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Abstract: 

 

The article presents our innovative method of deriving dynamics in the Special Theory of 

Relativity. This method enables to derive infinitely dynamics in relativistic mechanics. We have 

shown five examples of these derivations. In this way, we have shown that the dynamics known 

today as the dynamics of Special Theory of Relativity is only one of infinitely possible. There is 

also no reason to treat this relativistic dynamics as exceptional, either for experimental or 

theoretical reasons. Therefore, determination of which possible dynamics of relativistic mechanics 

is a correct model of reality remains an open problem of physics. 

1. Introduction 

Kinematics deals with the movement of bodies without taking their physical characteristics 

into account. The basic concepts of kinematics are: time, location, transformation, speed and 

acceleration. 

Dynamics deals with the movement of material bodies under the action of forces. The basic 

concepts of dynamics are: mass of inertia, force, momentum and kinetic energy. 

Kinematics and dynamics are resulting in mechanics. In the article we deal with relativistic 

mechanics, i.e. the Special Theory of Relativity, which unlike classical mechanics, also applies to 

high-speed. 

Currently, only one dynamics of the Special Theory of Relativity is known. In the article we 

presented the author’s method of deriving numerous dynamics for this theory. Relativistic dynamics 

is derived based on the relativistic kinematics and one additional assumption, which allows the 

concept of mass, momentum and kinetic energy to be introduced into the theory. 

2. Kinematic assumptions of the Special Theory of Relativity 

The kinematics of the Special Theory of Relativity is based on the following assumptions: 

I. All inertial systems are equivalent. 

 This assumption means that there is no such a physical phenomenon, which distinguishes the 

inertial system. In a particular case, it means that there is no such phenomenon for which the 

absolute rest is needed to explain. Mathematically, it results from this assumption that time 

transformation and position coordinates between any two inertial systems has an identical form, 

depending only on the relative velocity of these inertial systems. 

II. Velocity of light c in vacuum is the same in every direction and in each inertial system. 

III. Transformation of time and position coordinates between the inertial systems is linear. 
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These assumptions are often written in other equivalent forms. 

Based on mentioned assumptions, it is possible to derive Lorentz transformation on which 

the Special Theory of Relativity is based. There are many different derivation ways of this 

transformation. Two derivations are presented in monograph [3]. 

Markings adopted in Figure 1. will be convenient for our needs. Inertial systems move along 

their x-axis. The velocity v2/1 is a velocity of U2 system measured by the observer from U1 system. 

The velocity v1/2 is a velocity of U1 system measured by the observer from U2 system. In the Special 

Theory of Relativity occurs that v2/1 = ‒v1/2. 

 
Fig. 1. Relative movement of inertial systems U1 and U2 (v2/1 = ‒v1/2). 

Lorentz transformation from U2 to U1 system has a form of: 
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Lorentz transformation from U1 to U2 system has a form of: 
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Transformation (1)-(3) and (4)-(6) includes complete information on the relativistic 

kinematics. 

3. Selected properties of relativistic kinematics 

In order to derive dynamics we will need two formulas from kinematics, i.e. (20) and (23) 

from kinematics. We will derive them out of transformation (1)-(3). 

3.1. Transformation of velocity 

Determine the differentials from transformation (1)-(3) 
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From the inertial system U1 and U2, the moving body U3 is observed. In U1 system, it has a 

velocity of v3/1, while in U2 system has a velocity of v3/2. The components of these velocities were 

presented in Figure 2. 

 
Fig. 2. Movement of the body from two inertial systems U1 and U2. 

The body velocity U3 in inertial system U2 has the following components 
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The body velocity U3 in inertial system U1 has the following components 
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When to equations (11) we put differentials (7)-(9) then we will receive 
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On the basis of (10) we obtain the desired velocity transformation from U2 to U1 system 
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In special case, when U3 body moves parallel to x-axis then occurs 

 0,0,, 2/31/32/31/32/32/31/31/3 ====== zzyyxx vvvvvvvv  (15) 

Then velocity transformation (14) takes the form of formula to sum-up parallel velocities 

 

2

1/22/3

1/22/3
1/3

1
c

vv

vv
v

+

+
=  (16) 

3.2. Change of velocity seen from different inertial systems 

The body is inert in U3 system and performs a momentary acceleration to U3 system. The 

body movement is observed from U1 and U2 systems. The velocities of inertial systems are parallel 

to each other. We adopt markings shown in Figure 3. 

 
Fig. 3. Increases in the velocity seen in inertial systems U1 and U2. 

