Multi-Document Text Summarization

Kevin Eskici (keskici@alumni.harvard.edu)
Luis A. Perez (luisperez@alumni.harvard.edu)
Harvard University

December 13, 2017

Abstract

We tackle the problem of multi-document extractive summarization by implementing two
well-known algorithms for single-text summarization — TEXTRANK and GRASSHOPPER. We
use ROUGE-1 and ROUGE-2 precision scores with the DUC 2004 Task 2 data set to measure
the performance of these two algorithms, with optimized parameters as described in their re-
spective papers (« = 0.25 and A = 0.5 for Grasshopper and d = 0.85 for TextRank). We
compare these modified algorithms to common baselines as well as non-naive, novel baselines
and we present the resulting ROUGE-1 and ROUGE-2 recall scores. Subsequently, we im-
plement two novel algorithms as extensions of GRASSHOPPER and TEXTRANK, each termed
MODIFIEDGRASSHOPPER and MODIFIEDTEXTRANK. The modified algorithms intuitively at-
tempt to “maximize” diversity across the summary. We present the resulting ROUGE scores.
We expect that with further optimizations, this unsupervised approach to extractive text sum-
marization will prove useful in practice.

1 Introduction

With an ever expanding amount of information available for consumption, automated process-
ing of data into a human-readable format is of utmost importance. One approach to tackle this
information overload involves parsing sets of documents (imagine a series of news articles) and
condensing them into the most important information that is nonetheless still consumable and
interpretable by a human. The purpose of this paper is to propose and measure differing methods
of reducing the cognitive overload imposed on individuals by the increasing amounts of available
data.

Specifically, in this paper we seek to present two novel approaches to extractive corpus sum-
marization. We tackle the problem of summarizing not a single sentence or a single document, but
rather an entire body of work. The works must be topically related, and this assumption holds
crucial in our exploration. With this in mind, the main goals of this paper and the related python
packages are to:

e Understand current work in the field of automated text summarization.

e Generalize the current work to a framework which incorporates expert knowledge about
our current problem.

e Compare two algorithms found in the literature, GrassHopper and TextRank, with current
baselines as well as novel baselines.

e Propose improvements to the above algorithms and implement them.
e Evaluate all of the algorithms above using the ROUGE metric [5].

e Create a usable library for text summarization in Python using the algorithms and baseline
explored.

While the scope of the project is large, we are excited to report that we’ve addressed of all the
above goals.

The system we developed is an all-encompassing and easy to use utility in Python that allows
not only for summarization of arbitrary corpus, but also provides an intuitive command-line in-
terface for the summarization of arbitrary text.

For more details on how to work the program itself, see the latest updates found on the github

page.
In this paper we now present the theoretical foundations behind the Summarizexrf|library.

2 Background

Machine summarization of text lies at the cutting edge of natural language processing. Confer-
ences such as the Document Understanding Conference (DUC) run large scale competitions on
a yearly basis to push this frontier forward and encourage new development in algorithms for
understanding text El Two main methods are currently under study for summarization, an ab-
stractive and extractive approach. Each method has its benefits and drawbacks, and while both
are theoretically sounds, the current research tends to focus on extractive text summarization due
to the inherent difficulty in building abstractive summarization models. We now discuss is ap-
proach in detail below.

2.1 Abstractive Summarization

The first approach is, theoretically, the most ideal. When given a document d from some corpus
D, intuitively, a summary seeks to capture the main ideas of the document. If we consider the
document d to consists of some general topics or ideas T which are related through some set of
relations R, abstractive summarizations seeks to “understand” the set R extensively. It seeks not
only to generate a summary, but generate a novel summary by taking the collection of ideas T
and relating them in new, generalized ways leaned from the set of relations, R. While ideal, this
approach has proved difficult to implement.

Currently, even summarization of a single sentence can take days to be computed as the sys-
tem must understand not only the “meaning” of the sentence, but additionally, the grammatical
structure underlying the language. Current research, such as that performed by Rush et al., has
shown some improvements using some structurally simple models with large amounts of training
data. However, even such extensive approaches with large amounts of training data which seek

1The current name for our toy product!
2For more information on these conferences, visit NIST

https://github.com/kandluis/document_summaries
https://github.com/kandluis/document_summaries
http://duc.nist.gov/

to generate new summaries tend to perform relatively poorly in the task of summarizing an entire
document, d, and in particular, in the task of summarizing an entire corpus D. In fact, after thor-
ough exploration of the literature, we have found no current research which seeks to accomplish
this task as it appears to still be outside the scope of the Al community.

Systems that come the closes to even single sentence interpretations do exists, however, as has
been demonstrated by Le et al.

2.2 Extractive Summarization

Given the limitations of the theoretically preferable approach, an alternative has been developed
which has shown to be relatively successful at both sentence [1] and single document summa-
rization. The idea behind this approach involves the following key insight: rather than learning
the inherently difficult and complicated meaning of a sentence, we can make two simplifying
assumptions in order to summarize a single document d € D where D is our corpus of related
documents.

1. Each sentence s € d represents a central, key idea.

2. Sentences in s can be related through simple mathematical functions.

The two simplifications above lead to extractive summarization. By (1), we now have a new
sets of “ideas” I given by:
I = {idea(s) | s € d}

We can generalize the above to multi-document extractive summarization by presenting the
set of ideas Ip (the entire corpus) as simply the union of the set of ideas I; of each documents.

Ip=J I

The second simplifications is also crucial in developing an extractive approach. This is because
we can now relate each idea, which is in fact a vector sentence, to each other using what is termed
similarity functions in the literature. If we think of each idea(s) € R", we can then seek to find
a functions that allows for measuring similarity between sentences as simply functions that mea-
sure some property of two vectors.

In general, we can consider extractive sentence summarization as a ranking algorithm of sen-
tences, where the purpose of a summarization algorithm is to select the best k sentences given a
single document d in which |d| > k. In the abstract, this definition involves, crucially, accurately
defining what is meant by “best”. Current algorithms for extractive sentence summarization rely
on defining “best” by looking at each sentence independently. The sentence with which most fully
encapsulates the meaning of the body is then selected as a good candidate sentence. This algo-
rithm is then repeated until the top k sentences from our documents are selected.

However, even given the above generalizations of our definitionsﬂ multi-Document extractive
text summarization poses many unique challenges. While single document text summarization

3Note that these definitions are in fact novel and have not been presented in the literature. However, throughout
the development of our project, we found such abstractions and clear definitions of our objective helpful

consists of selecting a good subset of sentences which summarize the document as a whole, with
multi-document text summarization, we must consider a summary which not only does a good
job of summarizing each document d € D, but which can somehow incorporate the diversity of
the entire set, D. Given the lack of available corpus data for training, extractive summarization
on multi-document sets benefits from unsupervised, model-based approaches rather than super-
vised, data-driven methods.

Algorithm 1 Simple Algorithm for Extractive Summarization

procedure RANKINGSUMMARIZATION(D, k) //Where D is a set of documents and k is the
length of the summary
Results < ||
Intialize empty result set
while Results.len < k do
s + extractBest(D) // Find the best sentence
Results <— Results + [s] // Add to results set
end while
Summary <— sortSummary(Results)
end procedure

The above presents an introduction to the two main approaches for completing sentence sum-
marization. Sentece summarization is an incredibly difficult task which requires precision, and
even with extractive sentence summarization, we’ve run into our own set of challenges.

