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1.  Introduction 

Fermat’s Last Theorem was formulated in 1637 and apparently not proved 

successfully until 1995, when Andrew Wiles [1] did so using the latest high level 

number theory. Over the years, enthusiasts have been encouraged by the simplicity of 

the conjecture to try and prove it using elementary function arithmetic [2]. This is one 

such attempt using inference from worked examples.  

 

Theorem 

No three positive integers a, b, c, can satisfy the equation: 

   ppp cba         (1.1) 

if (p) is an integer greater than two. 
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2.  Proof for (p = 3)  

Given the equation: 

333 cba  ,       (2.0) 

let (c = a + e) for (e) a positive integer. Set up two equal expressions: 
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.     (2.1) 

In the first expression, substitute for (c) and also let (a = se), then simplify to get: 

    2e1sksekaa)e,a(f  ,    (2.1a) 

where in this case,  

1k  .         (2.1b) 

Here, f(a,e) will be an integer when (a) is an integer. 

In the second expression, f(b,e) will be an integer for selected values of integer 

(b) such as: 

28...,7,5,2efor,e)2n3(bn  ,   (2.2a) 

or 6,3efor,enbn  ,     (2.2b) 

or 24efor,4/e)3n(bn     ,    (2.2c) 

where integer (n  1).  Other selected (bn) values are produced by other (e) values. Now, 

for f(b,e), substitute  

 e 1) + (q = bn ,  and 1) + 3 / (q =u  ,    (2.3a) 

and simplify to get: 

    eequeq)e,b(f  .     (2.3b) 

Let potential integer f(a,e) from Eq.(2.1a) be equated to this actual integer f(b,e), 

thus:  

            )eequ()equ()u/1()eak()ak()k/1(  .  (2.4a) 

The aim is to prove that (a) cannot really be an integer in this equation.  

Make this more symmetrical by substituting: 

   )eak2(x  ,      (2.4b) 

and 

   )eequ2(y  ,      (2.4c) 

then Eq.(2.4a) simplifies to: 

         )ey()ey()u/1()ex()ex()k/1(  .  (2.4d) 
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In practise examples, (y) and (u) have always been calculated after choosing (e) and (bn) 

values, and then (x) has been derived as a non-integer every time. However, by 

reversing this procedure and starting with chosen integers (a), (e) and (x), one is led 

towards (u) and (y) values unconstrained by (bn).  Auspiciously, this reveals the exact 

reason why (x) was never an integer in the former procedure.   

 

Lemma: The general format of Eq.(2.4d) would allow numerical examples possessing 

an integer (x) if (y) is not related to (u) through Eq.(2.4c).   

Proof: Develop a simple arbitrary expression which has the form of Eq.(2.4d) without 

reference to (bn). For example, let: 

      73535214915   ,     (2.5a) 

then expand: 

            72872817321732   ,   (2.5b) 

or             1768176817/717321732
2

  . (2.5c) 

Here, (x  32), (e  17), and (y  68), while u/k  (17/7)2 employs 17 and 7 from 

previous terms. Given this straightforward derivation, it appears that Eq.(2.5c) may be 

the simplest and unique format for getting an integer (x), albeit integer (y) does not 

satisfy Eq.(2.4c), which would require (y ≈ 2963.57) when using this (u/k) value.   

QED.  

 

Now,  compare  this  result with an arbitrary real example of Eq.(2.4d), wherein 

(e = 28, b16 = 1288, q = 45, u = 16, k = 1), and (y = 40348) satisfies Eq.(2.4c). Thus 

Eq.(2.4d) becomes directly: 

          2840348284034816/128x28x  ,  (2.6a) 

which could be simplified: 

         10174752071008771008728x28x   , (2.6b) 

or expanded:   

          2840348284034828/728x28x
2

 ,  (2.6c) 

where substituted u  (28/7)2 employs 28 and 7 from previous terms, as in Eq.(2.5c). 

