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All it takes to identify the computer programs which are Artificial Intelligence is to give them a 

test and award AI to those that pass the test. Let us say that the scores they earn at the test will be 

called IQ. We cannot pinpoint a minimum IQ threshold that a program has to cover in order to be 

AI, however, we will choose a certain value. Thus, our definition for AI will be any program the 

IQ of which is above the chosen value. While this idea has already been implemented in [3], here 

we will revisit this construct in order to introduce certain improvements. 
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Introduction 
 

We will use a test to determine what AI is. The test will produce a certain score, and we say that 

this is the program’s IQ. Then we decide that all computer programs the IQ of which is above a 

certain level satisfy the AI definition. 

 

In order to explain this concept, let us make an analogy with the admission tests given to 

candidates who wish to become university students. The problems given at the test are selected 

randomly, but all candidate students receive the same problems. Withal, solving the problems 

should require logical thinking, because we aim to enroll students who think logically rather than 

the lucky ones that may hit the right answers haphazardly. The score is based on the number of 

problems solved by each candidate student. We cannot say how many problems should be solved, 

because we do not know how many candidates will show up at the test, nor do we know how well 

or unwell they will perform. We may say set a certain score (e.g. 4.50) and say that we intend to 

admit all candidates who earn more than 4.50. However, it would be better to fix the minimum 

score after the test is done. Then we will take the score earned by the n-th ranking candidate (e.g. 

if n is 100 we take the score of the candidate whose score puts him in the 100
th

 position in the 

ranking and thus we enroll the top 100 candidates). 

 

This analogy describes well the AI test, but when the candidates are computer programs, we 

cannot select the 100 top performers, because in this case there will be infinitely many 

candidates. A better analogy is perhaps a recruitment contest for the CEO of a corporation with a 

test that drags on over time. The test will stop when a candidate earns a sufficient number of 

points. How many points are enough? While we may select a certain level in advance, we can 

adjust this level later if the initial level turns out to be too low or too high. 

 

A similar construct was already put forward in [3] whereby the various programs were given 

different scores (IQ[0.1]). Here we will revisit this construct in order to improve it. The reasons 

for which [3] needs improvement are: 
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1. In [3] we dealt concurrently with the questions of ‘What is AI?’ and ‘How can we create AI?’. 

Mixing up ‘what’ and ‘how’ is not a good idea. Here we will reduce ourselves just to the ‘What is 

AI?’ question and will not deal with how to find such a program. 

 

2. In [3] we defined AI as a program and here we will define AI as strategy. In [3] AI is a 

program and the world AI lives in is a program, too. Thus we end up with two programs playing 

against each other, which is somewhat perplexing. It is better to define AI as a strategy and have 

a program playing against a strategy. Certainly, the strategy will be computable, because it is 

finite. Our AI program will be any program which implements an AI strategy for the first 1000 

games. What the AI program does after 1000 games will remain undetermined, however it is 

hoped that the program will continue to behave intelligently thereafter. 

 

3. In [3] the world was presented by means of non-deterministic Turning machines. This is a 

futile complication. It would have made sense if there were no relation between the individual 

games and if the machine tape were erased (reset) after each game. And because the tape is not 

erased, each next game depends on what happened in the previous game (what has remained on 

the tape). For this reason we will use deterministic Turing machines which are simpler, while the 

fact that they depend on what has remained on the tape makes their behavior in the various games 

different (non-deterministic). 

 

4. At each step we have Action and Observation. Actions and Observations in [3] consisted of a 

single symbol, while here the Action will consist of n symbols and the Observation will be of 

m symbols. We can certainly code multiple symbols into one, but this will be at odds with the 

idea that unnecessary coding should be avoided [6]. The world is complicated and hard to 

understand enough. Adding one unnecessary coding will make it even less understandable. 

 

5. While in [3] it was assumed that all moves are correct, here we will add the concept of 

incorrect move. On one side it is important to assume that incorrect moves may exist. On the 

other side, this will spare us the indiscriminate shutdowns of the Turing machine, which we did 

in [3] in order to avoid cycling. 

 

6. The Turing machine is a theoretical model which does not need efficiency. Here we will 

harness this model in real work and will therefore modify it in order to boost its efficiency. The 

complication of the model is the price to be paid for the so obtained higher efficiency. 

 

7. In [3] we used the Turing machine in order to describe a logical world. If it is computable it 

should be logical. However, the world described by the Turing machine is not very logical. 

Everything is recorded on a single tape and the program is not structured at all. It jumps 

indiscriminately from one command to another (‘spaghetti code’, as software engineers have 

tagged this pattern). The way such a program operates is rather illogical and we will address this 

by adding subprograms and more tapes so the machine becomes a multi-tape one. 

 

8. In [3] we defined IQ as an arithmetic mean which cannot be calculated precisely because of 

combinatorial explosion. What we say there is that it can be calculated approximately through a 

statistical sample. Here we will introduce the terms ‘Global IQ’ — which cannot be calculated 

precisely, and ‘Local IQ’ — which is readily computable through a specific statistical sample. 

The Local IQ will approach to the Global IQ when the size of the statistical sample approaches to 

infinity. The set of worlds we use for calculating the Global IQ is finite (enormous, but still 

finite). Nevertheless, the size of the statistical sample can tend to infinity because there may be 



3 

 

repetitions in the sample (although repetitions are unlikely due to the hugeness of the set from 

which the sample is recruited). 

 

 

Related work 
 

In [7], Turing proposes his definition of AI (the “Turing test”). The idea is that if a machine can 

successfully imitate a human, then this machine is AI. In the Turing test, as in our article, we 

have an exam and in order for a machine to be recognized as AI, it has to pass the exam. One 

difference is that there is an interrogator there, while we have a test with fixed tasks. That is, the 

Turing test is subjective, which is why it is an informal definition of AI. However, the main 

problem of Turing's definition is not in its subjectivity and informality, but in the fact that it does 

not define an intellect, but something more. It defines an educated intellect. For an intellect to 

pass the Turing test, it must be educated. We can even assume it has an Anglo-Saxon education 

because if it does not speak English it would not perform well on the test. 

 

Intellect and educated intellect are two different things, just like a computer without software and 

a computer with software are two different things. If you ask a mathematician what a computer 

is, he will answer you: “the Turing machine”. If you ask the same question to a child, the child 

will answer: “A computer is something that you can play games on, watch movies, etc.” That is, 

mathematicians perceive the computer only as hardware, while the child perceives the computer 

as an indivisible system of software and hardware. When Turing gave a definition of a computer 

(the Turing machine), he described only the hardware, but when he defined intellect, he described 

an indivisible system of intellect and education. 

 

Despite the Turing test defines educated intellect, Turing understands very well the difference 

between educated and uneducated intellect. In the end of [7] he asked the question: “Instead of 

trying to produce a program to simulate the adult mind, why not rather try to produce one which 

simulates the child's?” 

 

The AI definition we give in this article answers to this question. It does not include education 

and the tasks in the test do not imply any preliminary knowledge. That is, with every task we will 

assume that we are starting anew, and that in the course of solving the task we are learning, i.e. 

we find dependencies and learn from our mistakes. 

 

In [8], McCarthy says that the distinctive feature of AI is “the ability to achieve goals in the 

world”. We will not argue with McCarthy, but we will only clarify what he has said. We will 

specify what a world is and what a random world is and what are the goals that AI needs to 

achieve. On this basis, we will create an IQ test where programs that achieve more goals have a 

higher IQ. 