We will determine the differentials from formula (16) 
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If U3 system is U2 system then it is necessary to replace index 3 with 2. We will receive 

 2/22/32/22/31/21/3 ,0, dvdvvvdvdv ====  (19) 

On this basis, the formula (18) takes a form of 
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Relation (20) is related to the change of body velocity seen in the inertial system U2, in 

which the body is located (dv2/2), and the change of velocity seen from another inertial system U1 

(dv2/1). 

3.3. Time dilatation 

If motionless body is in U2 system, then for its coordinates occurs 
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Based on time transformation (7) we receive 
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On this basis we receive the formula for time dilatation of motionless body with regard to U2 

system 
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4. Dynamics in the Special Theory of Relativity 

All dissertations will be conducted only for one-dimensional model, i.e. all analyzed vector 

values will be parallel to x-axis. Each derived dynamic can easily be generalized into three-

dimensional cases. 

In order to derive dynamics in the Special Theory of Relativity, it is necessary to adopt an 

additional assumption, which allows the concept of mass, momentum and kinetic energy to be 

introduced into the theory. Depending on the assumption, different dynamics of bodies are received. 

The mass of inertia body resting in inertial frame of reference is determined by m0 (rest 

mass). The mass of inertia body mass U2, as seen from U1 system, is determined by m2/1 (relativistic 
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mass). It is worth to note that the relativistic mass in this case is an inertia mass that occurs in the 

Newton’s second law, rather than mass occurring in the formula for momentum, as assumed in the 

Special Theory of Relativity. In this way, we have adopted a different definition of relativistic mass, 

than adopted in the Special Theory of Relativity. Such a definition of the relativistic mass is more 

convenient in deriving dynamics. 

For force, momentum, and kinetic energy, definitions identical as in classical mechanics 

apply. 

The body of m0 mass of inertia is in U2 system. It is affected by force F2/2 that causes 

acceleration of dv2/2/dt2. Therefore, for the observer from U2 system, the Newton’s second law takes 

a form of 
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For the observer from U1 system, mass of inertia of the same body is m2/1. For this observer, 

the force F2/1 acts on the body, causing acceleration of dv2/1/dt1. Therefore, for the observer from U1 

the Newton’s second law takes the form of 
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For the observer from U2 system, the change of this body momentum can be recorded in the 

following forms 

 2/202

2

2/2
022/2022/22/2 dvmdt

dt

dv
mdtamdtFdp ⋅==⋅⋅=⋅=  (26) 

For the observer from U1 system, the change of this body momentum can be recorded in the 

following forms 
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where: 

- dp2/2 is a change of body momentum with rest mass m0 in the inertial system U2, measured 

by the observer from the same inertial system U2, 

- dp2/1 is a change of body momentum in the inertial system U2, measured by the observer 

from the same inertial system U1. 

Kinetic energy of the body is equal of the work into its acceleration. For the observer from 

U1 system, the change of kinetic energy of this body is as follows 
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where: 

- dE2/1 is a change of kinetic energy of the body in inertial system U2, measured by the 

observer from the inertial system U1. 

4.1. STR dynamics with constant force (STR/F) 

In this section, a model of dynamics of bodies based on the assumption that the force 

accelerating of the body (parallel to x-axis) is the same for an observer from every inertial system 

will be derived (hence indication F). 
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4.1.1. The relativistic mass in STR/F 

In the model STR/F we assume, that 

 2/21/2 FF F =  (29) 

Having introduced (24) and (25), we obtain 
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Hence, we obtain a formula for relativistic mass of the body that is located in the system U2 

and is seen from the system U1, when assumption (29) is satisfied, as below 
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4.1.2. The momentum in STR/F 

The body of rest mass m0 is associated with the system U2. To determine the momentum of 

the body relative to the system U1 we substitute (32) to (27) 
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The body momentum is a sum of increases in its momentum, when the body is accelerated 

from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body has velocity 

v2/1), i.e. 
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From the work [1] (formula 72, p. 167) it is possible to read out, that 
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After applying the integral (35) to (34) we receive the formula for the body momentum in U2 

system and measured by the observer from U1 system in a form of 
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This formula is identical to the formula for momentum known from the Special Theory of 

Relativity, for the same reasons as in the case of momentum. This is because the dynamics known 

from the Special Theory of Relativity is derived from the assumption (29). It was adopted 

unconsciously, because it was considered as necessary. The awareness of this assumption allows to 

its change and derives other dynamics. 
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As already mentioned above, the definition of relativistic mass adopted by us is different 

from the definition adopted in the Special Theory of Relativity. In our case, the relativistic mass is 

the one, which occurs in the Newton’s second law (25). In this particular case, it is expressed in 

terms of dependency (32). In the Special Theory of Relativity, the relativistic mass is the one, which 

occurs in the formula (36) per momentum. 

