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Abstract

A restriction of the Boyer-Lindquist model of the Kerr metric is
considered that is globally hyperbolic on the space manifold R3 with
the origin excluded, the quotient m/r being unrestricted. The model
becomes in this process a generalization of Brillouin’s model, describ-
ing the gravitational field of a rotating massive point particle.

1 Preliminary warnings

i) In this paper ”Extension of a metric” has a more restricted meaning than
that that is usual; ii) Besides its usual meaning the word ”Singularity” means
also the break of the hyperbolic type of the space-time metric. Signatures
+2 and -2 are not accepted to co-exist in a space-time model.

2 Weyl-like description of stationnary space-

time models

A Weyl-like description of a stationnary space-time model, [3]-[9], is a rewrit-
ing of a general metric:

ds2 = g44(x
k)dt2 + 2g4i(x

k)dtdxi + gij(x
k)dxidxj, i, j = 1, 2, 3 (1)

as:
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ds2 = −A2(−dt+ fidx
i)2 + A−2ds̄2, (2)

with:

A2 = −g44, fi = A−2g4i, ḡij = A2gij + gi4gj4 (3)

being understood from the beginning that ds2 is an acceptable local space-
time model only on those domains of the variables xi where A is real and ds̄2

is a positive definite proper Riemannian metric.

3 The Boyer-Lindquist coordinates

Using Boyer-Lindquist coordinates r, θ, φ, [2], named spherical polar coordi-
nates, the coefficients of ds2 are:

g44 = −1 +
2mr

r2 + a2 cos2 θ
(4)

g34 =
2mra sin2 θ

r2 + a2 cos2 θ
(5)

g33 =

(
r2 + a2 +

2mra2 sin2 θ

r2 + a2 sin2 θ

)
sin2 θ (6)

g11 =
r2 + a2 cos2 θ

a2 − 2mr + r2
(7)

g22 = r2 + a2 cos2 θ (8)

or equivalently:

A2 = 1− 2mr

r2 + a2 cos2 θ
, f3 = A−2g43 (9)

and:

ḡ11 = 1− a2 sin2 θ

a2 − 2mr + r2
(10)

ḡ22 = a2 cos2 θ − 2mr + r2 (11)

ḡ33 = (a2 − 2mr + r2) sin2 θ (12)

The remaining components being zero. m is the mass parameter and a is the
angular momentum parameter.

Assuming that a = m = 0 ds̄2 becomes the Euclidean metric:
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ds̃2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (13)

There is no problem identifying θ and φ as polar angles. But this does not
authorizes to identify r with the corresponding radial distance, because any
radial coordinate transformation:

r ⇀ ψ(r, θ; a,m) such that ψ(r, θ; 0, 0) = r (14)

would change the meaning of r. The next section illustrates this assertion.

4 A global extension of the Kerr metric

A2 becomes zero in two circumstances that correspond to two singular points
of the metric . Namely when the r coordinate is:

r± = m± µ (15)

with:
µ =
√
m2 − a2 cos2 θ (16)

Since r+ > r− and both are positive this means that the Kerr metric is
globally hyperbolic with positive values of r only in the interval [r+,∞], r+

being a function of θ and the two parameters m and a. In this domain only
the Kerr metric is a legitimate space-time relativistic model.

Let us consider the coordinate transformation:

r → r + r+ = r +m+ µ (17)

that it is a legitimate one only if m ≥ a. The new values of the variables
A, f3, and ḡij are:

g44 = −1 +
2mσ

σ2 + a2 cos2 θ
(18)

g11 =
σ2 + a2 cos2 θ

(a2 − 2mσ + σ2
(19)

g22 =
σ2 + a2 cos2 θ)a4 cos2 θ sin2 θ

µ2(a2 − 2mσ + σ2)
(20)

g33 =

(
σ2 + a2 +

2mσa2 sin2 θ

σ2 + a2 cos2 θ

)
sin2 θ (21)

g34 =
2mσa sin2 θ

σ2 + a2 cos2(θ)
(22)
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g12 =
(σ2 + a2 cos2 θ)a2 cos θ sin θ