 

McCarthy also says that there is no “definition of intelligence that does not depend on how it 

relates to human intelligence.” Indeed, in this article we calculate the value of IQ without being 

related to human intelligence, but to say if a program is AI, we have to say what the minimum for 

the IQ is. For this minimum, we chose the number 0.7. This number is arbitrarily chosen and we 

will change it if this level turns out to be much lower or much higher than the IQ of the human. 

That is, in our definition human intellect is also used, but this is only for comparison and we use 

it only to determine one special constant. 
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Yet another question McCarthy asks is: “Can we ask a yes or no question? Is this machine 

intelligent?” The answer is “no” and we fully agree because we do not known what the minimum 

for the IQ is. 

 

However, we will not agree with McCarthy's answer to his next question. He asks: “Do computer 

programs have IQs?” And he answers with “no”. In this article, as in [3], we’ve showed that IQ 

can be defined for programs. With his answer McCarthy probably wanted to say that IQ tests for 

people are not suitable for computer programs. The test we offer is not for people but for 

programs. 

 

In some articles (for example, in [9]), the question is how to create a program that can solve IQ 

tests designed for humans. In our article, the issue we are dealing with is the opposite one. Here 

we create IQ tests designed for programs (for strategies). The tests we will offer will not be 

suitable for humans, although it is possible for a human to learn to solve them after some training. 

The trained human will note down what has happened and will analyze to find dependencies. The 

untrained human will not note down and will not be able to notice the dependencies unless they 

are presented in visual form or in other way which is convenient for perceiving by a human. 

 

It is very difficult to think of a human as a strategy for the following reasons. First, humans are 

not deterministic, that is, they do not implement a deterministic strategy. (A human can be seen 

as a not deterministic strategy or as a set of strategies from which one is randomly chosen.) 

Secondly, it is unclear how much time we have given the human to make a move. Third, it is 

unclear how seriously the human will approach the task (if he approaches more seriously, he will 

get a better result). Fourthly, humans are always trained and never start from scratch. Even a 

newborn baby has gone through some training in the mother's womb. Therefore, when a human 

implements a strategy, the outcome largely depends on his education, training, experience. 

 

In [10], Detterman threatens to “develop a unique battery of intelligence tests” that will be able to 

measure the IQ of computer programs. In this article, as in [3], we do not threaten, but we are 

creating such a test. 

 

It is a bit confusing that Detterman uses “computer” when he means “the system comprising of a 

computer and a program”. It is better to call this system a program because when we know the 

program, it's not very important which computer we'll run it on because the difference between 

two computers is only in their speed. Conversely, if we run two different programs on one 

computer, the difference in their behaviour will be enormous. 

 

Detterman intends to test computer programs by using IQ tests for people. That is, he, just like 

Turing, does not make a distinction between intellect and educated intellect. Therefore, 

Detterman's test will not provide time to learn, but will assume that the computer program that is 

being tested has been pre-trained. 

 

Detterman relies on the fact that computers are better than people in finding factual information. 

This is an ability of computers that is not directly related to the intellect. Similarly, computers are 

very powerful in arithmetic operations, but that does not make them smart. 

 

There is one thing in which we agree with Detterman. He notes that with hoc algorithms many 

tasks can be solved, but the real intellect must be able to find the solution on its own. 
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In [11], the authors set the ambitious task of developing an IQ test that is appropriate for both AI 

and humans, and for programs like Siri and AlphaGo that are not AI. We can not compare AI 

with programs that are not AI because the first is a program that can be trained for a random task 

and the second is a program written for a specific task. For example, how do I compare a chess 

program with AI? The only thing a program designed to play chess can do is to play chess while 

AI can do everything although not immediately but after being trained. That is, the only way to 

compare these two programs is to let them play chess, and the chess program will have an 

advantage because AI will waste time learning, while its opponent would not need to learn how 

to play chess because it knows how to do it. If we compare the chess program with AI which is 

trained to play chess then the first program would still have some advantage over AI, just like the 

specialized hardware (i.e., hardware made specially designed for a particular task) takes 

precedence over a computer program running on a computer. That is, the idea of comparing AI 

with programs that are not AI is not good. 

 

The authors of [11] refer to concepts such as: abilities to acquire, master, create, and feedback 

knowledge. It is like explaining a term whose meaning we do not know by means of other terms 

whose meaning we do not know. 

 

[12] discusses very comprehensively and competently how AI's IQ is measured. Also in [12], a 

very good overview of the different works devoted to this topic has been made. One minor 

disadvantage of [12] is that there is some controversy there. On the one hand, the article says “IQ 

tests are not for machines yet”. On the other hand, in earlier articles by Orallo [13, 14] a formal 

definition of AI based on the IQ test is given. It seems like Orallo is taking a step back and 

relinquishes the previous results. Another contradiction in [12] is that, on the one hand, it says 

“human IQ tests are not for machines”. This is something we fully agree with, as we agree with 

the arguments that accompany this statement. On the other hand, in the same article, the authors 

say they agree with Detterman that “there is a better alternative: test computers on human 

intelligence tests”. 

 

In [12], as well as in [11], a universal IQ is sought, which is applicable to all programs and even 

to humans. Here we differ from the authors of [11, 12]. We have already explained why it is not a 

good idea to compare AI with programs that are not AI. We also explained why it is not a good 

idea to use the same tests for AI and for humans. 

 

Article [13] is of significant importance because this is the first article that talks about a formal 

definition of AI, and this is also the first article introducing the IQ test for AI. Indeed in [13] this 

test is called C-test, but it is explicitly said that it is an IQ test for AI. We have to apologize for 

omitting to quote [13] in [3]. This is an omission that we are now correcting. 

 

Despite the seriousness and comprehensiveness of [13], there are some inaccuracies that we have 

to mark. The fact that we pay attention to some omissions and inaccuracies in [13] does not in 

any way mean that we underestimate the significance of this article. There are no perfect articles, 

and inaccuracies can be found in any article. Usually the first article that appears in a new area is 

slightly confused and unclear. Normally, in later articles, things get clearer and more precise. 

 

The most serious inaccuracy of [13] is that it does not define AI but something else. We will call 

that another thing an “observer”. We could say that an observer is a program that has only input 

and no output, but that would be too restrictive. That is why we will say that an observer is a 
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program whose output does not affect the state of the world but the output can influence the 

reward that the program will receive. 

 

An example of an observer is when we play on the stock market with a virtual wallet. We do not 

influence stock prices because we do not play with real money. (Even if we played with real 

money, it can still be assumed that our actions do not affect the stock exchange, because when 

playing with small amounts our influence is negligible.) When playing with a virtual wallet, at 

every step we change our investment portfolio and after each step the value of the portfolio 

changes depending on the change in stock prices. The reward we receive will be our virtual profit 

or loss. 

 

The fact that the program defined in [13] can not influence the world is substantial problem, 

because as people say: "You have to touch to learn". There are other proverbs that say that we 

can not learn by watching only. By depriving AI of the opportunity to experiment, we are 

seriously restricting it. 

 

In [5] it is noted that there are two problems that AI needs to solve. The first is to understand the 

world (to build a model of the world), and the second problem is to plan its actions based on the 

chosen model. That is, the “observer” solves only the first problem without solving the latter. 

 

In [13] the definition is limited to “observers”, but to give the term “observer” a definition is a 

task sufficiently meaningful by itself because it is half of the things AI needs to do. 