4.1.3. The momentum in STR/F for small velocities 

For small velocity v2/1 << c momentum (36) comes down to the momentum from classical 

mechanics, because 

 1/201/21/2 vmpcv F ≈⇒<<  (37) 

4.1.4. The kinetic energy in STR/F 

We will determine the formula for kinetic energy. To the formula (28), we introduce the 

dependence for the relativistic mass (32) 
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The kinetic energy of body is a sum of increases in its kinetic energy, when the body is 

accelerated from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body 

has velocity v2/1), i.e. 
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From the work [1] (formula 74, p. 167) it is possible to read out, that 
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After applying the integral (40) to (39) we receive the formula for the kinetic energy of the 

body in U2 system and measured by the observer from U1 system in a form of 
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This formula is identical to the formula for kinetic energy known from the Special Theory of 

Relativity, for the same reasons as in the case of momentum (36). 

4.1.5. The kinetic energy in STR/F for small velocities 

Formula (41) can be written in the form 
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On this basis, for small values v2/1 << c we receive 
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4.1.6. The force in STR/F 

Due to the assumption (29) value measurement of the same force by two different observers 

is identical. 

4.2. STR dynamics with constant momentum change (STR/∆p) 

In this section, a model of dynamics of bodies based on the assumption that the change in 

momentum of the body (parallel to x-axis) is the same for an observer from every inertial system 

will be derived (hence indication ∆p). 

These dynamics seem particularly interesting, because the conservation law of momentum is 

a fundamental law. Assumption that the change of body momentum is the same for every observer 

seems to be a natural extension of this law. 

4.2.1. The relativistic mass in STR/∆p 

In the model STR/∆p we assume, that 
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Having introduced (26) and (27), we obtain 

 2/201/21/2 dvmdvm p =∆  (46) 

On the base (20), we have 
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Hence, we obtain a formula for relativistic mass of the body that is located in the system U2 

and is seen from the system U1, when assumption (45) is satisfied, as below 
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4.2.2. The momentum in STR/∆p 

The body of rest mass m0 is associated with the system U2. To determine the momentum of 

the body relative to the system U1 we substitute (48) to (27) 
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The body momentum is a sum of increases in its momentum, when the body is accelerated 

from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body has velocity 

v2/1), i.e. 
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From the work [1] (formula 52, p. 160) it is possible to read out, that 
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After applying the integral (51) to (50) we receive the formula for the body momentum in U2 

system and measured by the observer from U1 system in a form of 
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4.2.3. The momentum in STR/∆p for small velocities 

Formula (52) can be written in the form 
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On this basis, for small values v2/1 << c we receive 
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4.2.4. The kinetic energy in STR/∆p 

We will determine the formula for kinetic energy. To the formula (28), we introduce the 

dependence for the relativistic mass (48) 

 1/22

1/2

2

1/22

01/21/22

1/2

01/21/21/21/2
)/(1

1
dv

vc

v
cmdvv

cv
mdvvmdE pp

−
=

−
=⋅⋅= ∆∆  (56) 

The kinetic energy of body is a sum of increases in its kinetic energy, when the body is 

accelerated from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body 

has velocity v2/1), i.e. 

 1/2

0

2

1/2

2

1/22

01/2

1/2

dv
vc

v
cmE

v

p

∫ −
=∆

 (57) 
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From the work [1] (formula 56, p. 160) it is possible to read out, that 

 ∫ −−=
−

22

22
ln

2

1
xadx

xa

x
 (58) 

After applying the integral (58) to (57) we receive the formula for the kinetic energy of the 

body in U2 system and measured by the observer from U1 system in a form of 

 )ln(
2

)ln(
2

ln
2

1 2
2

02

1/2

2
2

0

0

222

01/2

1/2

c
cm

vc
cm

xccmE

v

p +−−=−−=∆
 (59) 

 
2

1/2

2

0

2

1/2

2

22

0
1/2

)/(1

1
ln

2
ln

2 cv

cm

vc

ccm
E p

−
=

−
=∆

 (60) 