3 Related Work

As discussed in the background, we now dive into detail at some of the current work. Two main
methods exists for current multi-document extractive summarization, each at a different stage of
development.

3.1 Summarization through Learning

A simple approach which can be take to document summarization, where we consider only a
single document d, is to train on previous data. Such an approach provides a data-drive rather
than model-driven approach to learning. We can, instead of generating a model of importance for
the sentences or of appropriate summarization techniques, simply look at existing data sets and
existing summaries and attempt to learn patterns from the data. In particular, this approach has
shown to be somewhat effective [3]. Of particular interest to our approach is the Hidden Markov
Model of sentence extraction, as presented by Conroy an Dianne.

3.1.1 Hidden Markov Models

In [2], Conroy and O’leary present a learning-based approach based on hidden Markov models.
The learning based approach uses training that that is, unsurprisingly, currently unavailable for

download

The main idea behind their model is to introduce a probabilistic understanding to the idea of
extractive sentence summarization. By looking through a data set of document-summaries pairs,
they can calculate

P(X; | Xi-1),P(E;i | X;)

The first term is simply the transition probability of the system. Given that we have a previous
sentence, what’s the probability that the next sentence will also be contained in the summary?
Conroy and O’leary discover, through their analysis, that the intuitive notion that sentences to-
wards the beginning of are more important is in fact correct. The distributions tends to decay as
the sentence moves further from the beginning, and this effects tends to be much larger for smaller
summaries E] [2]. Furthermore, the result they present help inform us in the development of our
own baselines, as we generate a system which uses this information directly.

With the above probabilities calculated (despite the lack of specification on the training data),
the system could immediately be trained directly on the transition probabilities to generate a naive
Bayesian approach. However, by utilizing an HMM, fewer assumptions on independence need to
be made since the state X; learns all of the information about the states preceding it (or all of the
relevant information). In particular, the largest benefit of the HMM is that it does not assume that
the probability being in the summary is independent of the i — 1 sentence being in the summary.

Intuitively, it makes sense to suppose that if a sentence is in th summary, sentence immedi-
ately following it would also be in the summary, likely dependent on the position of the sentences
themselves.

Of particular interest is the feature representation used by the HMM, which mostly consist of
the position of a sentence within its paragraph. Each sentence is assigned a value 01 (i) designat-
ing it as the first in the paragraph (value 1), the last in the paragraph (value 3), or an intermediate
sentence (value 2).

For a more thorough exposure to the details of the above, we propose seeing [2]. Here, we
simply present the information relevant to informing our own approaches. In particualar, Figure
summarizer the approach relatively well.

There exist 2k + 1 states to the HMM which serve to indicate which sentences have been se-
lected as we run over the paragraph to determine the results.

Of interest, we note that the paper by Conroy and O’leary also presents an alternative data-
driven model approach which involves QR matrix factorization and latent variables [2]. For ref-
erence, it might be helpful to see Wikipedia for some information on how QR decomposition of a
matrix works. However, we find that such an approach is outside the scope of this paper and so
defer to the reader the responsibility of understanding it.

4This is a general complaint we have with the Al community which, for some reason, seems to refuse release their
data or source code. We are of the opinion that researchers should follow our lead in releasing all utilized data, from
start to end, as well as thorough instructions and source code focused on interpreting the results.

5While this is intuitively expected, it is good to have some data to back it up!

https://en.wikipedia.org/wiki/QR_decomposition

&8

Figure 1: The HMM model recommended by [2]

3.2 Summarization as Ranking - An Unsupervised Approach

While the above approach appears promising, two main driving forces pushed us toward explor-
ing a more unsupervised approach.

e The lack of available training data for extractive summaries. Automated methods (such
as using Word’s summary feature) are rather ineffective, and we’d rather compare to real
human summaries.

e The possibility of over-fitting on our training data. The purpose of our project includes
creating a usable library, and given the diversity inherent to text, we felt it too likely that our
results would prove fruitful only due to over-training and/or using test data too similar to
our training data.

While each of the above is addressable in some way or other, and as shown by [3], other
have successfully addressed them, we take a different approach. Instead of admitting the limita-
tions inherent to supervised summarization methods, we switch emphasis towards unsupervised
learning methods.

In this scenario, we no longer require a set of data on which to train our model, instead utilizing
the idea and algorithms presented in [6] and [4]. Both GRASSHOPPER and TEXTRANK are novel
algorithms which take advantage of the grammatically and syntactical structure in inherent to
text, and through expert knowledge, create summaries without requiring any training.

3.3 Current Evaluation Methods

However, we found that the evaluation of summaries presented by [2] was rather inadequate and
it was not possible to recover their data. Therefore, taking such a supervised approach to the
method of generating extractive summaries appeared less promising. Even other evaluation tech-
niques, like those proposed in [3], seemed somewhat arbitrary.

Rather than proposing subjective mechanisms similar to those mentioned above, we instead
make use of a tool named ROUGE [5], developed for the explicit task of comparing summaries
to one another. The tool, while widely used by DUC, appears to not have been used for either
abstractive nor supervised extractive models

Obviously, this is given our limited research.

3.4 Multi-Document Summarization

Current work specific to multi-document summarization is limited, though we did find two pa-
pers which discuss their algorithms in-depth, and which claimed competitiveness and effective-
ness in the DUC 2004 competition [6] [4].

In particular, note that these papers take an unsupervised approach to learning due to the
exponential increase in data set diversity (with n documents, there are a possible 2" sets!

We therefore now detail the main changes we have made to tackle the issues faced when sum-
marizing multiple documents. The changes reflect an increase need for diversity in the multi-
document setting. We ignore words already included in our summaries when performing a search
for the next candidate sentence. We also modify prior distributions to reflect knowledge on our
document sets, creating multi-model priors over sentence selection. Furthermore, we make ex-
plicit modifications and propose novel algorithms for this work.

All changes are evaluated using an objective standard - ROUGE, specifically, ROUGE-R for the
recall.

4 Algorithms

We implemented several baseline algorithms, most being original. The baselines follow one sim-
ple philosophy that we came across in our research which was to be simple and yet informative.
Most of them follow the assumption that the distribution of sentence importance follows some
type of exponential decay — intuitively, the first few sentences are far more important that those
towards the end. The inspiration for this follows [2], as well as the general ideas presented in [3],
a survey of many summarization methods.

The main algorithms we implemented for this task were the graph based TextRank [4] and
GrassHopper [6]. We further modified these algorithms in an attempt to improve their perfor-
mance on the ROUGE-R metric, hoping to achieve results comparable to those of human sum-
maries on multi-document sets.

4.1 Baselines
4.1.1 Naive Baseline

The simplest baseline involves taking the first k sentences from the set of documents. This was
the baseline from the DUC competitionﬂ In fact, the baseline for the competition is more naive in
that it takes only the first 665 characters of the latest document. In our implementation, we focus
more on sentences extraction, so for a fair comparison, we extract the first k sentences of the latest
document.