Unfortunately, this task is not fully solved because the observer defined in [13] is a little more 

special. It either understands the world wholly or not at all. That is, it is observer who works on 

the principle “all or nothing”. 

 

[13] suggests random strings, which can be continued in only one possible way. That is, it is 

supposed that there is a single simple dependence and this dependence will either be found or 

will not be found. This approach is too restrictive because it implies only observers who 

understand the world completely. This is only possible in very simple worlds. Any more complex 

world can not be fully understood and that’s why it has to be understood only partially. 

 

The authors of [13] are making serious efforts to make the dependencies exceptions-free. The 

definition of exception-free given in [13] is very interesting. However, we would not go that way 

because if dependencies included exceptions, that would be a way to allow a partial 

understanding of the world. Seeking a single exception-free dependence to describe everything is 

the reason why the observer defined in [13] relies on the “all or nothing” principle. 

 

We have a few other minor recommendations for [13].  

 

We give some time to AI to find dependence. The question is whether we will give this time at 

once or we will distribute it in many steps. In general, AI is searching for dependencies 

throughout its entire live. That is, in many steps. In [13], dependency is sought in just one step. In 

our article, we assume that in life the steps are approx. one million (a thousand games with a 

thousand steps each one). This means that we must give the program, which is defined in [13], a 

million times longer time. Our recommendation is for dependences to be sought after each step, 

not only after the last one.  
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In [13] we do not like also the fact that the program that generates the test is not working due to 

combinatorial explosion. This is the program called “The Generator”. That is, [13] does not 

present a test, but only shows that such a test exists theoretically.  

 

Yet another problem is that two restrictions have been imposed. When the “observer” makes a 

prediction, it must bet all on single result only and always bet the same amount. It would be 

better to have the freedom to bet on more than one result, and to decide what amount to bet. 

When we are more confident we bet more, and when we hesitate, we bet less or we pass. These 

two limitations do not change things fundamentally, because the smart will prove to be smart 

even with these limitations, but that blurs the picture. If there were no such restrictions, the 

difference between the IQ of the clever and the stupid would be greater.  

 

We also do not like the fact that the more complex tasks in the [13] have a greater weight than the 

simpler ones, when it should be the opposite. (There is a coefficient e, which is assumed to be 

non-negative and would be better to be negative.) It is true that when we make a test we give 

more points to the more difficult tasks, but that's because we suppose that students will lose more 

time on the more difficult task. This is not the case here. Here, for every task we give the same 

time. Therefore, if a simple task can not be solved, it is a serious problem and this should be 

reflected in the score. Moreover, sometimes we will guess the solution of a difficult problem 

randomly, so those must be given less weight, otherwise they will result in undeserved rise in the 

IQ.  

 

We have the concepts of global and local IQ (these two concepts are defined in our article). 

Global IQ is something accurate that can not be accurately calculated (because of a combinatorial 

explosion). Local IQ is not something accurate because it depends on the choice of the specific 

tasks in the test, but for specific tasks it can be easily and accurately calculated. What is defined 

in [13] is local IQ, not global IQ. However, let's not forget that the local IQ approaches the global 

IQ, but [13] says nothing about the “nerd” program, which is the main problem of local IQ.  

 

How are we to correct the definition given in [13] in order to get a definition of the observer that 

does not follow the principle “all or nothing”?  

 

Instead of taking a special k-comprehensible sequence, we will take a totally random program 

and the sequence that this random program generates. Instead of predicting the next symbol a 

single time, we will predict it at every step. We will not bet everything on a single prediction, but 

we will allow the bet to be divided between several predictions. We will also allow the bet to be 

different. (For example, we will assume that the sum of bets for the last five steps is limited to a 

given constant, but that we have the freedom to choose when to bet.) The reward to a sequence 

will be the sum of the rewards of all steps. Local IQ will be the arithmetic mean of the rewards to 

the sequences we have included in the test.  

 

In this way, we will not want the “observer” to understand the world completely because it can 

grasp some dependencies and thus, through a partial understanding of the world, get a relatively 

high IQ.  

 

A problem with [13] is that the program it defines is actually the program [1]. This is a simple 

program that predicts the next symbol on the basis of the simplest dependency that can generate 

the beginning of the sequence. 

 



8 

 

I even dare go a bit further and say: No program satisfying the definition given in [13] is better 

than [1]. That none is better as a result is clear, but I say that even as a matter of efficiency none 

is better because the definition in [13] does not give us any opportunities to play tricks and 

discover dependencies partially (step by step), leaving us the only option to foolishly go through 

all possible dependencies. 

 

Interestingly, in his more recent articles Orallo (as in [14]) has obviously understood the main 

omission made in [13], and what he defines there is no longer an “observer” but a program that 

can influence the world. Unfortunately this program is not AI again. [14] defines a program that 

plays a game which consists in going round a labyrinth (graph) by chasing something good and 

running away from something bad. To play this game one definitely needs intelligence, but the 

program playing this game is not AI just like the program playing chess is not AI.  

 

Again in [14] the authors speak of reinforcement learning. That is, it is clear that they know very 

well what the general form of AI is. Why, then, do they not use this general form, but restrict 

themselves to the worlds of one specific game? I think the reason is that they are trying to avoid 

the worlds where fatal errors are possible. The problem with fatal errors is mentioned even in [2], 

but fatal errors are not really a problem. We humans also live in a world with fatal errors, but that 

does not prevent us showing who does better and who does worse. Well yes, it's a problem for 

people because we live only one life, but the IQ test consists of many tasks, each of which is a 

separate life. Even if fatal errors occur in several lives, this will not significantly affect the 

average score. Even with humans, life is not just one. From the point of view of the individual, 

life is one, but from the point of view of evolution, lives are many. Some of our heirs will die 

because of fatal mistakes, but others will survive. Thus the average score of our successors will 

not be significantly affected by the fact that some of them have made fatal errors.  

 

It is true that in this article, as in [3], we also do not use a random world, but we only take 

computable worlds, but this constraint is not essential, because every time-limited world is 

computable, and we can easily assume that all worlds are limited in time. That is, by limiting 

ourselves to the computable worlds, we are not limited at all, but only give more weight to the 

worlds that are simpler (according to Kolmogorov complexity).  

 

In [14] there is one more thing we do not agree with. This is something called the “discount-rate 

factor”. Of course, this is not something conceived by the authors of [14], but is something 

widespread among people working in the field of reinforcement learning. The idea of the 

“discount-rate factor” is that the past is more important than the future. Life is potentially endless, 

and to evaluate an endless life, we have to devalue the future. However, the past being more 

important than the future is not a good idea. It would be better to do the opposite, because in the 

past we have not yet been trained, and in the future we have already been trained. With humans, 

we do not count how many times a person wet his bed while he was a baby. Instead, we see what 

achievements the person has attained in his adult age. Therefore, the approach we have adopted 

in [3] and this article is that there is no “discount-rate factor” but life is limited. In other words, 

the approach here and in [3] is that the discount-rate factor to be equal to one until a given 

moment in time (the end of life) and to be zero from that moment on.  
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Formulation of the problem 
 

Let us have a Device which lives in a certain World. At each step the Device produces n symbols 

(this is the Action) and then receives m symbols from the outer world (in our terminology the first 

one will be ‘Reward’ and the remaining m-1 symbols will be ‘Observation’). The Reward can 

have five possible values: {nothing, victory, loss, draw, incorrect_move}. 