4.2.5. The kinetic energy in STR/∆p for small velocities 

Formula (60) can be written in the form 

 2
1/2 )/(2

1/2

2

1/20

2

1/2

2

1/2

22

1/20
1/2

])/(1[

1
ln

2)/(1

1
ln

2 vc

p

cv

vm

cvv

cvm
E

−
=

−
=∆

 (61) 

 2
1/2 )/(

2

1/2

2

1/20
1/2

)/(

1
1

1
ln

2 vc

p

vc

vm
E









−

=∆
 (62) 

On this basis, for small values v2/1 << c we receive 

 
2/1

1
ln

2

2

1/20

2

1/20
1/21/2

vm

e

vm
Ecv p =≈⇒<< ∆  (63) 

4.2.6. The force in STR/∆p 

Body with rest mass m0 is related to U2 system. It is affected by force that causes 

acceleration. For the observer from this system, the acceleration force has in accordance with (24) 

the following value 

 
2

2/2
02/2

dt

dv
mF =  (64) 

For the observer from U1 system, acceleration force has in accordance with (25) the 

following value 

 
1

1/2
1/21/2

dt

dv
mF pp ∆∆ =  (65) 

If we will divide parties’ equation (65) by (64), then on the basis of (20) and (23) we will 

receive 

 
2/32

1/2

0

1/2

2/2

1/2

1

2

0

1/2

2/2

1/2 ))/(1( cv
m

m

dv

dv

dt

dt

m

m

F

F ppp

−=⋅⋅=
∆∆∆

 (66) 
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On the basis of (48) we obtain a relation between measurements of the same force by two 

different observers 

 2/2

2

1/21/2 )/(1 FcvF p ⋅−=∆  (67) 

The highest value of force is measured by the observer from the inertial system in which the 

body is located. 

4.3. STR dynamics with constant mass (STR/m) 

In this section, a model of dynamics of bodies based on the assumption that body weight is 

the same for an observer from each inertial reference system will be derived (hence indication m). 

4.3.1. The relativistic mass in STR/m 

In the model STR/m we assume, that 

 01/2 mmm =  (68) 

Therefore, for the observer from inertial system U1, the body mass in U2 system is the same 

as the rest mass. 

4.3.2. The momentum in STR/m 

The body of rest mass m0 is associated with the system U2. To determine the momentum of 

the body relative to the system U1 we substitute (68) to (27) 

 1/201/21/21/2 dvmdvmdp mm =⋅=  (69) 

The body momentum is a sum of increases in its momentum, when the body is accelerated 

from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body has velocity 

v2/1), i.e. 

 1/20

0

1/201/2

1/2

vmdvmp

v

m == ∫  (70) 

In this relativistic dynamics the momentum is expressed with the same equation as in 

classical mechanics. 

4.3.3. The kinetic energy in STR/m 

We will determine the formula for kinetic energy. To the formula (28), we introduce the 

dependence for the relativistic mass (68) 

 1/21/201/21/21/21/2 dvvmdvvmdE mm =⋅⋅=  (71) 

The kinetic energy of body is a sum of increases in its kinetic energy, when the body is 

accelerated from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body 

has velocity v2/1), i.e. 

 
2

2

1/20
1/2

0

1/201/2

1/2 vm
dvvmE

v

m == ∫  (72) 
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In this relativistic dynamics the kinetic energy is expressed with the same equation as in 

classical mechanics. 

4.3.4. The force in STR/m 

Body with rest mass m0 is related to U2 system. It is affected by force that causes 

acceleration. For the observer from this system, the acceleration force has in accordance with (24) 

the following value 

 
2

2/2
02/2

dt

dv
mF =  (73) 

For the observer from U1 system, acceleration force has in accordance with (25) the 

following value 

 
1

1/2
0

1

1/2
1/21/2

dt

dv
m

dt

dv
mF mm ==  (74) 

If we will divide parties’ equation (74) by (73), then on the basis of (20) and (23) we will 

receive 

 
2/32

1/2

2/2

1/2

1

2

2/2

1/2 ))/(1( cv
dv

dv

dt

dt

F

F m

−=⋅=  (75) 

i.e. 

 2/2

2/32

1/21/2 ))/(1( FcvF m ⋅−=  (76) 

The highest value of force is measured by the observer from the inertial system in which the 

body is located. 

4.3.5. Discussion on the STR/m dynamics 

Obtaining a relativistic dynamics, in which there is no relativistic mass, and equations for 

kinetic energy and momentum are identical as in classical mechanics can be surprising, because in 

relativistic mechanics it is believed that the accelerated body can achieve maximum speed c. 

However, this dynamics is formally correct. 