4.1.2 Geometric Prior

This baseline is motivated by the idea that important sentences tend to appear at the beginning
of articles as hinted at by the literature. After concatenating the documents into a single array
of sentences, we choose a weighted random sample of sentences with weights proportional to the

"Definition of Baselines for DUC 2004 Competition

http://duc.nist.gov/duc2004/baseline_definitions

value of the Geometric PDF evaluated at a sentence’s index. Recall that the Geometric distribution
with parameter p has PDF:
P(X=k)=(1-p)'p

Figure 2| shows the pdf for several values of p. For our project we ended up using p = 0.02. We
expect this parameter to be adequate for our purposes, though it is certainly true that it should be
further optimized and tuned. In particular, Bayesian Optimization techniques look promising.

Prior Geometric Distribution on Brown Corpus
— p=005
—— p=0.155555555556
— p=0261111111111
—— p=0.366666666667
008
p=0.472222222222
p=0.577777T77778
—— p=0.683333333333
| —— p=0.788¢606068309
006 —— P=0.824444444344
— p=10

Probability of Selecting Sentence

002

0 2 4 2] 8 100 120
Sentence Index

Figure 2: Plot of Geometric Prior for Different Values of p.

4.1.3 Modified Geometric Prior

This approach tries to capture the benefits of the previous two by always taking the first sentence
as part of the summary, and then randomly selecting the remaining k — 1 sentences with weights
determined by a Geometric distribution. We again used p = 0.02.

4.1.4 Multiple Geometric Prior

While reading the Geometric Prior section above, it may have seemed odd that sentence weights
were proportional to the value of a Geometric PDF evaluated at a sentence’s index in the array of
concatenated sentences. If you thought “Wait a second, doesn’t that mean the arbitrary ordering
of documents will affect the weights?”, you're right! Thus we implemented a Multiple Geometric
Prior Baseline to account for this. The idea is simple-we assign each sentence a weight propor-
tional to the value of the Geometric PDF evaluated at its corresponding index in it's OWN docu-
ment. Then we re-normalize the vector of weights before drawing a weighted random sample of
k sentences.

4.1.5 Word Frequency

For our final baseline we decided to use a naive approach based on word frequency. After filtering
out stop words, we go through the documents and count how many times each word appears in
the concatenation of all documents in the set. After doing so, we use this mapping of words to
frequencies to get sentence scores, where a sentences score is the sum of the scores of all words

in the sentence, normalized by the length of the sentence. The sentence with the highest score is
extracted as our fist summary sentence. Instead of simply taking the sentences with the next k — 1
highest scores as the rest of the summary, we recompute sentence scores ignoring words already in
our summary, take the sentence with the new highest score, and repeat until we have k sentences.
This is done to avoid having the same words dominate our summary.

4.2 TextRank

After our baselines, we set out to apply the TextRank algorithm described in a paper by Mihalcea
and Tarau [4]. A graph algorithm, applying TextRank involve constructing an undirected network
where sentences are vertices, and weighted edges are formed connecting sentences by a similarity
metric. We used the similarity function described in the paper, given below:

€ S;&wy € §;
Sim(S;, S;) = [{wilwy € Sidew € 5531
log(S:]) +log(|S;)
After we have our graph, we can run the main algorithm on it. This involves initializing a score

of 1 for each vertex, and repeatedly applying the TextRank update rule until convergence. The
update rule is:

WS(V}) = (1 —d) +d G

Where N(v) is the set of neighbors of vertex v, and 0 < d < 1 is a “dampening factor”, which the
literature suggests setting to 0.85. After reaching convergence, we extract the sentences with the
highest k scores and output them as our summary. We define reaching convergence as having an
iteration where no score changes by more than some ¢, for which we used 0.01. Additionally we
cut the cycle off after 30 iterations to speed the algorithm up, as we found that that vast majority
of cases converge before then, and for a tested set of those that didn’t final results were the same.
Pseudocode is given below.

4.3 GrassHopper

The idea behind the GRASSHOPPER algorithm is to increase the diversity of the data by selecting
sentences which differ from one another. Figure [3shows GRASSHOPPER on some toy data. After
selecting the first point, the state is dampened and all neighboring states are similarly suppressed.
WE see that a new state arises in the second step, which previously would have gone ignored.
With this method, we hope to increased the “diversity across” documents in a given document
sets. Instead of clustering everything together, we're hoping the results will help resolve the issue
if self-identification.

Specifically, Grasshopper involves creating a directed, weighed graph on nodes. Each node
represents a cleaned sentence from our original document, and the weights between nodes are a
function of the similarity between the sentences. The first question to tackle is the representation
of the sentences s € d. In our of our examples below, we run GRASSHOPPER using a representa-
tion of sentences which relies on term frequency (typically known as TF).

Furthermore, the weight of each edge is influenced by the prior distribution and the transition
matrix, with weight parameter A, given as input to the grasshopper algorithm. The relations is

Algorithm 2 Pseudocode for TextRank Algorithm.

procedure TEXTRANK(D, k) //Where D is a set of documents
G < BuildGraph(D) // Build network as explained above
scores < (1.0,1.0,...,1.0) //initialize scores
converged <— False
while converged == False do
converged < True
oldScores < scores
for sentence € 1,2,...,length(D)): do
/ /update sentence score according to rule give above
scores[sentence| <— updateSentence(G, sentence,d = 0.85, scores)
if |scores[sentence] — oldScores[sentence|| > ¢ then
converged <— False
end if
end for
end whilereturn sentences with k highest scores
end procedure

given by:
P=AP+ (1-A)?

where we define P as the row-normalized version of the transition matrix Q where
Qij = wjj

Therefore, we have:

5. _ wij

T Y wik
Additionally, r is a prior distribution over our sentences. In this sense, we make sure that r is
normalized:

_ T

LT
Intuitively speaking, the r vector represent the distribution over the sentences given by our expert
knowledge or prior information. In our case, we take r < p~* where p is the 1-indexed position

of the sentence under consideration and « is an additional parameter we select. The « = 0.25 is
found to be optimal by [6], so we use that value throughout our experimentation.

A

Ti

With the above defined matrix, we know have guaranteed the existence of a stationary distri-
bution over the matrix P for any A € (0,1). If we think of the matrix P as defining a Markov Chain
over the state space of sentences, then the results indicated that the Markov Chain is irreducible —
every state is reachable from any state in a finite number of states. In particular, the non-zero prior
distribution over our sentence guarantees this fact.

Given the above, GRASSHOPPER must then select the top sentences for extractions. The first
sentence is unique, in that the extracted sentence corresponds to the most likely state of our
Markov Chain if run long enough.