 

We will use the words ‘move’ and ‘action’ interchangeably. If we perceive life as a game it is 

more appropriate to say move rather than action. Likewise, we will use the words ‘history’ and 

‘life’ as synonyms. 

 

Let one step of the Device be a triple consisting of <Action, Reward, Observation>. The ‘life’ of 

the Device will be a sequence of steps resulting from the interaction of the Device with some 

World. 

 

‘Real life’ will be life without incorrect moves. Therefore, all <Action, Reward, Observation>. 

triples where the Reward value is ‘incorrect_move’ must be removed from the life and what 

remains is the real life. 

 

A ‘moment’ will be a sequence of steps where the last step before the sequence and the last step 

of the sequence are correct and all steps in between are incorrect. That is, in life there may be 

more steps than moments, but in real life the number of steps is equal to the number of moments. 

 

We will assume that the behavior of the Device and of the World is deterministic. In other words, 

we will assume that if we know which is the Device and which is the World then we know which 

is the history. 

 

The behavior of the Device can be presented as a strategy, i.e. as a function which defines the 

next move of the Device for each start of life. Likewise, the World’s behavior can be presented as 

a strategy which for each start of life and for each Action of the Device delivers the Reward and 

the Observation which the Device will get at the next step. It should be noted that the World’s 

strategy does not depend on incorrect moves. Hence, we can imagine the strategy of the World as 

a function of real life. Conversely, the strategy of the Device will depend on incorrect moves 

(these moves will provide additional information for the Device to use). 

 

The Device and the World can be thought as two strategies playing against one another, but that 

would not be accurate, because the Device has an objective and the World has not. Therefore, the 

World does not play against the Device. We assume that the World is simply there and does not 

care whether the Device feels good or bad. 

 

Presenting both the World and the Device as strategies is not a very good idea, because a strategy 

remembers everything (i.e. depends on entire life until the moment). It makes sense to assume 

that the Device may not necessarily remember everything. A similar statement can be made in 

respect of the World. There may be a world the entire past of which (previous life until the 

current moment) can be reconstructed out of its internal state. It may be, however, that the world 

does not remember everything, which leaves us that two different histories can lead to the same 

internal state of the world. This is the reason why, we will present the Device and the World as 

functions. 
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Let us have two sets, Q and S. These will be the sets of the internal states of the Device and of the 

World. These sets will be finite or countable, at the most. Let q0 and s0 be the initial states of the 

Device and of the World. We will assume that these states are fixed, because life will depend on 

the initial states we start from, but we want life to depend only on the Device and on the World. 

 

The Device and the World will be the following functions: 

 

Device: QRewards Observations2 
Actions

  ActionsQ  

World: SActions  RewardsObservationsS  

 

For each Internal State of the Device, Reward, Observation and Set of Moves which are 

confirmed as incorrect at the moment, the Device function will return an Action and a new State 

of the Device. We will assume that the Device never returns an Action which is confirmed as 

incorrect at the moment. 

 

The Internal State of the Device will reflect everything the Device has remembered. What can it 

have remembered? It can remember everything that has happened until the moment plus its last 

Action. That is why our expression is ActionsQ, rather than QActions. We wish to stress that 

the Internal State of the Device can remember the last Action. 

 

For each Internal State of the World and Action, the World function will return a Reward, 

Observation and a new Internal State of the World. It makes sense to assume that there are 

moments (Internal States of the World) in which a specific action is impossible or incorrect. It is 

natural to assume, therefore, that the World function is a partial one. We will supplement the 

definition of the function so as to accommodate those moments as well, and in this way will 

extend the function to a total one. In these moments Reward will equal incorrect_move, the 

Observation value will be irrelevant and the new internal state will be the same as the previous 

one although this is irrelevant, too. 

 

The Internal State of the World will reflect what the World has remembered. What can it have 

remembered? It can remember everything that has happened until the moment plus the last 

Reward and Observation. That is why our expression is RewardsObservationsS, rather than 

SRewardsObservations. We wish to stress that the new Internal State can remember the last 

Reward and Observation. 

 

In [2] and [3] we defined the new <Reward, Observation> as a function of the new internal state. 

So we assumed that they must be remembered, but now we dispense of this requirement. Let us 

take a world in which we play chess. The chess game ends and the new internal state of the world 

is a chessboard with the initial lineup. In this case we do not have to remember who won the last 

game. Such requirement would be one unnecessary care. 

 

This is how the life of the Device looks like: 

<a1, r1, o1>, <a2, r2, o2>, …, <at-1, rt-1, ot-1> 

 

Let us see how the Device and the World function define life. 

 

<ai+1, qi+1>= Device(qi-j, ri-j, oi-j, incorrect_actionsi) 

<ri+1, oi+1, si+1>=World(si-j, ai+1) 
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In this case, i-j is the last correct step before i+1. The incorrect_actionsi set contains the 

confirmed incorrect actions at this moment. The set has j elements. Therefore, incorrect_actionsi 

={ai-j+1, …, ai}. The incorrect_actions0 set will be an empty set, because there will not be any 

confirmed incorrect actions in the first moment before the first step is made. 

 

In order to define life, we must fix the first Reward and the first Observation (r0, o0). We do not 

wish life to depend on the first Reward and the first Observation, so decide that the value of all 

symbols of these two vectors is nothing. This is a sensible decision, because it is quite natural that 

in the first moment we do not get any reward and do not see anything significant (i.e. what we see 

in the first moment is the zero step). We will not define the zero action a0, because we do not use 

it. 

 

Now that we have fixed (q0, s0, r0, o0, incorrect_actions0) we can build life up to step t and this 

life will depend only on the functions Device and World. 

<a1, r1, o1>, <a2, r2, o2>, …, <at-1, rt-1, ot-1> 

 

In addition to life, we will also construct the series of internal states of the Device and of the 

World, as well as the incorrect_actionsi series of confirmed incorrect moves at the relevant 

moment. Let us note that at each given moment there may be many incorrect actions, but the 

confirmed ones are only those which we have tried and have thus verified that they are indeed 

incorrect at that moment. 

 

We will assume that the Device function always returns a move which is not confirmed as 

incorrect. The opposite will lead to cycling. What shall we do if all moves turn out to be 

confirmed incorrect moves? (I.e. if incorrect_actionsi coincides with the entire Actions set.) In 

this case we will assume that the Device function is not defined. This is the case when we end up 

in a blind alley and there are no possible next moves. 

 

Note: The definitions of Device as a function and as a strategy are almost identical save that if we 

consider Device as a strategy, the order in which we tried the incorrect moves may matter at some 

moments, while in the function definition it would not matter. This difference can be resolved in 

two ways. The first one: when defining a function, instead of the set of confirmed incorrect 

moves we take the list of these moves. The second one is to limit our exercise only to those 

strategies which are insensitive to the order in which we tried the incorrect moves. In this study it 

would not matter what happens if the strategy tries the incorrect moves in another order, because 

we assume the strategy to be deterministic and the order in which it tries the incorrect moves is 

fixed. 