If the body velocity v2/1 reaches c value, then according to (76) 

 0)11( 2/2

2/3

1/2 ≈⋅−= − FF m  (77) 

In the inertial system U2, in which the body is located, can be affected by acceleration force 

F2/2 of any, but finite value. However, from a perspective of the inertial system U1, towards which 

the body has c velocity, the same force is zero. This means that from a perspective of U1 system, it 

is not possible to perform work on the body, which will increase its kinetic energy indefinitely. 

From the relation (72) it results that the kinetic energy, that a body with mass m0 and velocity c has, 

a value has 

 
2

2

0
max

cm
Em =  (78) 
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4.4. STR dynamics with constant force to its operation time (STR/F/∆t) 

In this section, a model of dynamics of bodies based on the assumption that the force that 

accelerates of the body (parallel to x-axis) divided by the time of operation of this force is the same 

for an observer from every inertial system will be derived (hence indication F/∆t). 

4.4.1. The relativistic mass in STR/F/∆t 

In the model STR/F/∆t we assume, that 

 
2

2/2

1

/

1/2

dt

F

dt

F tF

=
∆

 (79) 

Having introduced (24) and (25), we obtain 

 
22

2/2
0

11

1/2/

1/2

11

dtdt

dv
m

dtdt

dv
m tF =∆  (80) 

On the base (20) and (23), we have 

 
2

1

2

1/2

2

1/2

1/2

02

1

1/2/

1/2
))/(1(

)/(1

dtcv

cv

dv

m
dt

dv
m tF

−

−
=∆  (81) 

Hence, we obtain a formula for relativistic mass of the body that is located in the system U2 

and is seen from the system U1, when assumption (79) is satisfied, as below 

 

2

2

1/2

0

/

1/2
)/(1

1









−
=∆

cv
mm tF

 (82) 

4.4.2. The momentum in STR/F/∆t 

The body of rest mass m0 is associated with the system U2. To determine the momentum of 

the body relative to the system U1 we substitute (82) to (27) 

 1/222

1/2

2

4

01/2

2

2

1/2

01/2

/

1/2

/

1/2
)(

1

)/(1

1
dv

vc
cmdv

cv
mdvmdp tFtF

−
=









−
=⋅= ∆∆

 (83) 

The body momentum is a sum of increases in its momentum, when the body is accelerated 

from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body has velocity 

v2/1), i.e. 

 ∫ −
=∆

1/2

0

1/222

1/2

2

4

0

/

1/2
)(

1
v

tF dv
vc

cmp  (84) 

From the work [1] (formula 54, p. 160) it is possible to read out, that 

 0,ln
4

1

)(2)( 3222222
≠

−

+
+

−
=

−∫ a
xa

xa

axaa

x

xa

dx
 (85) 

After applying the integral (85) to (84) we receive the formula for the body momentum in U2 

system and measured by the observer from U1 system in a form of 
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 








−

+
+

−
=









−

+
+

−
=∆

)(

)(
ln

4

1

)(2)(

)(
ln

4

1

)(2 1/2

1/2

2

1/2

2

1/2
0

0

3222

4

0

/

1/2

1/2

vc

vc

vc

cv
cm

xc

xc

cxcc

x
cmp

v

tF  (86) 

 


























−

+
+

−
=∆

1/22

1/2

1/2

2

1/2

1/20

/

1/2 ln
)/(1

1

2

1 v

c

tF

vc

vc

cv
vmp  (87) 

4.4.3. The momentum in STR/F/∆t for small velocities 

Formula (87) can be written in the form 

 
















−

+
+

−
=∆

1/2

1/2

/

1/2

/

1/2

2

1/2

1/20

/

1/2
)/1(

)/1(
ln

4

1

))/(1(2

1
vc

vc
tF

cv

cv

cv
vmp  (88) 

 

















































−









+

+
−

=∆

1/2

1/2

/

1/2

/

1/2

2

1/2

1/20

/

1/2

/

1
1

/

1
1

ln
4

1

))/(1(2

1
vc

vc

tF

vc

vc

cv
vmp  (89) 

On this basis, for small values v2/1 << c we receive 

 1/20

2

1/201/20

/

1/21/2 )ln(
4

1

2

1

/1
ln

4

1

2

1
vmevm

e

e
vmpcv tF =





+=
















+≈⇒<< ∆

 (90) 

4.4.4. The kinetic energy in STR/F/∆t 

We will determine the formula for kinetic energy. To the formula (28), we introduce the 

dependence for the relativistic mass (82) 

 1/222

1/2

2

1/24

01/21/2

2

2

1/2

01/21/2

/

1/2

/

1/2
)()/(1

1
dv

vc

v
cmdvv

cv
mdvvmdE tFtF

−
=









−
=⋅⋅= ∆∆

 (91) 

The kinetic energy of body is a sum of increases in its kinetic energy, when the body is 

accelerated from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body 

has velocity v2/1), i.e. 