Predictably, (x) evaluates to a non-integer (10087.036), so modify this expression in 

order to make (x) equal to a nearby integer, say (10089). First, factorise the final 

product in Eq.(2.6b) differently: 
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   102909888101747520  ,     (2.7a) 

then calculate the arithmetic mean [(9888+10290)/2 = 10089] which will represent 

integer (x) in expressions similar to Eq.(2.6b, c): 

                1017475207100877100872011008920110089   , (2.7b) 

or               201289641201289641201/72011008920110089
2

 . (2.7c) 

Here, (e = 201) is new, and new u/k = (201/7)2 employs 201 and 7 from previous terms, 

just as the substituted (u) did in Eq.(2.6c). However, the new value of (y = 289641) is 

not related to new (u/k) through Eq.(2.4c), which would require (y ≈ 818865236). 

This situation will exist for every real example of Eq.(2.4d), so values of (y) 

defined correctly by Eq.(2.4c) will never occur in expressions constructed like 

Eq.(2.7c), or Eq.(2.5c), which have the unique and necessary format for allowing an 

integer (x). Put another way: every example like Eq.(2.7c) with integer (x) will not be 

an expression of Eq.(2.4d). 

Clearly, these examples prove that (a) can never be an integer if (b) is first 

selected to be an integer. This is equivalent to the proof of Eq.(1.1) for (p = 3).  

 

3.  Proof for (p = 4)  

Given the equation: 

444 cba  ,       (3.0) 

  let (c = a + e) for (e) a positive integer. Set up two equal expressions: 
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.     (3.1) 

In the first expression, substitute for (c) and also let (a = se), then simplify to get: 

     32 e2Ksse2e3a2aa)e,a(f  ,   (3.1a) 

where,  

)3s2(K   .       (3.1b) 

Here, f(a,e) will be an integer when (a) is an integer. 

In the second expression, f(b,e) will be an integer for selected values of integer 

(b) such as: 

  4/e)3n(bor,enbor,e)1n2(b nnn  , (3.2) 

where integer (n  1). Other selected (bn) values are produced by other (e) values.  Now, 

for f(b,e), substitute 
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 1)e+ (q = bn ,   and   3q22/qU 2  ,    (3.3a) 

and simplify to get: 

     3e2qUq)e,b(f  .     (3.3b) 

Let f(a,e) from Eq.(3.1a) be equated to this f(b,e), thus: 

              ee2UqeUqeU/1ee2KaKaK/1  .  (3.4a) 

Make this more symmetrical by substituting: 

   )eKa(x  ,       (3.4b) 

and 

   )eUqe(y  ,      (3.4c) 

then Eq.(3.4a) simplifies to: 

      })ey()ey{()U/1(})ex()ex{()K/1(  .  (3.4d) 

This equation is identical in form to Eq.(2.4d) even though (U, K, x, y) are defined 

differently. It is expected that (s) and (K) in Eq.(3.1b) will often be fractions rather than 

integers, in which case every term in Eq.(3.4d) would need to be multiplied by (e) and 

replaced, eg. (e' = e2), (x' = xe), (K' = Ke), (y' = ye), (U' = Ue). Consequently, the 

logical argument which followed Eq.(2.4d) will apply and lead to the same conclusion. 

That is, genuine values of (y) calculated from Eq.(3.4c) do not occur in expressions of 

the form Eq.(2.5c) and Eq.(2.7c) which have the format necessary for getting an integer 

(x) or (x'). Therefore (a) can never be an integer if (b) is selected to be an integer. This 

is equivalent to the proof of Eq.(1.1) for (p = 4).  

 

4.  Proof for (p = 5)  

Given the equation: 

555 cba  ,       (4.0) 

  let (c = a + e) for (e) a positive integer. Set up two equal expressions: 
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.     (4.1) 

In the first expression, substitute for (c) and also let (a = se), then simplify to get: 

  4e1sks)e,a(f  ,     (4.1a) 

where,  
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 2s2sk 2   .      (4.1b) 

Again, f(a,e) will be an integer when (a) is an integer. 

In the second expression, f(b,e) will be an integer for selected values of integer 

(b) such as: 

  4/e)3n(bor,enbor,e)4n5(b nnn  , (4.2) 

where integer (n  1). Other selected (bn) values are produced by other (e) values. Now, 

for f(b,e), substitute  

 1)e+ (q = bn ,   and   2q2q5/qu 23  ,   (4.3a) 

and simplify to get: 

     4e1quq)e,b(f  .     (4.3b) 

Let f(a,e) from Eq.(4.1a) be equated to this f(b,e), thus: 

                 22 eeequequu/1eeakakk/1  .   (4.4a) 

This equation is identical in form to Eq.(2.4a) even though (u, k) are defined differently. 

