 1 e 1 1

Vo <<€ = sz//lA ~ movz/l{g"'zln(mj} = movz/l{a"'zln(ez )} =My, (90)

4.4.4. The Kkinetic energy in STR/F/At

We will determine the formula for kinetic energy. To the formula (28), we introduce the
dependence for the relativistic mass (82)

2
FIN _  FIA _ 1 _ 4 Vo
dE,,™ =m,), 'v2/1'dv2/1_m0|:1 ; 2} Vo dvy, =myc 7 2 2dvz/1 1)
= (v, /0) (c"=vy,

The kinetic energy of body is a sum of increases in its kinetic energy, when the body is
accelerated from the inertial system U, (the body has velocity 0) to the inertial system U, (the body
has velocity vy), i.e.

Vo
FIAt 4 Van
Ey\" =myc J vy, 92)

) (¢ - "5/1)2
From the work [1] (formula 58, p. 160) it is possible to read out, that

J- xdx 1
(az_xz)z - 2(a2_x2)

(93)

After applying the integral (93) do (92) we receive the formula for the kinetic energy of the
body in U, system and measured by the observer from U, system in a form of
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; 1 " met 1 myct 1
Ef//lA :moc4 2 2 =— R ——— (94)
2(c* - x|, 2 (F=vi) 2 ¢
FIAt moc2 1 moc2 _ m0V22/1 1
E2/1 - 2 - 2 (95)
2 1-(v,,/0) 2 2 1-(vy,/0)

The formula for kinetic energy (95) was derived from the work [2], due to the fact that the
author adopted a different assumption than the one on which the dynamics known from the Special
Theory of Relativity was based.

4.4.5. The Kkinetic energy in STR/F/At for small velocities

For small velocity v, <<c¢ kinetic energy (95) comes down to the kinetic energy from
classical mechanics, because

2 2
myvy, 1 _MyVa

2 1 2

FlAr
v <<c = E)7 = (96)

4.4.6. The force in STR/F/At

Body with rest mass mg is related to U, system. It is affected by force that causes
acceleration. For the observer from this system, the acceleration force has in accordance with (24)
the following value

dv,,
° dt,

Fy,=m (97)

For the observer from U, system, acceleration force has in accordance with (25) the
following value

dv
F;l/m — m;//lm 2/1 (98)
dt,

If we will divide parties’ equation (98) by (97), then on the basis of (20) and (23) we will
receive

F/At FIA FIn
o _m) .dtz ) vy, _My

F,), m, dt, dv,, m,

(1= (v /0)2)3/2 99)

On the basis of (82) we obtain a relation between measurements of the same force by two
different observers

1
FM = F (100)

Ji=y 10 "

The lowest value of force is measured by the observer from the inertial system in which the
body is located.
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4.5. STR dynamics with constant mass to elapse of observer's time (STR/m/A¥)
In this subchapter a model of body dynamics will be derived based on the assumption that

the body mass divided by the elapse of time in observer system is the same for the observer from
each inertial frame of reference (hence indication m/Af).

4.5.1. The relativistic mass in STR/m/At

In the model STR/m/At we assume, that

m/ At

Bon T (101)
dt,  dt,
On the base (23), we have
st Ty (102)

dy, 1=y, /0) -di,

Hence, we obtain a formula for relativistic mass of the body, that is located in the system U,
and is seen from the system U}, when assumption (101) is satisfied, as below

Y = my (103)

4.5.2. The momentum in STR/m/A¢

The body of rest mass mj is associated with the system U,. To determine the momentum of
the body relative to the system U; we substitute (103) to (27)

minG_  miAt 1 1
dpz/gA :mz//1A Y - —dvz/l (104)

“dvy, =m \/72‘1"2/1 :mocﬁ
1=(v,,/¢) ¢ =V

The body momentum is a sum of increases in its momentum, when the body is accelerated
from the inertial system U (the body has velocity 0) to the inertial system U, (the body has velocity

V2/1), 1e
Van 1
m/At __ 2
Py =mC J- dv,,, (105)
0 VC —Vy

From the work [1] (formula 71, p. 167) it is possible to read out, that

IL = arcsinﬁ, a>0 (106)
Val —x* a
After applying the integral (106) to (105) we receive the formula for the body momentum in
U, system and measured by the observer from U, system in a form of

Van
.V
= myc - arcsin—=2- (107)
c
0

/A :
Py =myc - arcsin—21

c
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4.5.3. The momentum in STR/m/At for small velocities
Formula (107) can be written in the form

Y
arcsin —2/-
m/At _ C
P =MV, (108)
Van
c

On this basis, for small values v,/1 << ¢ we receive

m/At
Von <<€ = Py BRIV, (109)

4.5.4. The Kkinetic energy in STR/m/At

We will determine the formula for kinetic energy. To the formula (28), we introduce the
dependence for the relativistic mass (103)

dED™ = mi S S Mgy (110)

Vo dvy, =my \/72‘}2/1‘1"2/1 = moc\/ﬁ
1=(v,,,/¢) C =V

The kinetic energy of body is a sum of increases in its kinetic energy, when the body is
accelerated from the inertial system U, (the body has velocity 0) to the inertial system U, (the body
has velocity vy), i.e.