 1/2

0

22

1/2

2

1/24

0

/

1/2

1/2

)(
dv

vc

v
cmE

v

tF

∫ −
=∆

 (92) 

From the work [1] (formula 58, p. 160) it is possible to read out, that 

 
)(2

1

)( 22222 xaxa

xdx

−
=

−∫  (93) 

After applying the integral (93) do (92) we receive the formula for the kinetic energy of the 

body in U2 system and measured by the observer from U1 system in a form of 
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2

4

0

2

1/2

2

4

0

0

22

4

0

/

1/2

1

2)(

1

2)(2

1
1/2

c

cm

vc

cm

xc
cmE

v

tF −
−

=
−

=∆
 (94) 

 
2

1/2

2

1/20

2

0

2

1/2

2

0/

1/2
)/(1

1

22)/(1

1

2 cv

vmcm

cv

cm
E tF

−
=−

−
=∆

 (95) 

The formula for kinetic energy (95) was derived from the work [2], due to the fact that the 

author adopted a different assumption than the one on which the dynamics known from the Special 

Theory of Relativity was based. 

4.4.5. The kinetic energy in STR/F/∆t for small velocities 

For small velocity v2/1 << c kinetic energy (95) comes down to the kinetic energy from 

classical mechanics, because 

 
21

1

2

2

1/20

2

1/20/

1/21/2

vmvm
Ecv tF =⋅≈⇒<< ∆  (96) 

4.4.6. The force in STR/F/∆t 

Body with rest mass m0 is related to U2 system. It is affected by force that causes 

acceleration. For the observer from this system, the acceleration force has in accordance with (24) 

the following value 

 
2

2/2
02/2

dt

dv
mF =  (97) 

For the observer from U1 system, acceleration force has in accordance with (25) the 

following value 

 
1

1/2/

1/2

/

1/2
dt

dv
mF tFtF ∆∆ =  (98) 

If we will divide parties’ equation (98) by (97), then on the basis of (20) and (23) we will 

receive 

 
2/32

1/2

0

/

1/2

2/2

1/2

1

2

0

/

1/2

2/2

/

1/2 ))/(1( cv
m

m

dv

dv

dt

dt

m

m

F

F tFtFtF

−=⋅⋅=
∆∆∆

 (99) 

On the basis of (82) we obtain a relation between measurements of the same force by two 

different observers 

 2/2
2

1/2

/

1/2

)/(1

1
F

cv
F

tF ⋅
−

=∆
 (100) 

The lowest value of force is measured by the observer from the inertial system in which the 

body is located. 
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4.5. STR dynamics with constant mass to elapse of observer's time (STR/m/∆t) 

In this subchapter a model of body dynamics will be derived based on the assumption that 

the body mass divided by the elapse of time in observer system is the same for the observer from 

each inertial frame of reference (hence indication m/∆t). 

4.5.1. The relativistic mass in STR/m/∆t 

In the model STR/m/∆t we assume, that 

 
2

0

1

/

1/2

dt

m

dt

m tm

=
∆

 (101) 

On the base (23), we have 

 

1

2

1/2

0

1

/

1/2

)/(1 dtcv

m

dt

m tm

⋅−
=

∆

 (102) 

Hence, we obtain a formula for relativistic mass of the body, that is located in the system U2 

and is seen from the system U1, when assumption (101) is satisfied, as below 

 
2

1/2

0

/

1/2

)/(1

1

cv
mm tm

−
=∆

 (103) 

4.5.2. The momentum in STR/m/∆t 

The body of rest mass m0 is associated with the system U2. To determine the momentum of 

the body relative to the system U1 we substitute (103) to (27) 

 1/22

1/2

201/22

1/2

01/2

/

1/2

/

1/2

1

)/(1

1
dv

vc
cmdv

cv
mdvmdp tmtm

−
=

−
=⋅= ∆∆

 (104) 

The body momentum is a sum of increases in its momentum, when the body is accelerated 

from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body has velocity 

v2/1), i.e. 