It is expected that (s) and (k) in Eq.(4.1b) will often be fractions rather than integers, 

then some factors in Eq.(4.4a) would need to be multiplied by the (e2) term, and 

replaced, ie. (k' = ke2), (u' = ue2), (e' = ee2), thus: 

                 eequequu/1eakakk/1  .   (4.4b) 

Consequently, the logical argument following Eq.(2.4a) will apply and lead to the same 

conclusion. Therefore (a) can never be an integer if (b) is selected to be an integer. This 

is equivalent to the proof of Eq.(1.1) for (p = 5).  

 

5.  Proof for ( p = prime number   3 )  

Proofs for (p = 7, 11, and 13) have been performed to confirm that they follow 

the format of (p = 5) given above. Therefore a general proof for all prime numbers will 

be proposed as follows. 

Given the equation: 

ppp cba  ,       (5.0) 

  let (c = a + e) for (e) a positive integer. Set up two equal expressions: 
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In the first expression, substitute for (c) and also let (a = se), then simplify to get: 

  1pe1sks)e,a(f  ,     (5.1a) 

where,  

      2pp
sp1sps1sk /  .   (5.1b) 

Again, f(a,e) will be an integer when (a) is an integer. 

In the second expression, f(b,e) will be an integer for selected values of integer 

(b) such as: 

    4/e)3n(bor,enbor,e11npb nnn  , (5.2) 

where integer (n  1). Other selected (bn) values are produced by other (e) values. Now, 

for f(b,e), substitute  

     1)e+ (q = bn ,   and         2p
pq1pq1qu / ,   (5.3a) 

and simplify to get: 

     1pe1quq)e,b(f  .     (5.3b) 

Let f(a,e) from Eq.(5.1a) be equated to this f(b,e), thus: 

                3p3p eeequequu/1eeakakk/1   .  (5.4a) 

This equation is identical in form to Eq.(2.4a) even though (u, k) are defined differently, 

It is expected that (s) and (k) in Eq.(5.1b) will often be fractions rather than integers, 

then some factors in Eq.(5.4a) would need to be multiplied by the (ep-3) term, and 

replaced, ie. (k' = kep-3), (u' = uep-3), (e' = eep-3), thus: 

                 eequequu/1eakakk/1  .   (5.4b) 

Consequently, the logical argument following Eq.(2.4a) will apply and lead to the same 

conclusion. Therefore (a) can never be an integer if (b) is selected to be an integer. This 

is equivalent to the proof of Eq.(1.1) for any prime number p  3.  

 

6. Conclusion 

 The simplicity of Fermat’s conjecture implied that there might be a proof 

available using only basic algebra.  Thus, to remove the (c3) term, (c) was replaced by 

the sum of integer (a) and an arbitrary constant integer (e). This allowed the cubic 

equation to be split into two parts f(a,e) and f(b,e), for separate development. The aim 

was to show that each part could evaluate numerically to an integer, but never the same 
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integer for both. The first part was factorised in terms of integers (a, k) and (e). The 

second part was factorised after integer (b) was replaced using new variables (q, u), and 

(e). Both parts were then reformulated with new variables (x) and (y) in order to get an 

expression of simplistic symmetry. After extensive calculations confirming that (x) 

appeared destined to be a non-integer at all times, a search outside of the cubic problem 

was made for an analogous expression possessing all integers. Examples were found 

involving integers equivalent to (x), (e), with corresponding integers (y), (u), which 

were independent of the cubic expression. It transpired that the basic format of these 

new all-integer expressions was unique and would never be satisfied by the complicated 

(y)(u) numerical relationship in the prized symmetric cubic expression. That is, 

Fermat’s theorem was solved for the cubic case. 

The quartic equation was reduced to the symmetric expression of the cubic 

equation, but with more complicated (k, u). Again, the format of the equivalent all-

integer expression could never be satisfied by the complicated (y)(u) relationship of a 

quartic expression. The quintic equation was then reduced to the symmetric expression, 

and could not satisfy the format of the all-integer expression. Finally, the analysis was 

performed for a general power (p = prime number) equation to show that there was no 

apparent restriction on (p). 
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