(a2 − 2mσ + σ2)µ
(23)

with the notation simplification:

σ ≡ r +m+ µ (24)

Equivalently:

A2 = −g44, f3 = −2m(r +m+ µ)a sin2 θ

2µr + r2
(25)

and:

ḡ11 =
2µr + r2

a2 sin2 θ + 2rµ+ r2
(26)

ḡ22 =
(a2(m2 + r2) sin2 θ + (m2 − a2)r2 + 2µ3r)(2µr + r2)

µ2(2rµ+ r2 + a2 sin2 θ)
(27)

ḡ33 = (a2 sin2 θ + 2µr + r2) sin2 θ (28)

ḡ12 =
a2 cos θ sin θ(2µr + r2)

(a2 sin2 θ + 2rµ+ r2)µ
(29)

The two interesting limit cases of the preceding line-element are the Bril-
louin line-element [10]-[14] corresponding to a = 0 and that corresponding
to a = m that is the maximum value that a can have.

5 The Weyl space-like metric

The Weyl space-like metric ds̄2 with (26)-(29) can easily be written in diag-
onal form:

ds̄2 = ḡ11

(
dr +

ḡ12
ḡ11

dθ

)2

+
1

ḡ11
(ḡ11ḡ22 − ḡ212)dθ2 + ḡ33dφ

2 (30)

From inspection of (49) we see that ḡii, i = 1, 2, 3, are definite positive and
it is easy to prove that:

ḡ11ḡ22 − ḡ212 =
r2(2µ+ r)2(a2 sin2 θ + r2 + 2µr)

a4 sin4 θ + 2a2r(r + 2µ) sin2 θ + r3(r + 4µ)
(31)

Therefore ds̄2 is a proper Riemannian metric.
It is the relationship between this metric and the Euclidean metric (13)

that allows to calculate the optical length of an optic fiber whatever the
circuit that is considered.
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6 Polar plots

The first figure below is the polar-plot of the singular line g44 = 0, assuming
that a = m = 1, when using the Boyer-Lindquist coordinates (red graph).
Notice that θ being a polar angle its value is constrained to be in the closed
interval [0, π] and therefore only the upper part of the plot is relevant.

Using the global coordinates of this paper the graph is reduced to the
center of the plot. This makes unambiguous the choice of r, frozens its
interpretation as the distance from the singular source of the point of space
being considered and selects the interval ]0,∞[ as the interval where ds̄2 is a
positive definite metric.

7 Circular orbits

I consider in this section the geodesics whose space orbits are circles on the
equator plane of symmetry θ = 0 and Ω = dφ/dt is constant. The relevant
non zero, Christoffel symbols to take into account are:

Γ3
41 = − ma

(r +m)2(a2 + 2mr + r2)
, Γ3

31 = −ma
2 − 4m2r − 4mr2 − r3)

(r +m)2(a2 + 2mr + r2)
(32)

The algebraic equation to be solved is:

2(a2m− 8m3 − 12m2r − 6m2r2 − r3)Ω2 + 2maΩ +m = 0 (33)

and leads easily to the following angular velocity solutions:

Ω± =
−ma±

√
m(2m+ r)3

a2m− 8m3 − 12m2r − 6mr2 − r3
(34)

Consider the following quantity:

Ge(Ω±) = g44 + 2g34Ω
± + g33(Ω

±)2) (35)

If Ge is negative the circular orbit is time-like. If it is zero it is light-like.
Otherwise it is space-like.