 ∫
−

=∆
1/2

0

1/22

1/2

2

2

0

/

1/2

1
v

tm dv
vc

cmp  (105) 

From the work [1] (formula 71, p. 167) it is possible to read out, that 

 0,arcsin
22

>=
−

∫ a
a

x

xa

dx
 (106) 

After applying the integral (106) to (105) we receive the formula for the body momentum in 

U2 system and measured by the observer from U1 system in a form of 

 
c

v
cm

c

v
cmp

v

tm 1/2
0

0

1/2
0

/

1/2 arcsinarcsin
1/2

⋅=⋅=∆
 (107) 
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4.5.3. The momentum in STR/m/∆t for small velocities 

Formula (107) can be written in the form 

 

c

v
c

v

vmp tm

1/2

1/2

1/20

/

1/2

arcsin

=∆  (108) 

On this basis, for small values v2/1 << c we receive 

 1/20

/

1/21/2 vmpcv tm ≈⇒<< ∆  (109) 

4.5.4. The kinetic energy in STR/m/∆t 

We will determine the formula for kinetic energy. To the formula (28), we introduce the 

dependence for the relativistic mass (103) 

 1/22

1/2

2

1/2
01/21/22

1/2

01/21/2

/

1/2

/

1/2

)/(1

1
dv

vc

v
cmdvv

cv
mdvvmdE tmtm

−
=

−
=⋅⋅= ∆∆

 (110) 

The kinetic energy of body is a sum of increases in its kinetic energy, when the body is 

accelerated from the inertial system U1 (the body has velocity 0) to the inertial system U2 (the body 

has velocity v2/1), i.e. 

 1/2

0
2

1/2

2

1/2
0

/

1/2

1/2

dv
vc

v
cmE

v

tm

∫
−

=∆
 (111) 

From the work [1] (formula 73, p. 167) it is possible to read out, that 

 ∫ −−=
−

22

22
xadx

xa

x
 (112) 

After applying the integral (112) do (111) we receive the formula for the kinetic energy of 

the body in U2 system and measured by the observer from U1 system in a form of 

 2

0

2

1/2

2

0
0

2

1/2

2

0

/

1/2

1/2

ccmvccmvccmE
v

tm +−−=−−=∆  (113) 

 ))/(11( 2

1/2

2

0

2

1/2

2

0

2

0

/

1/2 cvcmvccmcmE tm −−=−−=∆  (114) 

4.5.5. The kinetic energy in STR/m/∆t for small velocities 

Formula (114) can be written in the form 
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 (115) 
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 (116) 

On this basis, for small values v2/1 << c we receive 
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22

2

2

2

1/20

2

1/20/

1/21/2

vmvm
Ecv tm =⋅≈⇒<< ∆  (117) 

4.5.6. The force in STR/m/∆t 

Body with rest mass m0 is related to U2 system. It is affected by force that causes 

acceleration. For the observer from this system, the acceleration force has in accordance with (24) 

the following value 

 
2

2/2
02/2

dt

dv
mF =  (118) 

For the observer from U1 system, acceleration force has in accordance with (25) the 

following value 

 
1

1/2/

1/2

/

1/2
dt

dv
mF tmtm ∆∆ =  (119) 

If we will divide parties’ equation (119) by (118), then on the basis of (20) and (23) we will 

receive 
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1/2 ))/(1( cv
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 (120) 

On the basis of (103) we obtain a relation between measurements of the same force by two 

different observers 

 2/2

2

1/2

/

1/2 ))/(1( FcvF tm ⋅−=∆  (121) 

The highest value of force is measured by the observer from the inertial system in which the 

body is located. 

5. The general form of dynamics 

In presented examples, assumptions have been adopted which can be written in forms (30), 

(46), (68), (80) and (101). On this basis, it can be seen that the assumption for relativistic dynamics 

is as follows 
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On the basis of (20) and (23) we receive 

 
bb

a

a

b

a
ba

dtcv

cv

dv

m
dt

dv
m

1

2/2

1/2

2

1/2

1/2

0

1

1/2},{

1/2
))/(1(

))/(1(

⋅−

−
=  (123) 

We are adopt markings 
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Now on the basis of (123) the relativistic mass of inertia of body in U2 system, seen from U1 

system, when an assumption is fulfilled (122), is expressed in dynamics {x} by the following 

formula 

 

x

x

cv
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}{
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 (125) 

Each such relativistic mass defines a different relativistic dynamics. 