 

Note: We assume here that when we try to play an incorrect move nothing happens and all we 

get is information that the move has been incorrect. We can let the Device check whether a move 

is correct or not even without necessarily playing that move (as we have done in previous 

studies). In this case we need to modify the formulation of the problem and add an additional 

reward correct_move. The Device function will need one more argument containing the 

confirmed correct moves. When we try a confirmed correct move we will assume that we shall 

play this move. Where a move is not in the set of confirmed correct moves, then we assume that 

we only try it. The World function will have another Boolean parameter to indicate whether the 

move is actually played or just tried. In the latter case, the function will return either 

correct_move or incorrect_move rewards. Then the move will not be played but will only be 

added to the next set of confirmed correct or confirmed incorrect moves. 
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A game will be a stretch of life located between two consecutive final rewards. In our 

terminology, ‘final rewards’ stands for the values {victory, loss, draw}. We will assume that the 

length of each game is limited to 1000 moves (i.e. 1000 moments, while the number of steps may 

be greater because of incorrect moves). 

 

We will define which strategy is an AI strategy and our definition will depend on a number of 

parameters. We will fix the values of the majority of these parameters to one thousand, because 

1000 is a nice round number. Another good round number is one million. Replacing one thousand 

with one million would produce another AI definition, which will not be much different from the 

one we are dealing with. 

 

 

Parameters 
 

Number of Action symbols n 

Number of Observation symbols m 

Number of symbols possible for each 

Action symbol  

k1, …, kn, 

ki ≥ 2. 

Number of symbols possible for each 

Reward and Observation symbol 

kn+1, …, kn+m, 

ki ≥ 2, kn+1=5. 

Tape symbols count 𝑀𝑎𝑥𝑆𝑦𝑚𝑏𝑜𝑙𝑠 = 10 + max
𝑖[1,   𝑛+𝑚]

𝑘𝑖 

Global tapes count 7 (from 3 to 9) 

Internal states count 1000 

Test worlds count 1000 

Maximum number of games per life 1000 

Maximum number of moves per game 1000 

Maximum number of Turing machine 

steps per one life step 

1000 

Probability by means of which the machine 

is generated 

1

10
 = 10% 

Minimum IQ required for a strategy to be 

recognized as AI 

0.7 = 70% 

 

The first four rows of the table above provide the parameters which describe the AI input and 

output. They tell us what the format of the sought AI is. Thus, we cannot vary these parameters 

randomly. The next eight parameters influence the choice of worlds selected for the test and, 

therefore, influence the IQ we get, and thus the AI definition as such. The last parameter also 

influences the definition. This means that if we varied the last nine parameters we would also 

vary the AI definition. 

 

The table does not include other parameters which also influence the AI definition. For example, 

it does not say which pseudorandom numbers generator we will use in order to select the test 

worlds. Thankfully this parameter’s bearing on the definition is insignificant. 

 

The possible symbols for the i-th Action symbol will range from 0 to ki-1. Likewise, the possible 

symbols for the i-th Observation symbol will range from 0 to k n+1+i-1. Let us call the 0 symbol 

‘nothing’. The first Observation symbol will be the Reward. When it comes to the Reward, we 
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will name the symbols 1, 2, 3 as ‘victory’, ‘loss’, ‘draw’, and these will be the final rewards. The 

reward 4 (incorrect move) will not be returned by the Turing machine as a result of the invocation 

of the command q1. This reward will be returned only when Turing goes cycling (makes more 

than 1000 steps without reaching a final state) or crashes (e.g. invokes a return command when 

the stack is empty). 

 

The tape symbols will be as many as needed for coding the Action and the Observation. I.e. the 

maximum ki for i from 1 to n+m. To that we will add another 10 utility symbols the first of which 

will be empty symbol . 

 

 

How will the test work? 
 

We will select 1000 worlds for the test. In each of these 1000 worlds, the candidate will live one 

life consisting of not more than 1000 games. Finally we will calculate the number of victories, 

losses and draws. This will give us an IQ, which is an arithmetic mean where victory is 1, loss is 

0 and draw is 1/2. 

 

We will pick the worlds randomly, but we want the selected worlds to be fixed, so we will use 

pseudorandom selection by setting the pseudorandom generator to 1 before starting the selection 

process. Thus we will always use the same worlds in the test. 

 

In many of the generated worlds we will win every time or we will loss every time (doesn’t 

matter what we do). It is meaningless to include such worlds in the test so we will discard all of 

them from test. Thus we will be left with 1000 meaningful worlds. 

 

 

What is a World? 
 

In newspapers one can come across problems such as ‘Which is the next number in the series?’ If 

all possible series are equally probable, the next number may be any one. When looking for the 

next number in a series we assume that simpler series are more probable than more complex 

series. We therefore use the principle known as ‘Occam’s razor’. 

 

The situation with worlds is similar. If we perceive the world as a strategy and all strategies are 

equally probable, then there is no way we can tell the future and a basis for preferring one move 

over another is lacking. We will therefore apply Occam’s razor to the worlds and will assume that 

more simple worlds are more probable. What makes one world simpler than another world? We 

will use the Kolmogorov complexity. That said, if the world is a strategy, the more simple 

strategy is the one which is generated by a Turing machine with less states. 

 

We have limited the life so all strategies are finite. Therefore, all strategies are computable. So 

we will assume that a world is some Turing machine which calculates some strategy. 
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Which will be the set of all worlds? 
 

The set will be limited to Turing machines with 1000 states. This set includes machines with less 

than 1000 states, because each machine can be filled up with unreachable states. Turing machines 

which use more than 1000 states (and cannot be simplified) will be excluded from the set. We 

will consider these worlds as too complex and will accordingly exclude them from the definition. 

 

The result is a huge set of strategies (worlds). The more simple strategies here will bear more 

weight (will be more probable), because there are generated by more Turing machines (from the 

set). 

 

Furthermore, we will assign some weight to each Turing machine. Hence we will prefer some 

machines over others. For example, if a machine tends to use more states with lower numbers, we 

will prefer it to the one which uses more states with higher numbers. 

 

There are two reasons why we assign different weights to the different Turing machines. The first 

one is that we give more weight to more simple machines (e.g. the ones with less reachable states 

are simpler). The second reason is that we wish to randomly generate a machine which works, 

and this is very difficult. The machines which have a greater chance of being working ones will 

have more weight, therefore we increase the probability of selecting these machines and 

accordingly our chances of hitting a working machine. 

 

The weight of a machine is equal to the probability of this machine to be selected by us. We will 

not calculate this probability. That would be a rather difficult calculation. We simply select a 

machine randomly and by this selection we induce probability as a parameter of the formula. 

That is, the probability will not be calculated when the Local IQ is calculated. When calculate the 

Global IQ, we should consider all Turing machines in order to calculate the success rate of the 

Device with any of these machines and the probability that this very machine is selected. We 

have to multiply these numbers and sum up the values for all machines. This is an impossible 

calculation because of combinatorial explosion. The fact that we complicate the calculation by 

adding the calculation of probabilities is not a problem. We do not change anything in this way. 

While the Global IQ remains theoretically computable, in practice it is still uncomputable, even 

more uncomputable than before. 

 

 

How to calculate the IQ of a particular computer program? 
 

We may say that the IQ is the arithmetic mean of success rates of all worlds. (Note that the 

worlds are not equally probable and we need to multiply the success rate by the probability 

(weight) of each world.) 

 

We will call the so obtained IQ a Global IQ. The Global IQ definition is very nice save that 

Global IQ cannot be calculated. To be precise, it can be calculated in theory, but not in practice 

because of the huge number of worlds which we have assumed to be possible. 