We calculate this by calculating the eigevectors of the matrix P with eigenvalue 1, ie:
9P =g

We then normalize the resulting vector and take the absolute value in order to guarantee that it is
a valid probability distribution.

qi
Xiqj
The resulting distribution is termed the stationary distribution of our Markov Chain, and intu-
itively, it answers the question: what is the probability that I will end up in state i given that I start
from an arbitrary state.

s; = abs(

We take the above to be our first sentence for the summary. For subsequent sentence, we first
transform the state corresponding to the selected sentence into an absorbing state Fﬂ Note that
the above operation invalidated the irreducibility assumptions from before, and therefore, it is no
longer possible to find a stationary distribution. If we think about this intuitively, given that ¢ has
just become an absorbing state, we expect the stationary distribution to assigns; = 1 fori = t and
s;=0fori #t.

SN a0

5
(@)
Figure 1: (a) A toy data set. (b) The stationary distribution = reflects centrality. The item with the largest
probability is selected as the first item g; . (c) The expected number of visits v to each node after g; becomes

an absorbing state. (d) After both g; and g2 become absorbing states. Note the diversity in g1, g2, g3 as they
come from different groups.

Figure 3: Grasshopper on Toy Example.

However, we now have what is termed an absorbing Markov Chain. That is, for the states that
are absorbing, we modify P such that
pii = 1131']‘ =0 (i 7é])

for each absorbed state i.

How do we select the subsequent states? We take a look at the fundamental matrix of the ab-
sorbing Markov Chain, defined as:

N=(-P)"

Note that the vector:
N1

where 1 is a vector of 1s answers the question for the number of steps it takes before entering
an absorbing state if we begin at state i, by looking at each element i. This is how we select the
subsequent sentences for our summary, and we repeat the process until the result is presented

8For a clear and thorough description of Markov chains, we recommend Absorbing Markov Chain

https://en.wikipedia.org/wiki/Absorbing_Markov_chain

Also pertinent to the discussion is the similarity metric. In our implementation, we use the

below similarity metric:
. S;»rS i
wy =4 E sy > 01)

0, otherwise

From the above discussion, we can derive the pseudo code for our algorithm:

Algorithm 3 Pseudocode for GrassHopper Algorithm.

procedure GRASSHOPPER(D, k, A) //Where D is a set of documents
G < BuildMatrix(D) // Build the similarity matrix as explained above
r < initializeDist(a) // Create the prior distribution
P+ AP+ (1—A)r
stationary « getStationary(P
state = np.argmax(stationary)
Selected < [state]
while Selected.len < k do
N <« fundamental (P, selected)
counts < expectedVisists(N)
max <— argmax(counts)
Selected < Selected + [max|
end while
end procedure

4.4 Modified GrassHopper

While the above algorithm yields some good results, as shown in our results section, we nonethe-
less attempted some modifications. We leave most of these for future work, but we propose cre-
ating a Markov chain as in the GrassHopper algorithm and rather than converting each state into
an absorbing state, we make it “less” important by adding a uniform transition probability to all
output states. In this scenario, we expect the results to improve (though this has not shown to be
the case).

4.5 Modified TextRank

One issue with TextRank is that it doesn’t have a built in mechanism to avoid choosing similar
summary sentences. Taking inspiration from GrassHopper, we decided to implement a modified
version of TextRank where after running the original TextRank algorithm we add the sentence
with the highest score to the summary and all words in the sentence to a set of summary words.
Then we reconstruct the Graph, ignoring summary words when creating edges, rerun TextRank
and take the sentence with the new highest score. This process is repeated until we extract k
sentences. The intent is that on subsequent iterations scores of sentences similar to those in the
summary will decrease, leading to broader topic diversity. Due to time constrains we were unable
to implement a diversity metric (see future work section).

5 Experiments

We now present a thorough analysis of our results, and critiques of our algorithms and our im-
plementations. We also provide details on the data we used for evaluation our system ,and also
illustrate some major features. In general, we’ve learned three major things from implementing
this system:

e Collaboration is more difficult than you expect, and clearly defining and abstracting APIs is
non only reasonable but absolutely required.

e Most algorithms presented in other papers offer little in the help of actually implementing
their algorithms. In our case, we buck the trend and release the code openly to anyone who
wishes to use it.

e Evaluation metrics for summaries are currently severely lacking and require significant im-
provement.

Furthermore, we learn that while having good ideas is beneficial, it’s always better to have a
good system for evaluating them. While we decided to use ROUGE as it appears to be the indus-
try standard, it’s surprising to note that the results we achieve are less than stellar. In particular,
this is surprising because our summaries appear to be much better, from a human readability per-
spective.

For example, below is an excerpt summary from a human evaluator.

Prospects were dim for resolution of the political crisis in Cambodia
in October 1998.

Prime Minister Hun Sen insisted that talks take place in Cambodia while
opposition leaders Ranariddh and Sam Rainsy, fearing arrest at home
, wanted them abroad.

King Sihanouk declined to chair talks in either place.

A U.S. House resolution criticized Hun Sen’s regime while the
opposition tried to cut off his access to loans.

But in November the King announced a coalition government with Hun Sen
heading the executive and Ranariddh leading the parliament.

Left out, Sam Rainsy sought the King’s assurance of Hun Sen’s promise
of safety and freedom for all politicians.

And now we show the results obtained from our best performing baselines, Frequency:

Government and opposition parties have asked King Norodom Sihanouk to
host a summit meeting after a series of post—election negotiations
between the two opposition groups and Hun Sen’s party to form a new
government failed .

Hun Sen, however, rejected that.

Both Ranariddh and Sam Rainsy have been outside the country since
parliament was ceremonially opened on Sep. 24.

The two parties said that the assembly would convene again Nov. 25.

The prince fled Cambodia and did not return until a few months before
elections in July.

And the results obtained from TextRank:

Cambodian leader Hun Sen on Friday rejected opposition parties’ demands
for talks outside the country, accusing them of trying to *’
internationalize "’ the political crisis.

Government and opposition parties have asked King Norodom Sihanouk to
host a summit meeting after a series of post—election negotiations
between the two opposition groups and Hun Sen’s party to form a new
government failed .

Opposition leaders Prince Norodom Ranariddh and Sam Rainsy, citing Hun
Sen’s threats to arrest opposition figures after two alleged
attempts on his life , said they could not negotiate freely in
Cambodia and called for talks at Sihanouk’s residence in Beijing.

1 woul

as well as the results obtained from GrassHopper:

Cambodia’s two—party opposition asked the Asian Development Bank Monday
to stop providing loans to the incumbent government, which it calls
illegal.

In a short letter sent to news agencies, the king said he had received
copies of cooperation agreements signed Monday that will place Hun

Sen and his Cambodian People’s Party in firm control of fiscal and
administrative functions in the government.

King Norodom Sihanouk on Tuesday praised agreements by Cambodia’s top
two political parties _ previously bitter rivals _ to form a
coalition government led by strongman Hun Sen.

Hun Sen’s party recently called on Ranariddh to return to the
negotiation table and said

Qualitatively speaking, the results above show that our system appears to more closely match
that of the human summarizer. While the above is simply one example, the code and data are
freely available for testing and we’re confident when we claim that our summarizer exceeds other
current methods, and in particular, performs much better than our baselines from a qualitative
point of view.

However, we’ve also learned that systems for extractive text summarization are inherently and
severely limited. Even in the papers we read, the ROUGE results presented above the baselines
are rather minimal and subsequently do not come close to matching the human results.

