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I. INTRODUCTION

The Guta's theorem [2], [3] and [5] is wider than the
Pythagoras’s theorem.

In this work we have the proper proof of the famous
Fermats Last Theorem.

The Goldbach’s Conjecture is one of the oldest and
best-known unsolved problems in number theory and all
of mathematics. It states: Every even integer greater than 2
can be expressed as the sum of two primes. [1]

Il. THE GULA’S THEOREM

Theorem 1. For each given g € {8,12,16,...} or for
each given g € {3,5,7,...} there exist finitely many pairs
(u,v) of positive integers such that:
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g= (%) —(%) =w+v)(u-v) =§(u—v) =
tqg=g=g" =@ -v?)*= @ +v*)* - Qw)*,

where q|g and q <./g and- q,% €{2,4,6,..} with
even g or q € {1,3,5,...} withodd g. [2]

I1l. THE FERMAT’S LAST THEOREM (FLT)

Theorem 2. For all n € {3,4,5,...} and for all
A,B,C €{1,2,3,..}: A"+ B" £ C"™.

Proof. Suppose that for some n € {3,4,5,...} and for
some A4,B,C € {1,2,3,...}: A"+ B" =C".

If A+ B<C, then (A2 +B2<C?A..A A"V +
Bl < (") = A" +B" < (",

which is inconsistent with A™ + B™ = C™.

Therefore itmustbe (A+ B > C A A% + B? > C? [4]).

Thus — For some A,B,C,C—A,C —B,ve {123, ..}

A—(C—-B)=B—-(C—-A)=2v>0
= (C—B+2v=AANC—-A+2v
=B ANA+B-2v=0C). (D

At present we can assume for generality of below that
A,B and C are coprime. Then only one number out of a
hypothetical solutions [A, B, C] is even. Hence we can
assume that A,C — B € {1,3,5, ... }.

Let {3,5,7,..}—{(2a+ b)b:a€N A b€ [35,7,..]} =
{3,5,7,11,13,17,19,23,29,31,37,41,43,47,53, ...} = P.

Every even number which is not the power of number 2
has odd prime divisor, hence sufficient that we prove FLT
for n =4 and for odd prime numbers n € P. [6]

A. Proof 1 For n = 4. If (4%2)? + (B%)? = (C?)?, then

[U2-VZ2=A4%Ao0ddU -V, u—v =1 A 20V
=B2 A U2+V?%=C2A V? = Quv)?
=U?2—-A2=C?-U?AU
=u?+viAut—vi=A4 A ged(U,V)
=gcd(u,v) = 1].

On the strength of the Theorem 1 we will have

2uv)? + (2v?)?
Z%ZUZ-FUZZUEO.D

A.0. Proof 2 For n = 4. If (pg)* = C%? — B*, then for
some p,q,C € {1,3,5, ...} and for some B € {2,4,6,...}
such that p,q,C and B are coprime and g < p < C:
(p)* = C* = (B

We assume that the number C is minimal. On the
strength of the Theorem 1 we obtain
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which is inconsistent with minimal C. o



B. Proof For n € P. Without loss for this proof we
can assume that 4 + B,C. In view of (1) we will have —

For some n € P and for some C,B,C — A € {1,2,3,...}
and for some C —B,A,v € {1,3,5,..}:

(C—B+2v)"=(C—-B+B)"—B"

= (C—-B)" v
+(n—1)(C—B)" 32 + -
2n—1vn
2n—2 n-1 -
+ v + n(C —B)
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=ale-ar+ nT_l (€ - A)"=34
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= A" +nA""1B
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+n(A+ B (=2v) + @ (A + B)"2(—2v)?
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= |0
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If n|A=1,then

[(n|AYn|C)=1A(n|BYn|C)
=0
/\(nIA vV n|B
Y(n"|A+BAn|C)=1]€0.

If n|B=1,then

[n]AYn|C)=0A(n|BYn|C)
=1
A(nIA vV n|B
Y(n"|A+BAn|C)=1]€0.

If n|C =1,then

[(n]AYn|C)=1A(n|BYn|C)
=1
A(nIA v nl|B
Y(n"A+BAn|C)=1]€el

For some n e P and for some e,m,c,h € {1,3,5,...}
such that n,e,m,c and h are coprime:

[nemch = v Antemch
AM"=C—-AV2"h"=C—-A)A "
=C - B].

B.1. Proof For Odd 4,B,C — B.

For some n e P and for some e,m,c,h € {1,3,5,...}
such that n,e,m,c and h are coprime:

[c™ + 2nemch = A A ™ + 2nemch = B A 2"n™ 1m"
=A+B
= ¢"+ h™ + 4nemch A c* + B = C]
= [Znnn—lmn
= c"+h"+4nemchAn|c+ hA n?
| ¢c™ + h"] = n | emch,

which is inconsistent with n t emch. 4

B.2. Proof For Even B,C — A.

For some ne P and for some e,m,c, h € {1,3,5,...}
such that n,e,m,c and h are coprime:

[c™ + 2nemch = A A 2"h™ + 2nemch = B A n™ 1m"
=A+B
= ¢c"+2"h" + 4nemch A cC" + B
= (]
— [nn—lmn
= ¢c"+2"h" + 4nemch A n
lc+2h An?|c™+2"h"]
= n | emch,

which is inconsistent with n + emch. This is the proof.

Remark 1. If n,4 €{1,3,5,..} and B€{1,23,..}
and n| A+ B and gcd(4,B) =1, then

(A+B—-B)*+B"
A+B

isodd A n?| A" + B"|,

which is obviously. This is the remark.