 

Nevertheless, we can still calculate the Global IQ by approximation using statistical methods. We 

will select randomly 1000 worlds and will calculate the arithmetic mean for these worlds. The 

result obtained would be close to the Global IQ. 
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The problem with this approach is that different selections of test worlds will yield different 

Global IQ approximations. What we need is a program which awards to the candidate the IQ this 

candidate deserves, withal it must be a specific value rather than an approximation of something 

else. Hence we will fix the randomly selected 1000 worlds and will say that the Local IQ is the 

average success rate across these 1000 worlds. (In this case different worlds will not have 

different weights, because the weight is already accounted for in the selection of test worlds. The 

more weighty ones are more likely to be selected.) 

 

The idea of fixing the randomly selected worlds is tantamount to giving the same problems to all 

candidate students. 

 

The Local IQ is an easily computable function and describes well our understanding of what IQ 

is. There is just one problem. There is one program which we will call a ‘crammer’. This program 

is designed specifically for the 1000 test worlds and its Local IQ is very high, but its Global IQ is 

low. How should we resolve this issue? We will use the Local IQ in order to find the AI. When 

we hit a program with a very high Local IQ and suspect that this program is a crammer, we will 

give it additional problems, so that we calculate a second local IQ. This means that we will take 

the next 1000 random worlds and derive another arithmetic mean from these worlds. We can go 

on with a third and fourth Local IQ. 

 

 

How does Turing machine make a move? 
 

We present the world as a Turing machine. Thus, our machine must take Actions as inputs and 

deliver Observations as outputs. 

 

The first m+1 states of the machine will be special. The qm+1 state will be the initial and the final 

state of the machine. In states q1 to qm we will use in order to output the Observation symbols. 

 

When the machine makes its first move, all tapes will be empty (i.e. they will be covered with the 

 symbol). The first running tape will be No 3 (Nos. 0, 1 and 2 are reserved for utility purposes). 

 

Turing machine will make a move by starting from the initial state qm+1 and finishing in the same 

state (which is also the final state). In the beginning of the move, a word of n symbols (the Action 

word) will be recorded on the current tape under the head of the machine (anything previously 

written in the first n symbols on the tape before the recording of the word will be deleted). 

 

At every step it will be observed if the states q1 to qm are called up. When these states are called 

up, the Observation symbols will be outputted. If the qi state is called several times within one 

move, only the first call will be considered. If it is not called up at all, the i-th Observation 

symbol will be nothing. If it is called up at least once, i-th Observation symbol will be the value 

of the ‘head memory’ at the moment following the first call on the qi state. If the i-th Observation 

letter is too big (equals or exceeds the kn+i), the machine will crash in a cycling-like fashion. 
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Incorrect moves 
 

When the Turing machine fails to make a move because it goes cycling or crashes for some other 

reason, we will deem that the input Action entered at the start of the move is incorrect or 

impossible. In this case we go back and try to enter another Action. More precisely, it is not us 

who go back, instead we will turn back the world (the Turing machine). We give the Device an 

incorrect _move reward and take the next move the Device chooses to give us. We continue with 

this move as if the Device has played it instead of the incorrect move. (If the Device plays the 

same incorrect move, we disqualify it because it cannot try the same move twice in a single 

moment.) 

 

Taking the Turing machine back is a perfectly natural operation. All we need is to memorize the 

total state of the machine before the start of the move. If we reconstruct this total state, we can 

enter another Action and continue was if it were the first action we ever tried. 

 

Another approach was applied in [3], where it was assumed that all moves are correct and the 

cycling problem was resolved by aborting the execution of the program, awarding a utility draw 

and restarting the program from its initial state. With this type of restart the tape remains in the 

state it was at the time of abortion. This is very poor practice. You will know that to turn down 

your PC you should enter the ‘Shut Down’ command. The other option is to pull the plug off the 

socket, but this will leave the hard disk in the state it was when the plug was pulled off. This 

treatment would make your PC behave in a bizarre and illogical manner. The same can be said 

when a Turing machine is shut down randomly and then restarted from its initial state. We want 

the world to be as logical as possible and take care to avoid these abortions. 

 

Now that we have opened the gate for incorrect moves, we should know what to do when all 

moves are incorrect. Let us assume that we have about 100 possible Actions. We try them all and 

all of them prove to be incorrect. So we will say that we have ended in a blind alley with no way 

out. 

 

If life is the sequence of 1000 games, then life ends with a natural death after 1000 games or with 

a sudden death (blind alley). How to reward a life that ends prematurely? We can reward only the 

games played until death. Then our AI strategy will prefer to commit a suicide (enter a blind 

alley) as soon as it realizes that things in the current life have gone wrong and only losses lie 

ahead. 

 

We do not want suicidal AI strategies and will therefore opt for another solution. When a strategy 

is caught in a blind alley, we shall say that all remaining games up to 1000 are losses. This will 

provide assurance that the strategy will not go in blind alley on its own will, but will keep 

fighting to the end. 

 

Will the strategy realize that it is entering a blind alley? One cannot learn this by trial and error 

because you fall in a blind alley just once. But, if the strategy is very smart, it may be able to 

predict that some blind alley is forthcoming. For example, if the number of possible moves is 

decreasing, this is not a good sign, because in the end of the day one may run out of possible 

moves and enter in a blind alley. People can be another example. Let us have someone who has 

never died. He or she has no experience of their own but can still predict a few potentially fatal 

situations. 
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We penalize beating around the bush 
 

We said that a game cannot be longer than 1000 moves. What shall we do if a game continues for 

more than 1000 moves? We shall then award a utility draw. Note than by doing so we do not 

interfere in the workings of the Turing machine as it continues to play the same game. The 

intervention concerns only the strategy, because it will get a draw reward when the world (Turing 

machine) has awarded nothing. The fact that we do not abort the machine guarantees that the 

machine will maintain its logical behavior. 

 

If another 1000 moves are played without a final reward, we award a utility loss. That is, we 

penalize strategies which kick the can down the road. We want an AI strategy which aims to 

close the game quickly and start the next one. 

 

By penalizing early death and procrastination we vary the IQ of the random strategy. If we play 

heads or tails, the expected IQ is 1/2. To earn a higher IQ one must purposefully aim to win. For 

a lower IQ, one must purposefully aim to lose. By declaring all post-death games lost, we reduce 

the IQs of all strategies. Similarly, the inclusion of utility losses will lead to a likewise reduction. 

This solution means that the IQ of the random strategy will be less than 1/2. 

 

We will be able to calculate the exact IQ value of a random strategy once we write the program 

which calculates the Local IQ. Naturally, a random strategy is non-deterministic meaning that we 

should test it a few times and take the mean value. Hence, the IQ of the random strategy will be 

an approximate value. Only deterministic strategies have exact Local and Global IQ values. 

 

 

More logical and more efficient Turing machine 
 

As announced already, we will redefine the Turing machine in order to make it more logical and 

more efficient. To this end, we will make Turing a multi-tape machine and will enable it call 

subprograms. 

 

Why would such a machine deliver a more logical world? 

 

First, it is the multiple tapes of the machine. It is legitimate to present the state of the world as a 

Cartesian product of many parameters which are in weak correlation with one another. That is 

why a multi-tape Turing machine produces a more logical model of the world than the single-tape 

machine. 

 

Second, the machine will have subprograms which can be called up from many points. This is 

more logical than calling a different subprogram each time. When no stack is in place, we have to 

remember where we should go back after the subprogram is executed. To this end, each 

subprogram should be called up from one point only (otherwise it will not know where to go 

back). 