The green graph of the second figure below is that of G+
e = Ge− cor-

responding to the Brillouin solution, a = 0, assuming that m = 1. In this
case there is a single light-like geodesic satisfying the required conditions at
r = 1/2. Below this value the corresponding geodesics are space-like, i.e.
tachyon ones.
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The graphs red and blue are the those of Ge+ and Ge− corresponding to
the extreme Kerr model with m = a = 1. In this second case while for one
direction of rotation all circular geodesic orbits are time-like. For the other
rotation direction there are both time-like and space-like circular geodesic
orbits separated by by a light one at r ∼= 1.292063116.

The two main results of this paper are: i) The first postulate of General
relativity requiring that a space-time model should be globally hyperbolic on
R3 leaves out of physics such phantasies as ”black or white holes”; ii) Surpris-
ingly it appears that geodesic space-like trajectories appear quite naturally
in Kerr model, and if it turns out that this is a general feature of many other
solutions it might be a clue to why tachyons come out also naturally in some
quantum gravity theories.

8 Rotation

Kerr’s metric is a stationary exterior solution of Einstein’s field equations
such that de rotational of the vector with components f1 = f2 = 0 and f3 as
in (25) is not zero:

Ωij ≡ ∂ifj − ∂jfi 6= 0 (36)

and this means that there is an infinitesimal rotation at each event.
On the other hand it is possible to introduce a connected concept of

rotation which is more specific and somewhat more global in the sense that
it is more what we mean when saying that an extended body rotates with
respect to an axis of symmetry. This new concept though is not about the
rotation of the source itself, that it is a single point in this paper, but about
the contribution of the rotation of the source on the exterior field. In this
sense rotation is a concept to be defined.

Let us consider the Kerr-Brillouin’s line-element defined by the potentials
(18-(22):

dg2 = g44dt
2 + g33dϕ

2 + g34dϕdt+ g11dr
2 + g22dθ

2 (37)

and let me introduce, to be used for comparison, the line element dl2 obtained
from the preceding one by two substitutions:

a→ 0, dϕ→ dϕ+ ωdt (38)

What we get is the Schwarzshild-Brillouin’s line-element forced to rotate with
constant angular rotation ω in the most elementary meaning.
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dl2 = l44dt
2 + l33dϕ

2 + l34dϕdt+ l11dr
2 + l22dθ

2 (39)

where in particular:

l44 =
(8m3 + 12m2r + 6mr2 + r3) sin2 θω2

r + 2m
− r

r + 2m
(40)

and:
l34 = ω(4m2 + 4mr + r2) sin2 θ (41)

Let us view the space exterior to the point-source as the collection of all
parallel circles that are at a distance r and a co-latitude θ, each with its line
element derived from (37) with the contractions dr = 0, dθ = 0. Let us
also view he same collection of parallel circles with the line-element derived
from (39) and consider now the mapping that to each circle with parameters
r, θ and line-element (37) corresponds the same circle with line-element (39).
Requiring the equation:

g34
g44

=
l34
l44

(42)

i.e.:

−2m(r +m+ µ)a sin2 θ

2µr + r2
=

r + 2m)3 sin2 θω

ω2 sin2 θ(8m3 + 12m2r + 6mr2 + r3)− r
(43)

that is invariant under time-transformations t → t + ψ(r, t), introduces a
relationship between the parameters a and ω that gives an interpretation
of a as the generator of a rotation ω(r, θ) depending on the parallel circle
considered. This comes as follows:

solving the second order algebraic equation for ω we get:

ω± =
1

2

p±
√
p2 + 4 sin2 θf 2qr

sin2 θq
(44)

where:

p = sin2 θ(4m2 + 4mr + r2)(r + 2 ∗m) (45)

q = 8m3 + 12m2r + 6mr2 + r3 (46)

f =
2 sin2 θam(r +m+ µ)

−2µr − r2
(47)

The behaviours for r →∞ are:
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ω+ = −1

2

r

am sin2 θ
+O(1) (48)

and:

ω− =
2am(−r + µ+ 5m)

r4
(49)

and therefore only ω− is acceptable to establish a correspondence between ω
and a.
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