Theorem 3. For each pair (u,v) of the relatively
prime natural numbers v and v suchthat u —v is
positive and odd there exists exactly one a primitive
Pythagorean triple (u? —v?,2uv,u? + v?) and each the
primitive Pythagorean triple arises exactly from one pair
(u,v) of the relatively prime natural numbers u and v
such that u — v is positive and odd. Hence — For each
equation equations (p,q) = (u +v,u —v) of the
relatively prime odd natural numbers p and g such that
p > q, and of the relatively prime natural numbers u
and v suchthat u — v is positive and odd there exists

exactly one the primitive Pythagorean triple
2 2

_ 2 2
(pq,p Zq ,%) = (u? —v?,2uv,u? + v?) and each
this primitive Pythagorean triple arises exactly from one
equation (p,q) = (u +v,u —v) of the relatively prime
odd natural numbers p and g suchthat p > g, and of
the relatively prime natural numbers u and v such that

u — v is positive and odd. This is the theorem.

IV. PROOF OF THE GOLDBACH?’S
CONJECTURE

On the strenght of the proof of the Goldbach’s Conjecture
[2],[3] and of the theorems 1 and 3 we have —

Theorem 4. For all p,q € P and for some relatively
prime u,v € {1,2,3,...} suchthat p >q and u—v is
positive and odd: [5]

(e -\, o,

q—( 5 )—( > ) =u*—-v*=w+v)(u—-"v)
_ p2 — g% p*+ g2

PO— "

= (u? —v?2uv,u?® +v?)
ANp+@p—q)=4w Ap+q
=2UAp—q=20ANp=u+v Agq
=u—v A (p+q=2u=8,1012,..)

A (p—q=2v=24p6, )]

Proof. Itis easy to verify that
42-12=5.3=(5+3=8A5-3=2),
52-22=7.3=(7+3=10 A 7—3 =4),
62—12=7-5=(7+5=12 A 7-5=2),

72-42=11-3= (11+3 =14 A 11 -3 =8),
82-32=11-5=(11+5=16A 11 -5 = 6),
82-52=13-3=(13+3=16A 13 -3 =10),

92-22=11-7=(114+7=18 A 11 -7 =4),

92-42=13.5= (13+5=18 A 13—-5=28),
102-32=13-7=(13+7=20 A 13—-7 =6),
102-72=17-3= (17+3=20A 17 -3 = 14),
112-62=17-5= (1745 =22 A 17 =5 = 12),
112-82=19-3= (19+3 =22 A 19 -3 = 16),
122-52=17-7= (17+7 =24 A 17 —=7 = 10),
122-72=19-5= (1945 =24 A 19 —5 = 14),
132-62=19-7= (1947 =26 A 19 —7 = 12),
132 -102=23-3 = (23+3 =26 A 23— 3 = 20),
142 -32=17-11= (174+11=28 A 17— 11 = 6),
142 —92 =23.5= (23+5 =28 A 23 —5 = 18),
152-22=17-13= (17413 =30 A 17 — 13 = 4),
152 -42=19-11= (19+11 =30 A 19— 11 = 8),
152 -82=23-7= (23+7 =30 A 23 —7 = 16),
162-32=19-13=(19+13 =32 A 19-13 = 6),

172 — 62 = 23 - 11
= (23+11=34 A 23—11 = 12),

172 -122=29-5= (29+5=34 A 29 -5 = 24),
172 - 142 =31-3 = (314+3 =34 A 31 -3 =128),

182 — 52 = 23 - 13
= (23+ 13 =36 A 23 —13 = 10),

182 -112=29-7= (294+7=36 A 29—7 = 22),
182 -132=31-5=(314+5=36 A 31—5=26),
192-122=31-7= (31+7=38 A 31—7 = 24),
202-32=23-17= (23+17=40 A 23—17 =6),

202-172=37-3= (37+3 =40 A 37— 3 = 34),

This is the proof.



V. SUPPLEMENT

Theorem 5. Forall n € {3,5,7,...} and for all
z € {3,7,11, ...} the equation z" = u? +v? hasno
primitive solutions.

Proof. Suppose that for some n € {3,5,7,...} and for
some z € {3,7,11,...}: z" = u?® + v2. The numbers z,u
and v are coprimeand odd u —v > 0.

On the strength of the Theorem 1 we get —

For some n € {3,5,7,...} and for some z € {3,7,11, ...}
and for some d, k € {1,3,5,7,9,...} and for some

and for some s,u,v € {1,2,3,...} suchthat u — v isodd
and k > 2s:

(z"+d2>2_(2k+1+4s+1)2_<k+25+1>2

2d 2d d
Zn_dz2 Zn_dz
— 1,2 - 2
=u +( 2d ) +UeA 2d
_2k+1—4s—1_k—25] 0
- 2d T d ’

inasmuch as

4| (k+25s+1)2 A4t u?+ (k—25)2+v?]. O
Golden Nyambuya proved reputedly that — For all
n € {3,5,7,...} the equation z" = u? +v? hasno
primitive solutions in {1,2,3,...} with z € {3,5,7,...} —
{32,52,72,...3. [7]

Corollary 1. For some n € {3,5,7,...} and for some
z €{59,13,...} and for some relatively prime natural
numbers u,v such that u — v is positive and odd:

z" = u? +v? = (u? — v?,2uv, u? +v?).
Example 1.
53 =112 + 22 = (112 + 22,44,11%2 4+ 22).
Example 2.
173 = 522 + 472 = (522 — 47%,4888,522 + 472).
Example 3.

293 = 1452 + 582
= (1452 — 582, 16820, 1452 + 582).

This is the corollary. This is the supplement.
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