 

When we invoke a subprogram we give it a clean tape so it can write its intermediate results. In 

the opposite case the subprogram will have to use for this one of the common tapes and this will 

largely frustrate its logic due to the weird interactions that will occur among different calls of the 

subprogram. 
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Why would this machine make less steps and have less internal states? 

 

Higher efficiency means less steps and, more importantly, less internal states. It is important that 

the steps are not too many, because a machine making more than 1000 steps per move will be 

presumed to be in a cycling situation and will be stopped. It is also important that internal states 

are not too many, because we have limited our set to machines having less than 1000 states. 

Hence our machine should preferably use less states. 

 

Having multiple tapes in the machine means there will be less steps, because a single tape will 

force the head make a lot of movements in order to write intermediate results. It would be easier 

to write these results on another tape. 

 

More significantly, we will reduce the number of internal states of the machine. A classical 

Turing machine uses a huge number of internal states (it memorizes everything that needs to be 

memorized in its internal state). For example, when a subprogram has been called up we must 

remember where the subprogram was called from (where it must return). If we want to move a 

symbol from one place to another we must remember which symbol we have pulled up. 

 

Thus, we complicate the Turing machine so that, in addition to its internal state, it should also 

remember which is the running tape, the stack index (for subprograms) and a ‘head memory’ 

symbol. 

 

 

A stacked Turing machine 
 

How would the program of this machine look like? It will be a table of 1000 x MaxSymbols, 

where 1000 are the possible commands and MaxSymbols are the possible symbols. In each field 

of the table there will be five commands. 

 

The first command is ‘Write on tape’ 

MaxSymbols+2 possible values: 

(unchanged, previous value of the head memory, concrete symbol) 

 

The second command is ‘Change the head memory’ 

MaxSymbols+2 possible values: 

(unchanged, previous value of the symbol on tape, concrete symbol) 

 

The third command is ‘Move head’ 

Three possible values: 

(left, right, stay there) 

 

The fourth command is ‘Subprogram’ 

There are two fields: 

‘State’, the value of which is in the interval [0, 1000] (where 0 is the command NULL). 

‘New current tape’, the value of which is in the interval [0, 9] (where 0 is the previous current 

tape, 1 is the current tape of the parent program, 2 is the temporary tape created especially for this 

invocation of the subprogram and 3—9 are the global tapes). 
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The fifth command is ‘Next state’ 

The value is in the interval [0, 1000] (where 0 is the command return). 

 

When a subprogram is called up, what do we write in the stack? Three things: where shall we go 

back after return (the fifth command), which is the previous current tape (so that we recover it 

after return) and which temporary tape is created especially for this invocation of the 

subprogram. The new temporary tape should also be written somewhere. Let it not be in the 

stack, but somewhere else. When the return command is executed, the corresponding temporary 

tape will be destroyed. 

 

 

Populating the table 
 

In order to create a random Turing machine, we must populate 1000 x MaxSymbols with random 

commands. Before we do that let us say how a random command is selected. We must generate 6 

numbers (the fourth command has two fields). These numbers may be equally probable, but we 

prefer smaller numbers to be more probable than larger numbers. Why would we prefer so? 

Because if all states are equally probable, the program will be stretched over multiple different 

states, while we wish certain states to be used more frequently than others. Likewise, we want 

some tapes to be used more often than others. This also applies to utility symbols (but does not 

apply to non-utility ones). 

 

How shall we select a number from 0 to k with a decreasing probability? Let us toss a coin and if 

it is heads we select with a probability of 1/2 the number 0, if it is tails we toss again and if we 

get heads we select with a probability of 1/2 the number 1 and so forth. If do not get any heads all 

the way to k, we restart from 0. 

 

A probability of 1/2 produces a very steep decrease of the probability of the next number. That is 

why we will use a probability of 1/10 to select all the 6 numbers. What we actually use is the 

geometrical distribution. 

 

Note: Only the number of the subprogram will be assigned differently. In this case 0 will be 

taken with a probability of 9/10 instead of 1/10. (Thereafter we continue with 1/10.) This is so 

because we do not want subprograms to be invoked too often and the stack to be populated 

redundantly. In this way the probability of the return command will be equal to the probability of 

invoking a subprogram. 

 

Now that we have explained the generation of commands (one box in the table), let us explain the 

generation of one column consisting of MaxSymbols boxes. We will imagine the command of 

this machine as a switch with MaxSymbols cases. When we write program and use a switch, we 

describe only some of the cases rather than all cases. The remaining cases are described as default 

(i.e. all other cases are the same). A program will be more logical if the same command applies to 

the majority of the cases. Therefore, we will select randomly how many different commands will 

exist in the column. We will use the decreasing probability procedure as explained above. Once 

we know how many different positions are there, we select randomly which these positions will 

be (again, smaller numbers will be more probable). Finally, we populate the positions that need to 

be different with different commands, and will put the same command in all other positions. 
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So we have an algorithm for populating one column and can populate 1000 columns. In the end 

of the process we have the first random Turing machine. This however is a cumbersome process, 

so we derive the second machine from the first one just by changing the first m+1 states (which 

are special ones) and another 10 random states. This change is sufficient because the vast 

majority of the states are not used and by changing the special states we start using other states. 

Thus, the new Turing machine will be substantially different in terms of the states it uses even 

though the two machines are almost identical in terms of their unreachable states. 

 

 

Discarding the slag 
 

So we have a fast and simple procedure to generate 1000 test worlds. The problem however is 

that most of these worlds are useless. Across 1000 worlds there may be as little as 2 or 3 

interesting ones. Therefore, we will discard all useless worlds and do our test with 1000 

interesting worlds. 

 

Example for a useless world is if the very first move leads to a blind alley. 

 

We will verify that a world is interesting by letting the random strategy live one life in that world. 

In this life, we do not want to see the strategy caught in a blind alley. We want at least one 

victory and at least one loss. We do not want more than 10 utility draws and utility losses. If all 

these conditions are met in this random life, we will deem that the world is interesting. 

 

How to construct a test with 1000 interesting worlds? First, we initialize the pseudorandom 

numbers generator with the number 0. Then we generate randomly World Zero. Then we 

initialize the generator with 1 and apply a minor change to World Zero so as to generate World 1. 

If World 1 is interesting, we set the generator to 2 and generate World 2. If World 1 is useless we 

initialize the generator with 2, 3, 4, 5, etc. until we obtain from World Zero an interesting 

World 1. We keep going until we generate 1000 interesting worlds. We will not save them all, 

but will only save an array of 1000 numbers. These are values which we should use to initialize 

the generator in order to obtain a new interesting world from the previous interesting world. 

 

Note: Please observe that we select different Turing machines with different probabilities. These 

different probabilities are the different weights of the different machines. We need this 

clarification, because we aim to provide an accurate definition of Global IQ. The definition is: 

 

Global IQ(𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦) = ∑ P(TM | 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔). Success(𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝑇𝑀)

 ТМ  𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔

𝑇𝑀

 

 

In this equation, P(TM | Interesting) is the conditional probability that the machine named ‘TM’ 

is selected if the world is interesting. Success(Strategy, TM) is the arithmetic mean calculated 

after the strategy named ‘Strategy’ has lived one life in the world defined by the machine named 

‘TM’. The sum total is across all machines with 1000 states the worlds of which are interesting. 

 

The above Global IQ practically cannot be calculated and it is the theoretical value which we try 

to approximate by means of the Local IQ. 