Vo
m/At __
Ey\" =myc J-

%
211
\/ﬁdvﬂl
0 V€ Vo

From the work [1] (formula 73, p. 167) it is possible to read out, that

I—Tx_ = o -x* (112)

After applying the integral (112) do (111) we receive the formula for the kinetic energy of
the body in U, system and measured by the observer from U, system in a form of

EJNM = —myeq]c” —v3, Y= —mycqlCt = V3, + mocx/c_2 (113)
0
ENN =myc® —myerJc? —vi, =mc’ (1=4J1=(v,,,/¢)*) (114)

4.5.5. The kinetic energy in STR/m/At for small velocities

(111)

Formula (114) can be written in the form

myvs . 2¢? ] (1_\/1_ (v, /) ) +\/1_(V2/1 /e)*)
2 v, 1+ 1= (v, /)

m/At __
E2/1 -

(115)

movzz/1 .202 . 1—(1—(v2/1/c)2) _ movzz/1 2
20 v L\ l=(m/e) 2 L fl=(n,/c)

EJM = (116)

On this basis, for small values v,/ << ¢ we receive
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2 2
m,v 2 myv

V,, <<c = E;"/IA’z 0721 = _ 0 2/ (117)
2 2 2

4.5.6. The force in STR/m/At

Body with rest mass myg is related to U, system. It is affected by force that causes
acceleration. For the observer from this system, the acceleration force has in accordance with (24)
the following value

dv,,

F,,=m, i
2

(118)

For the observer from U, system, acceleration force has in accordance with (25) the
following value

dv
i _ miar @V 119
2/1 2/1 dt, (119)

If we will divide parties’ equation (119) by (118), then on the basis of (20) and (23) we will
receive

m/ At m/ At m/ At
EYy ™ _my), dt, dv,), _"M

1—=(v,, /c)*)"? 120
F. m dt dv,, mo( (v, /0)%) (120)

On the basis of (103) we obtain a relation between measurements of the same force by two
different observers

Fzr;ll/m :(1_(V2/1/C)2)’Fz/2 (121)

The highest value of force is measured by the observer from the inertial system in which the

body is located.

5. The general form of dynamics

In presented examples, assumptions have been adopted which can be written in forms (30),
(46), (68), (80) and (101). On this basis, it can be seen that the assumption for relativistic dynamics
is as follows
why Do Vs

2/1 di’ =y at’ ) a,beR (122)

On the basis of (20) and (23) we receive

a
avy,,

a _ 2N\a
mie dvzb/l =m, A=y, /203/2) _ (123)
dr, (I=(v,,, /0)7)" " -dn,

We are adopt markings

{x}={a,b} A x=a+§eR (124)
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Now on the basis of (123) the relativistic mass of inertia of body in U, system, seen from U,
system, when an assumption is fulfilled (122), is expressed in dynamics {x} by the following

formula
i =m| — | (125)
1=(v,, /C)2

Each such relativistic mass defines a different relativistic dynamics.
According to presented examples, based on formulas (27) and (125), the momentum in
dynamics {x} is expressed by the following formula

Vo Vo Vo 1 o
= dpt = [ m - dv — | dv 126
Prn = j P = j 21" 4Von = _([ [1—(\12/1/6)2} 2/1 (126)
Pl =me® | v, (127)
o (=)

According to presented examples, based on formulas (28) and (125), the kinetic energy in
dynamics {x} is expressed by the following formula

vyl Vol Vo 1 x
E{)/c} — dE{)/c} — m{);} vy, dv,,, =m {—} vy, dv,y, (128)
2/1 '([ 2/1 !21 2/1 2/1 o! 1—(v2,1/c)2 2119V
EJ} = myc™ _[ #d"z/l (129)
(C Vz/l)

According to presented examples, based on formulas (24), (25) and (20), (23), the relation
between forces in dynamics {x} is expressed by the following formula

e vy, o Ay
F 2 2 m{x}
21— L 1 2L (1= (vy,, /c)?)? (130)
F, m vy)y - dvy), ) 1 m,
0 0
dt, 1= (v, /¢)? \/1—(\12/1/0)2 -dt,
On the basis of (125) we receive
x 3
E 1 1 2
211 :{ 2} (1= (v, /c)?)" :{ 2} (131)
1=y /0) 1-(v,,/¢)
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6. Summary of dynamics

Summary derived formulas for momentum and kinetic energy:

Dynamics x =0
m_
Py =MV

2
MyVon

E), =
2/1 2

Dynamics x =1/2

miA - Vo _
po =myc-arcsin—2L = myv,

c vy, /c

2
ENY =mc? (1= y1=(v,,, /) = T2 2

2 141-(n, /)

arcsin(v,,,/ ¢)

Dynamics x =1

c

2v,
ap Mg e+, | c+vy, |2
Pon = ln[ =myv,, In

2 €=V €=V
2 2
EY - me” 1 - MVa 1 1 :
2 1=(vy,/¢) 2 [1_(V2/1/C)2](C/V2/1)
Dynamics x = 3/2
(currently recognized STR dynamics)
1
pin= mVon—r——-
VI=(v,,/¢)
2
EF = my? 1 et =MV 2

0
1_(V2/1/C)2 2 1_"22/1(1_'_ 1_"5/1]
2 \/ 2
c c

Dynamics x =2

c

1 1 c+v,, |*n
FIA 2/1
Pan mo"sz 1 o) +In
=(vy,/0) C—=Vy
2
Fiae _ MYy, 1
>l = 2
2 1-=(vy,/0)
21

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)
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In Figure 4 were compared momentums from derived relativistic dynamics.

panl/mo [10° m/s]455 T STRIFAL x=

von [10° m/s]

3 2 0 1 2 3

Fig. 4. Module of the momentum in dynamics:

STR/m (x=0), STR/m/At (x=1/2), STR/Ap (x=1), STR/F (x=3/2) and STR/F/At (x=2).

In Figure 5 were compared kinetic energies from derived relativistic dynamics.

1
0.9
0.8
0.7
0.6 fy-+d
0.5
04 |
0.3
0.2
0.1

E>n/mg [10'7 J/kg]

von [10° m/s]

Fig. 5. Kinetic energies in dynamics:
STR/m (x=0), STR/m/At (x=1/2), STR/Ap (x=1), STR/F (x=3/2) and STR/F/At (x=2).

In Figure 6 were compared relation between measurements of the same.
2
1.8
1.6
1.4
1.2
1
0.8
0.6 . 4 :
O ISTRImiA T T NS
ISR x=0 7T I vy [108mis]

O —————— === === ittt e
0 0.5 1 1.5 2 25 3

Fon I Fop

Fig. 6. Relation between measurements of the same force by two different observers in dynamics:

STR/m (x=0), STR/m/At (x=1/2), STR/Ap (x=1), STR/F (x=3/2) and STR/F/At (x=2).
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7. Even more general form of dynamics

Relation (125) to the relativistic mass can be even more generalized. In the general case, it is
possible to assume that the relativistic mass is expressed by the following formula

mill =my- f(vy,) (142)
Where f(v,1) is any continuous function with the following properties
f(v,,,)20 (143)
f(0)=1 (144)
S W) = f(=vy) (145)

Each function f(v,) defines a different dynamics of the Special Theory of Relativity.

8. Final conclusions

The article presents our author’s method of deriving dynamics in the Special Theory of
Relativity. Five examples of such deriving were shown.

Derivation of dynamics is based on two formulas applicable in the kinematics of STR, i.e.
(20) and (23). In order to derive the dynamics of STR, it is necessary to adopt an additional
assumption in kinematics, which allows the concept of mass, kinetic energy and momentum to be
introduced into the theory.

The dynamics of STR/F is nowadays recognized as the dynamics of the Special Relativity
Theory. It is based on the assumption that each force parallel to x-axis has the same value for the
observer from each inertial frame of reference. However, other dynamics are possible in accordance
with the kinematics of the Special Theory of Relativity. In order to derive them, it is necessary to
base on a different assumption.

Decision which from all possible dynamics of the Special Theory of Relativity is a correct
model of real processes, should be one of the most important tasks of future physics. A calorimeter
can be useful for verification of different dynamics. This device can measure the amount of heat
released when stopping particles to high speed. On this basis, it is possible to determine graphs of
the kinetic energy of accelerated particles as a function of their velocity, analogous to those
presented in Figure 5. On this basis, it is possible to indicate the dynamics in which the kinetic
energy of particles is compatible with experiments.

The fact that as a part of the Special Theory of Relativity, numerous dynamics can be
derived greatly undermines the authenticity of the formula E = mc’. According to our research, on
the basis of relativistic mechanics, it is impossible to derive a formula expressing the internal
energy of matter [4]. All derivations of this formula are wrong. The relation between mass and
energy (E =mc?) can be introduced into the STR as an independent assumption, but it does not
result from Lorentz transformation, nor from the assumption (29) on which the dynamics of STR is
based. But then there is a need to experimentally show what exactly is the form of such
a dependency (e.g. why not E = mc*/2) and experimentally investigate whether sometimes the form
of such a dependency does not depend on the type of matter that this formula regards.

The presented method of dynamism derivation can also be used in other theory of body
kinematics. In the monograph [3] we have used it to derive four dynamics in the Special Theory of
Ether.
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