5.1 Methods and Models

We now present the methods we used for evaluation of our data. In our repository, the data from
the DUC 2004 competitions can be found, as well as the data used for this system. For more
information, see the README . md in the repository or the Appendix section of this paper.

The documents themselves were pre-processed to allow for each document to consists of a
sequences of sentences separated by newlines. The DUC 2004 Task 2 documents are then read by
our system and split into sentences based on this expected input syntax. Subsequently,

1. We split into sentences using the NLTK Punkt splitter (with default settings)

2. We then parse each word. Note that sentences are represented as a vector of words, rather
than as a single string.

3. Each word in the sentence is stemmed using the Porter Stemmer from the NLTK library.
4. After stemming and cleaning, all words are lower-cased.

5. The text is then processed and converted into the vector representations as required by each
algorithm.

6. Most vector representations that rely on a count of words, lowercase the input word before
processing so we don’t capture any information on capitalization.

Once the above has been accomplished for each document, the processed document set is fed
to each summarization algorithm, which is tasked with returning the appropriate summary. We
then post-process the summary:

1. If asked to, we truncate the input to the specified number of bytes. This is true by default, so
most output

2. If asked to, the system then runs ROUGE on the output summary files and compares them
to the model files (see ——he1p for more information).

3. Note that ROUGE runs with the following, parameters, stolen from the DUC 2007 confer-
ence.

b -1 ¢ 95 n 4 wl.2 -a-£fA -p0.5-t 0 -m

5.2 Results

Table (1] gives the resulting average ROUGE-1 and ROUGE-2 Recall scores for each of the algo-
rithms run on the data from DUC 2004 task 2. In addition to the summaries produced by the
implemented algorithms we also have average scores summaries from one of the human sum-
marizers used to evaluate results for the conference. To be honest, we're quite baffled with the
results, as our novel Word Freqs baseline seemingly outperformed the Human Summaries (to be
consistent with DUC 2004 evaluation, we truncated all summaries at 665 bytes). While this would
have been encouraging if the resulting summaries were of high quality, they mainly consist of
short choppy sentences, some of which could almost pass for poetry (see below).

His career is on the line.
It’s just ugly.

So did McCain.

And Newt knows it.

The big picture.

Looking through the algorithm generated summaries and the human ones they were scored
against, we don’t understand how the Word Freqs summaries are getting such high scores (the
high scores from the conference were below 0.4 which our naive baselines are seemingly blowing

Table 1: Resulting Rouge-1 and Rouge-2 Recall Scores

Algorithm Average Rouge-1 R Score Roude-1.R:95% CI Average Rouge-2 R Score Rouge-2_R: 95% CI
Naive Baseline 5342 0.5198 - 0.5494 0.3704 0.3564 - 0.3843
Word Freqs 0.6073 0.5967 - 0.6175 0.4433 0.4343 - 0.4527
Geom Prior 0.5478 0.5369 - 0.5575 0.3846 0.3731 - 0.3957
Modified Geom Prior 0.5444 0.5316 - 0.5570 0.3834 0.3723 - 0.3948
Multiple Geom Prior 0.5374 0.5249 - 0.5494 0.3780 0.3673 - 0.3920
TextRank 0.5373 0.5230 - 0.5523 0.3693 0.35660 - 0.3823
Modified TextRank 0.5220 0.4975 - 0.5485 0.3597 0.3336 - 0.3843
GrassHopper 0.5287 0.5159 - 0.5409 0.3620 0.3487 - 0.3742
Modified GrassHopper 0.5173 0.5023 - 0.5323 0.3539 0.3399 - 0.3677

Human Summary (From

DUC evaluation data) 0.6002 0.5802 - 0.6180 0.4226 0.4053 - 0.4392

out of the water despite being run on what we believe to be the same documents and model sum-
maries). This makes us a bit skeptical about whether ROUGE is working correctly. If somehow
ROUGE is working correctly, we're definitely disappointed with the performance of TextRank
and GrassHopper, as they performed worse or barely edged out our simple baselines. (@Sasha if
you're curious about why we’re getting strange rouge scores and want to follow up to take a look
let us know :))

5.3 Discussion

As we can see from the results above, the results from our extractive summarization library appear
to be objectively less than stellar. However, qualitatively gauging the summaries produced, we
teel like our library and modified algorithms do an adequate job and are likely on par with others
out there. Additionally, we’ve made an effort to make our data as open as possible, as well as
our code, because we found it extremely difficult reading papers which discussed algorithms,
presented results, but then had no way to verify their results. Even if we wanted to, some papers
made it extremely difficult to access the data they used for testing. We make an effort to do the
opposite by being as transparent as possible with our results and data.

We originally decided to take on this project because neither of us had done any NLP work and
we thought it would be a good learning opportunity. We found the course material to be engaging,
and felt something like this would be a natural extension of the material we learned from Finale
and others on machine learning. In tackling this project we’ve learned that, among other things,
text summarization is really hard. We thought extractive summarization was a relatively simple
idea, but from our own work and the papers we’'ve read it seems that doing substantially better
than the first sentence of every paragraph is not a trivial task. Rather than using our extractive
summaries to replace reading an article, we think extractive summarization has potential as a
great study tool-imagine being able to automatically highlight key ideas in your gen ed reading!

6 Future Work

While we were able to beat our baseline models, there is a lot of room for improvement. Right
now the similarity functions used to create our graphs do not account for the fact that words can
be synonyms, so we think doing so would be a straightforward way to improve the performance
of our implementations of TextRank and GrassHopper. We are also curious about the effects of

using different similarity functions such as log-TF, TF-IDF, etc. to determine edges and weights in
the algorithms. Additionally we’d like to use the spearmint package for Bayesian optimization to
tune our parameters.

In addition to ways for improving our algorithms themselves, we’re interested in different meth-
ods for evaluating our results. This includes alternatives to ROUGE for measuring summary
quality, and a way to measure summary diversity. One naive measure of diversity we came up
with was to score words based on frequency the way we did in our Word Frequency baseline, and
score a summary’s diversity as the sum of the word scores of the union of it’s sentences. While it’s
certainly a naive measure (there are papers with much more sophisticated approaches), it’s one
we could implement relatively quickly to get a feel for if GrassHopper is actually picking up dif-
ferent a broader set of ideas than TextRank, or if our modification to TextRank actually helped in
this regard. As for an alternative to ROUGE, our grievances were voiced in the discussion section
above.

A Program Trace

We now present a trace of the program as it summarizes a single document set utilizing the
GRASSHOPPER algorithm with our own modification. We present an abbreviated version of the
traceback. Note that we have included a tool, tracer.py which allows for the generation of
traces. Note that without ignoring some modules (such as utils.py), traces can run into the hun-
dreds of megabytes and take a few minutes to generate.

The command, using the above tool which can be found in the root directory of our repository,
used to generate the below trace, is now presented. Note that the command is executed from the
root directory.

python tracer.py —data_dir=sample_rouge_data —algorithm=grasshopper \
—rouge_score=True —summarize=True —debug=True —bytes=665 > trace.out

However, if running without rouge, the command should be:

python tracer.py —data_dir=sample_rouge_data —algorithm=grasshopper \
—rouge_score=False —summarize=True —debug=True > trace.out

If more detail on the trace is required, modifications on tracer.py can be made to ignore
fewer modules. Note that the trace presented below can be viewed in its entirety here.