 

The Local IQ therefore is: 
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Local IQ(𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦) = ∑ Success(𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝑇𝑀𝑖)

 1000

𝑖=1

 

 

Where TMi is i-th preselected test world (Turing machine). 

 

 

The final definition 
 

Definition: An AI is any strategy the Local IQ of which exceeds 0.7. 

 

Here we selected the same value as we did in [3]. Both here and in [3] the value (0.7) is selected 

arbitrarily. Likewise, a corporation may announce that it is looking for a CEO and will be happy 

to employ anyone who solves 70% of the problems given in the test. The corporation may have to 

adjust this level later if the bar proves too low or too high. 

 

Definition: An AI is any computer program if the strategy it plays in the first 1000 games is an 

AI strategy. 

 

 

Analogy with the Grandmaster definition 
 

We will provide another explanation of the AI definition by repeating the same construct, but this 

time we will define a chess playing program. We have already done so in [4], but as the present 

study revisits and updates the construct described in [3], here we will also revisit the construct in 

[4] and will reflect the relevant adjustments. 

 

We will define a chess playing program as a program which plays like a grandmaster. If someone 

wants to be a grandmaster, he or she should earn an ELO rating (calculated by the ELO rating 

system) of at least 2500. The bad news is that the ELO rating calculation is based on his or her 

performance in playing against other people. To obtain an objective assessment of how good is 

the player, we will replace the other players with a finite set of deterministic computer programs. 

Then our chess player will play one game against each of these other players and his or her result 

will be the arithmetic mean of the results achieved in the individual games. In case a player halts 

(goes cycling) and does not make it until the end of game we will award a utility victory to the 

opponent. The same we will do if the player plays incorrect move. That is, a program which 

aspires to become a grandmaster must play correct moves and had better avoid cycling because in 

the opposite case we will penalize it with a utility loss. This applies both to the chess playing 

program and to computer programs in the finite set against which we assess the performance of 

our program. 

 

Which will be the finite set of deterministic computer programs that used in the grandmaster test? 

We can take all programs that do not exceed a predefined length. Most of these will play 

randomly, will go cycling often and will make many incorrect moves. It would be reasonable to 

screen them and leave only the interesting ones (programs that play too mindlessly are a ballast 

which only makes the test more cumbersome). Interesting programs will be those that do not 

cycle, do not make incorrect moves and, on top of all, play relatively well. 
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When looking for interesting worlds to use in the AI test we used the brute-force search method. 

This method will cannot be used here because it is very unlikely to randomly hit a program which 

does not cycle and makes only correct moves. Hence, instead the set of all programs which do not 

exceed a certain length, we will take a specific set of programs whereby all programs are 

interesting (do not cycle, do not make incorrect moves and play relatively well). 

 

Let us take a particular program, which calculates the next five moves and distinguishes between 

three types of positions: winning (victory within the next five moves), losing (loss within the next 

five moves) and undetermined (all other positions). Which move will this program play? It will 

pick randomly one of the winning positions. In the absence of a winning position, it will chose 

randomly one of the undetermined positions. If an undetermined position is also lacking, the 

program will go ahead randomly with a losing position. 

 

What we described above is a non-deterministic program. If we reckon how many deterministic 

strategies this program can implement, they are far too many (but still finitely many, because the 

length of the game is limited). Each of these strategies is calculated by infinitely many programs, 

but we shall assume that for each strategy we have selected one program which calculates this 

strategy. 

 

As a result, we obtained a huge set of programs and may be tempted to say that our ELO rating 

will be calculated on the basis of the games with all these programs. Unfortunately these 

programs are far too many and we cannot calculate the ELO in this way because of combinatorial 

explosion. Instead, let us select 1000 of these programs and calculate the ELO after 1000 games 

(one game played with each program). We will select these programs randomly, but will select 

them only once and will always calculate the ELO on the basis of the same test programs. 

 

How can we make a deterministic program out of a non-deterministic one? That is easy, instead 

of picking a random move we pick a pseudorandom move. Before starting the game, we will 

initialize the random number generator with the number one (1). Thus we obtain one 

deterministic program. We need 1000 deterministic programs. We will initialize with the 

numbers from 1 to 1000 and will obtain 1000 different deterministic programs (among these 

1000 there might be some identical programs, in particular where the random numbers generator 

is not as good as it should be). These will be the programs from which we will derive the ELO 

rating. 

 

Let we say that a program will become a grandmaster if the so-calculated ELO is more than 90%. 

This is an arbitrary value picked by us. It may turn out that the value should be higher. We may 

even have to adjust the test worlds and ask them to calculate maybe the next 10 moves rather than 

5 moves. 

 

Then we stumble upon the crammer issue again. It is perfectly possible to learn by heart how to 

beat some of these 1000 programs. Remember these are deterministic programs and if we beat a 

deterministic program once we can beat it as many times as we want by replaying the same game. 

 

A fairly good analogy emerges between the grandmaster and AI definitions. In the first case we 

refer to an ELO rating and in the latter case to an IQ rating. In the first case we play chess against 

1000 opponents and in the latter case we live 1000 lives in 1000 worlds. The difference is that in 

the chess scenario we play one game against each opponent and in the IQ scenario we play one 
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thousand games in each life. This is so because in the first case the rules of the game are fixed 

and it is expected that a grandmaster program knows the rules and knows how to play (rather than 

learning how to play while it plays). In the second case, the AI does not know the rules of life and 

needs one thousand games in order to discern these rules and learn how to live successfully. 

 

 

Conclusion 
 

In this study we described an exam (test) which enables us calculate the IQ of any program. More 

precisely, we specified the program which will conduct the test and tell us what the candidate’s 

IQ is. Given the deep granularity of our specification, we can now relax and ask some student to 

do the coding for us, perhaps as a course project. 

 

This program will enable us do the AI test in the matter of minutes. This the time which the 

examiner program needs to calculate the test result. We should then add the thinking time we 

afford to each candidate. When we consider AI as a strategy, we need not ask the question of how 

much time the candidate will spend thinking. When we consider AI as a program which 

calculates an AI strategy, we must announce how much time we afford to the program for 

calculating one step. 

 

So, the time for the test will be some minutes to calculate the test result, plus the thinking time 

which we afford to the candidate, plus some time for generation of the test (construction of the 

array of 1000 numbers). The last time we do not consider because it will be spend only once. 

 

Let us think about what this test can be used for. If someone comes to us with a particular 

program, we would test it and say what the IQ of that program is. But, we do not have any AI-

candidate programs. So we have nobody to apply this test to. 

 

One possible application of the test described in this study is finding the AI. We might use the 

brute-force search method. Of course we can search with this method, but combinatorial 

explosion would not let us go too far with this method. There is, however, a smarter way of 

searching. We can construct a genetic algorithm. We will sit at one powerful computer, create a 

population of AI candidate programs, and calculate each candidate’s IQ. We shall combine 

candidates with higher IQs in order to obtain offspring with even higher IQ. We shall kill the 

low-IQ candidates in order to make room for more promising programs. Using this natural 

selection approach we shall obtain programs with very high IQs. 

 

The genetic algorithm is one way of finding the AI, but we will end up with a program the inner 

workings of which are enigmatic to us. If we are to control a program, we better write it ourselves 

rather than generate it automatically. For this reason, I am a proponent of the direct approach for 

creating AI. Therefore, I assert that we should write this program with our own hands. 
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