According to presented examples, based on formulas (27) and (125), the momentum in 

dynamics {x} is expressed by the following formula 
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According to presented examples, based on formulas (28) and (125), the kinetic energy in 

dynamics {x} is expressed by the following formula 
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According to presented examples, based on formulas (24), (25) and (20), (23), the relation 

between forces in dynamics {x} is expressed by the following formula 
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On the basis of (125) we receive 
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6. Summary of dynamics 

Summary derived formulas for momentum and kinetic energy: 

 

 

Dynamics  x = 0 
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Dynamics  x = 1/2 
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Dynamics  x = 1 
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Dynamics  x = 3/2 

(currently recognized STR dynamics) 
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Dynamics  x = 2 

 


























−

+
+

−
=∆

1/22

1/2

1/2

2

1/2

1/20

/

1/2 ln
)/(1

1

2

1 v

c

tF

vc

vc

cv
vmp  (140) 

 
2

1/2

2

1/20/

1/2
)/(1

1

2 cv

vm
E tF

−
=∆

 (141) 



Derivation method of numerous dynamics in the Special Theory of Relativity 

Szostek Roman 

 22 www.ste.com.pl 

In Figure 4 were compared momentums from derived relativistic dynamics. 

 
Fig. 4. Module of the momentum in dynamics: 

STR/m (x=0), STR/m/∆t (x=1/2), STR/∆p (x=1), STR/F (x=3/2) and STR/F/∆t (x=2). 

In Figure 5 were compared kinetic energies from derived relativistic dynamics. 

 
Fig. 5. Kinetic energies in dynamics: 

STR/m (x=0), STR/m/∆t (x=1/2), STR/∆p (x=1), STR/F (x=3/2) and STR/F/∆t (x=2). 

In Figure 6 were compared relation between measurements of the same. 

 
Fig. 6. Relation between measurements of the same force by two different observers in dynamics: 

STR/m (x=0), STR/m/∆t (x=1/2), STR/∆p (x=1), STR/F (x=3/2) and STR/F/∆t (x=2). 
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7. Even more general form of dynamics 

Relation (125) to the relativistic mass can be even more generalized. In the general case, it is 

possible to assume that the relativistic mass is expressed by the following formula 

 )( 1/20

}{

1/2 vfmm f ⋅=  (142) 

Where f (v2/1) is any continuous function with the following properties 

 0)( 1/2 ≥vf  (143) 

 1)0( =f  (144) 

 )()( 1/21/2 vfvf −=  (145) 

Each function f (v2/1) defines a different dynamics of the Special Theory of Relativity. 

8. Final conclusions 

The article presents our author’s method of deriving dynamics in the Special Theory of 

Relativity. Five examples of such deriving were shown. 

Derivation of dynamics is based on two formulas applicable in the kinematics of STR, i.e. 

(20) and (23). In order to derive the dynamics of STR, it is necessary to adopt an additional 

assumption in kinematics, which allows the concept of mass, kinetic energy and momentum to be 

introduced into the theory. 

The dynamics of STR/F is nowadays recognized as the dynamics of the Special Relativity 

Theory. It is based on the assumption that each force parallel to x-axis has the same value for the 

observer from each inertial frame of reference. However, other dynamics are possible in accordance 

with the kinematics of the Special Theory of Relativity. In order to derive them, it is necessary to 

base on a different assumption. 

Decision which from all possible dynamics of the Special Theory of Relativity is a correct 

model of real processes, should be one of the most important tasks of future physics. A calorimeter 

can be useful for verification of different dynamics. This device can measure the amount of heat 

released when stopping particles to high speed. On this basis, it is possible to determine graphs of 

the kinetic energy of accelerated particles as a function of their velocity, analogous to those 

presented in Figure 5. On this basis, it is possible to indicate the dynamics in which the kinetic 

energy of particles is compatible with experiments. 

The fact that as a part of the Special Theory of Relativity, numerous dynamics can be 

derived greatly undermines the authenticity of the formula E = mc
2
. According to our research, on 

the basis of relativistic mechanics, it is impossible to derive a formula expressing the internal 

energy of matter [4]. All derivations of this formula are wrong. The relation between mass and 

energy (E = mc
2
) can be introduced into the STR as an independent assumption, but it does not 

result from Lorentz transformation, nor from the assumption (29) on which the dynamics of STR is 

based. But then there is a need to experimentally show what exactly is the form of such 

a dependency (e.g. why not E = mc
2
/2) and experimentally investigate whether sometimes the form 

of such a dependency does not depend on the type of matter that this formula regards. 

The presented method of dynamism derivation can also be used in other theory of body 

kinematics. In the monograph [3] we have used it to derive four dynamics in the Special Theory of 

Ether. 
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