<string >(1): —— modulename: summarizer, funcname: run

summarizer.py(129): base = None if opts.data_dir is None else os.
path.abspath(opts.data._ d1r)

summarizer.py(130): debug = opts.debug.lower() == “true’

summarizer.py(131): bytes = int(opts.bytes)

summarizer.py(132): sort_sents = opts.sort_sents.lower() == "true’

summarizer.py(133): k = int(opts.summary_length)

summarizer.py(135): if opts.summarize.lower () == “true’

summarizer.py(136): try:

summarizer.py(137): algorithm = argsToAlgo[opts.algorithm.

lower ()]

https://raw.githubusercontent.com/kandluis/document_summaries/master/trace.out

summarizer.py(144): inputParams = ”_sorted={}_k={} _bytes={}".format
(sort_sents , k, bytes)

summarizer.py(145): outpath = None if base is None else os.path.
join (

summarizer.py(146) base, opts.algorithm + inputParams)

summarizer.py(147) if opts.summarize.lower() == "true’:

summarizer.py(148) if base is None:

summarizer.py(154) if not os.path.exists (outpath):

summarizer.py(155) os . makedirs (outpath)

summarizer.py(157) inbase = os.path.join(base, ’“docs”)

summarizer.py(158) folders = dirs = [d for d in os.listdir (

summarizer.py(159) inbase) if os.path.isdir(os.path.join(
inbase, d))]
—— modulename: stat, funcname: S_ISDIR
stat.py(41): return S_IFMT (mode) == S_IFDIR
—— modulename: stat, funcname: S_IFMT
stat.py(25): return mode & 0170000
summarizer.py(159): inbase) if os.path.isdir(os.path.join(
inbase, d))]

summarizer.py(160): for folder in folders:

summarizer.py(161): inpath = os.path.join(inbase, folder)

summarizer.py(162): try:

summarizer.py(163): createSummaries (algorithm , inpath,
outpath, sort_sents, bytes=bytes,

summarizer.py(164): k=k, multiDocument=
True)

—— modulename: summarizer, funcname: createSummaries
summarizer.py(87): setlD = abs_path.split(’/")[—1]
summarizer.py(90) : docIDs = []
summarizer.py(93): D = []
summarizer.py(94) : for filename in os.listdir (abs_path):
summarizer.py(96) : tmp = filename.split(’.")
summarizer.py(97): if tmp[0] == ’Parsed’:
summarizer.py(98): docIDs .append (tmp[1])
summarizer.py(99): filepath = os.path.join (abs_path,

filename)
summarizer.py(100): with open(filepath) as inputDoc:
summarizer.py(101): text = inputDoc.read () .strip ()
summarizer.py(102): sentences = tokenizer.tokenize (text
)
summarizer.py(103): D.append ([s.split(”.”) for s in
sentences|)
summarizer.py(103): D.append ([s.split(”.”) for s in

sentences|)

summarizer.

/i
—

) for s in

py(103): D.append ([s.split(

sentences|])

summarizer.py(103): D.append ([s.split(”.”
sentences|])

summarizer.py(103): D.append ([s.split(”.”
sentences|)

summarizer.py(103): D.append ([s.split(”.")
sentences|)

summarizer.py(103): D.append ([s.split(”.")
sentences|)

summarizer.py(103): D.append ([s.split(”.")
sentences|)

summarizer.py(103): D.append ([s.split(”.")
sentences|)

summarizer.py(103): D.append ([s.split(”.")
sentences|])

summarizer.py(103): D.append ([s.split(”.")
sentences])

summarizer.py(103): D.append ([s.split(”.")
sentences|])

summarizer.py(103): D.append ([s.split(”.")
sentences|])

summarizer.py(103): D.append ([s.split(”.")
sentences|])

summarizer.py(103): D.append ([s.split(”.")
sentences|])

summarizer.py(103): D.append ([s.split(”.”
sentences|)

summarizer.py(103): D.append ([s.split(”.”
sentences|)

grasshopper.py(220): D = [s for d in D for s in d]

grasshopper.py(220): D = [s for d in D for s in d]

grasshopper.py(220): D = [s for d in D for s in d]

grasshopper.py(220): D = [s for d in D for s in d]

grasshopper.py(220): D = [s for d in D for s in d]

grasshopper.py(220): D = [s for d in D for s in d]

grasshopper.py(220): D = [s for d in D for s in d]

grasshopper.py(220): D = [s for d in D for s in d]

grasshopper.py(223): cleanDoc, mapping =

grasshopper.py(224): WClean = docToMatrix (

grasshopper.py(225): cleanDoc, sim_fun=utils.
threshHoldCosineSim)

—— modulename: grasshopper, funcname: docToMatrix

grasshopper.py(80): sentenceVectors = vec_fun (D)

for

for

for

for

for

for

for

for

for

for

for

for

for

for

in

in

in

in

in

in

in

in

in

in

in

in

in

in

utils .cleanDocument (D)

grasshopper.py(83):
grasshopper.py(84):
grasshopper.py(85):
grasshopper.py(86):

n len (D)

M = np.zeros((n, n))

for i in range(n):
for j in range(n):

grasshopper.py(87): M[i, j] = sim_fun(sentenceVectors[i],
sentenceVectors|[j])
—— modulename: _abcoll, funcname: __subclasshook__

_abcoll .py(100):
_abcoll .py(103):

if cls is Sized:
return NotImplemented

—— modulename: _abcoll, funcname: __subclasshook__

—abcoll .py(100):
—abcoll.py(103):
grasshopper.py(86):
grasshopper.py(87):
sentenceVectors|[j])
grasshopper.py(86):
grasshopper.py(87):
sentenceVectors|[j])
grasshopper.py(86):
grasshopper.py(87):
sentenceVectors[j])
grasshopper.py(86):
grasshopper.py(87):
sentenceVectors|[j])
grasshopper.py(86):
grasshopper.py(87):
sentenceVectors|[j])

grasshopper.py(86):

grasshopper.py(87):
sentenceVectors|[j])

grasshopper.py(86):

grasshopper.py(85):

grasshopper.py(88):
grasshopper.py(229):

grasshopper.py(230):
grasshopper.py(231):

grasshopper.py(232):

if cls is Sized:
return NotImplemented
for j in range(n):
M[i, j] = sim_fun(sentenceVectors[i],

for j in range(n):
M[i, j] = sim_fun(sentenceVectors[i],

for j in range(n):
M[i, j] = sim_fun(sentenceVectors[i],

for j in range(n):
M[i, j] = sim_fun(sentenceVectors[i],

for j in range(n):
M[i, j] = sim_fun(sentenceVectors[i],

for j in range(n):
M[i, j] = sim_fun(sentenceVectors[i],

for j in range(n):
for i in range(n):

return M
lamb = 0.5
alpha = 0.25

r = utils.decayDistribution (alpha, len(WClean)

summary = algo(WClean, r, lamb, k)

—— modulename: grasshopper, funcname: grasshopper

grasshopper.py(118):
grasshopper.py(119):
grasshopper.py(120):
grasshopper.py(121):
distribution

n, m = W.shape

assert n ==m # Sizes should be equal
assert np.min(W) >= 0 # No negative edges
assert abs(np.sum(r) — 1) < epsilon # r is a

grasshopper.py(122): assert 0 <= lamb and lamb <=1 # lambda is
valid

grasshopper.py(123): assert 0 < k and k <= n # Summary can’t be
longer than document!

grasshopper.py(126): P =W/ np.sum(W, axis=1)

grasshopper.py(127): r = r.reshape((1, len(P)))

grasshopper.py(128): hatP = lamb * P + (1 — lamb) * r

grasshopper.py(130): assert hatP.shape == (n, m) # Shape should
not change!

grasshopper.py(133): absorbed = []

grasshopper.py(134): nonAbsorbed = range(n)

grasshopper.py(135): probs = []

grasshopper.py(138): q = stationary (hatP)

—— modulename: grasshopper, funcname: stationary

grasshopper.py(25): values, vectors = np.linalg.eig(Mat.T)

—— modulename: numeric, funcname: asarray

numeric.py(474): return array(a, dtype, copy=False, order=order)

—— modulename: numeric, funcname: asanyarray

numeric.py(525): return array(a, dtype, copy=False, order=order,
subok=True)

grasshopper.py(26): index = np.nonzero(abs(values — 1.) < epsilon)
[01[0]

grasshopper.py(28): q = np.real(vectors[:, index])

—— modulename: type_check, funcname: real

type_check .py(139): return asanyarray(val).real

—— modulename: numeric, funcname: asanyarray

numeric.py(525): return array(a, dtype, copy=False, order=order,
subok=True)

grasshopper.py(29): assert(abs ((q**2).sum() — 1) < epsilon)

grasshopper.py(31): return q / np.sum(q) # convert into
probability distribution

grasshopper.py(139): maxState = np.argmax(q)

grasshopper.py(140): absorbed .append (maxState)

grasshopper.py(141): probs.append (np.max(q))

grasshopper.py(142): nonAbsorbed . remove (maxState)

grasshopper.py(146): while (len(absorbed) < k):

grasshopper.py(151): N = np.linalg.inv(

grasshopper.py(152): np.identity (len (nonAbsorbed)) — hatP[

nonAbsorbed, nonAbsorbed])
—— modulename: numeric, funcname: identity

numeric.py(2209): from numpy import eye

numeric.py(2210): return eye(n, dtype=dtype)

—— modulename: numeric, funcname: asarray

numeric.py(474): return array(a, dtype, copy=False, order=order)

grasshopper.py(155): nuvisit = np.sum(N, axis=0)

grasshopper.py(156): nvisit = np.zeros(n)

grasshopper.py(157): nvisit [nonAbsorbed] = nuvisit
grasshopper.py(160): absorbState = np.argmax(nvisit)
grasshopper.py(161): absorbVisit = max(nvisit)
grasshopper.py(163): absorbed .append(absorbState)
grasshopper.py(164): probs.append(absorbVisit)
grasshopper.py(166): nonAbsorbed . remove (absorbState)
grasshopper.py(146): while (len(absorbed) < k):
grasshopper.py(151): N = np.linalg.inv(

grasshopper.py(152): np.identity (len (nonAbsorbed)) — hatP[

nonAbsorbed , nonAbsorbed])
—— modulename: numeric, funcname: identity

numeric.py(2209): from numpy import eye

numeric.py(2210): return eye(n, dtype=dtype)

—— modulename: numeric, funcname: asarray

numeric.py(474): return array(a, dtype, copy=False, order=order)
grasshopper.py(155): nuvisit = np.sum(N, axis=0)
grasshopper.py(156): nvisit = np.zeros(n)
grasshopper.py(157): nvisit [nonAbsorbed] = nuvisit
grasshopper.py(160): absorbState = np.argmax(nvisit)
grasshopper.py(161): absorbVisit = max(nvisit)
grasshopper.py(163): absorbed .append(absorbState)
grasshopper.py(164): probs.append(absorbVisit)
grasshopper.py(166): nonAbsorbed . remove (absorbState)
grasshopper.py(146): while (len(absorbed) < k):
grasshopper.py(151): N = np.linalg.inv(

grasshopper.py(152): np.identity (len (nonAbsorbed)) — hatP[

nonAbsorbed, nonAbsorbed])
—— modulename: numeric, funcname: identity

numeric.py(2209): from numpy import eye

numeric.py(2210): return eye(n, dtype=dtype)

—— modulename: numeric, funcname: asarray

numeric.py(474): return array(a, dtype, copy=False, order=order)
grasshopper.py(155): nuvisit = np.sum(N, axis=0)
grasshopper.py(156): nvisit = np.zeros(n)
grasshopper.py(157): nvisit [nonAbsorbed] = nuvisit
grasshopper.py(160): absorbState = np.argmax(nvisit)
grasshopper.py(161): absorbVisit = max(nvisit)
grasshopper.py(163): absorbed .append(absorbState)
grasshopper.py(164): probs.append(absorbVisit)
grasshopper.py(166): nonAbsorbed . remove (absorbState)
grasshopper.py(146): while (len(absorbed) < k):
grasshopper.py(151): N = np.linalg.inv (

grasshopper.py(152): np.identity (len(nonAbsorbed)) — hatP[

nonAbsorbed , nonAbsorbed])

—— modulename:
numeric.py(2209):
numeric.py(2210):
—— modulename:
numeric.py(474):
grasshopper.py(155):
grasshopper.py(156):
grasshopper.py(157):
grasshopper.py(160):
grasshopper.py(161):
grasshopper.py(163):
grasshopper.py(164):
grasshopper.py(166):
grasshopper.py(146):
grasshopper.py(169):
grasshopper.py(234):

summarizer
summarizer
summarizer
summarizer
summarizer
summarizer
summarizer
summarizer
summarizer

-py(80):
.py(81):
.py(82):
Py (82):
.py(82):
.py(82):
Py (82):
.py(82):
py(111):

numeric,

numeric,

return absorbed

funcname:
from numpy import eye
return eye(n, dtype=dtype)
funcname:
return array(a, dtype, copy=False, order=order)
np.sum(N, axis=0)
np.zeros(n)

nuvisit =
nvisit =

identity

asarray

nvisit [nonAbsorbed]
np.argmax(nvisit)
max(nvisit)
absorbed .append(absorbState)
probs.append(absorbVisit)
nonAbsorbed . remove (absorbState)
while (len(absorbed) < k):

absorbState
absorbVisit

= nuvisit

return summary, D, mapping
—— modulename: summarizer, funcname: processSummary
if sort_sents:

sentences =

return
return
return
return
return
return

f

[D

ilepath =

SetSummary.{}. txt”.format(setID))
with open(filepath ,

summarizer.py(112):
summarizer.py(113):
for s in summary])
summarizer.py(113):
for s in summary])
summarizer.py(113):
for s in summary])
summarizer.py(113):
for s in summary])
summarizer.py(113):
for s in summary])
summarizer.py(113):
for s in summary])
summarizer.py(114):
summarizer.py(160):
summarizer.py(172):
True’:
—— modulename:

trace,

if base is not None and opts.rouge_score

funcname:

res = ”"\n”.join ([”.”.join(s).
res = “\n”.join ([”.”.join(s).
res = ”“\n”.join ([”.”.join(s).
res = ”“\n”.join ([”.”.join(s).
res = ”“\n”.join ([”.”.join(s).
res = ”“\n”.join ([”.”.join(s).

for
for
for
for
for
for

sorted (sentences)
[D[mapping[i]] i i
[D[mapping[i]]

[mapping[i]]
[D[mapping[i]]
[D[mapping[i]]
[D[mapping[i]]
os.path.join (out_path,

i in
in
in
in
in
i in

e e e e

'w+’) as out:

out.write(res[:bytes])
for folder in folders:

_unsettrace

sentences |
sentences |
sentences |
sentences |
sentences |
sentences |

4

strip ()
strip ()
strip ()
strip ()
strip ()

strip ()

7

trace.py(80): sys.settrace (None)

For other tracebacks, we provide the results. Note that the syntax for the provided tracer.py
program

B System Description

For a more detailed description of how to run our system, please take a look at the README.md
tile in the github repository. Note that for a short summary of what’s presented below, the --help
flag will be handy.

B.1 DUC 2004 Sample Data

We now provided a short description on how to generate some of the sample summaries presented
in the text, which are included in the github repository. Note that the commands presented below

should be runnable directly as soon as the repository is cloned and a the appropriate requirements
tulfilled.

1. Clone the github repository using

Listing 1: "Git Clone Command”

git clone git@github .com:kandluis/document_summaries. git

2. See README . md for details on the required packages. At minimum,

(a) Install NLTK
(b) Install numpy

3. The trace described in Appendix|A|can be executed with the command:

python tracer.py —data_dir=sample_rouge_data —algorithm=
grasshopper —rouge_score=True —summarize=True —debug=True >
trace.out

4. For other sample commands, the general format, after installation:

python —-m summarizer —data_dir=sample_rouge_data —algorithm=
ALGORITHM —summarize=True —rouge_score=False —debug=True —
summary_length=5

The above command, with the appropriate substitution of ALGORITHM with one of {GrassHopper,
FirstGeomPrior, Baseline, GeomPrior, Frequency, TextRank }. The command will take the in-
put sample data contained in the sameple_rouge_data/docs/ directoryﬂ

9 As of the time of the writing of this paper, the data contained consists of a single collection from the DUC 2004 Task
1/2 data set. The set selected consists of ID 30001.

https://github.com/kandluis/document_summaries
http://www.nltk.org/
http://www.numpy.org/

For more assistance on how to run the program, see the README . md or run the summarizer with
the ——help flag to receive more details |T_Gl

As per the README . md, note that it is further possible to verify the presented results by running
the system directly, with new summaries, and calculating the ROUGE scores in comparison to
the model summaries || While we do not recommend taking this approach, due to the level of
difficulty,

B.2 Standard Input

An alternative method for running the system which does not require initial data consists of sum-
marizing single documents through the use of the commandline interface itself. Suppose we have
the following in a text file sample. txt:

Use short sentences to create punch and make a point.

Use phrases and even words as sentences. Really.

Do not use too many sentences — about three or four is usually enough.

Use a short sentence as a summary after a longer description.

Generally speaking, a short sentence works well at the start of a
paragraph or speech item to grab attention, and at the end, to
summarize and signal completion.

We can create a simple 1-sentence summary with the command:

python —-m summarizer —algorithm=ALGORITHM —rouge_score=False —
summarize=True —debug=True —k 1 < sample. txt

We present the results of the above command for each for the algorithms:

1. BASELINE: Use short sentences to create punch and make a point.

2. GEOMPRIOR: Generally speaking, a short sentence works well at the start of a paragraph or
speech item to grab attention, and at the end, to summarize and signal completion.

FIRSTGEOMPRIOR: Use short sentences to create punch and make a point.
FREQUENCY: Use short sentences to create punch and make a point.

GRASSHOPPER : Use short sentences to create punch and make a point.

AN L

TEXTRANK: Generally speaking, a short sentence works well at the start of a paragraph or
speech item to grab attention, and at the end, to summarize and signal completion.

Note, however, that the system does not provide an evaluation for the quality of the score under
these circumstances. In order to receive ROUGE metric, the system must be run with as described
in Append

The code for the project is completely open source and can be found on github. Requests for ac-
cess to the processed data summaries for DUC 2004 can be sent to luisperez@alumni.harvard.edu.
For direct access to the data, please see here.

19Note that the system attempts to generate, by default, summaries containing 665 characters.

"The model summaries are obtained from the DUC 2003 conference. They can also be found directly
herethttps:/ /www.dropbox.com/sh/dzmzh5nweli68ra/ A ABYPkOj61XZIn516tEDjp Ana?dl=0

12Not deterministic.

https://github.com/kandluis/document_summaries
mailto:luisperez@alumni.harvard.edu
https://www.dropbox.com/sh/dzmzh5nwe1i68ra/AABYPkOj6lXZln5I6tEDjpAna?dl=0
https://www.dropbox.com/sh/dzmzh5nwe1i68ra/AABYPkOj6lXZln5I6tEDjpAna?dl=0

References

[1] Wesley T. Chuang and Jihoon Yang. Extracting sentence segments for text summarization: A
machine learning approach. In Proceedings of the 23rd Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR "00, pages 152-159, New York,
NY, USA, 2000. ACM.

[2] John Conroy and Dianne P. O’leary. Text summarization via hidden markov models and piv-
oted qr matrix decomposition. Technical report, In SIGIR, 2001.

[3] Dipanjan Das and Andr F. T. Martins. A survey on automatic text summarization, 2007.

[4] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into texts. In Dekang Lin and Dekai
Wau, editors, Proceedings of EMNLP 2004, pages 404—411, Barcelona, Spain, July 2004. Associa-
tion for Computational Linguistics.

[5] Chin yew Lin. Rouge: a package for automatic evaluation of summaries. pages 25-26, 2004.

[6] Xiaojin Zhu, Andrew B. Goldberg, Jurgen Van, and Gael David Andrzejewski. Improving
diversity in ranking using absorbing random walks. In Physics Laboratory University of Wash-
ington, pages 97-104, 2007.

	Introduction
	Background
	Abstractive Summarization
	Extractive Summarization

	Related Work
	Summarization through Learning
	Hidden Markov Models

	Summarization as Ranking - An Unsupervised Approach
	Current Evaluation Methods
	Multi-Document Summarization

	Algorithms
	Baselines
	Naive Baseline
	Geometric Prior
	Modified Geometric Prior
	Multiple Geometric Prior
	Word Frequency

	TextRank
	GrassHopper
	Modified GrassHopper
	Modified TextRank

	Experiments
	Methods and Models
	Results
	Discussion

	Future Work
	Program Trace
	System Description
	DUC 2004 Sample Data
	Standard Input

