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Abstract

A restriction of the Boyer-Linquist model of the Kerr metric is con-
sidered that is globally hyperbolic on the space manifold R3 with the
origin excluded, the quotient m/r being unrestricted. The model be-
comes in this process a generalization of Brillouin’s model, describing
the gravitational field of a rotating massive point particle.

1 Preliminary warnings

i) In this paper ”Extension of a metric” has a more restricted meaning than
that that is usual; ii) Besides its usual meaning the word ”Singularity” means
also the break of the hyperbolic type of the space-time metric. Signatures
+2 and -2 are not accepted to co-exist in a space-time model.

2 Weyl-like description of stationnary space-

time models

A Weyl-like description of a stationnary space-time model, [3]-[9], is a rewrit-
ing of a general metric:

ds2 = g44(x
k)dt2 + 2g4i(x

k)dtdxi + gij(x
k)dxidxj, i, j = 1, 2, 3 (1)

as:
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ds2 = −A2(−dt+ fidx
i)2 + A−2ds̄2, (2)

with:

A2 = −g44, fi = A−2g4i, ḡij = A−2gij + gi4gj4 (3)

being understood from the beginning that ds2 is an acceptable local space-
time model only on those domains of the variables xi where A is real and ds̄2

is a positive definite proper Riemannian metric.

3 The Boyer-Linquist coordinates

Using Boyer-Linquist coordinates r, θ, φ, [2], named spherical polar coordi-
nates, the coefficients of ds2 are:

g44 = −1 +
2mr

r2 + a2 cos2 θ
(4)

g34 =
2mra sin2 θ

r2 + a2 cos2 θ
(5)

g33 =

(
r2 + a2 +

2mra2 sin2 θ

r2 + a2 sin2 θ

)
sin2 θ (6)

g11 =
r2 + a2 cos2 θ

a2 − 2mr + r2
(7)

g22 = r2 + a2 cos2 θ (8)

or equivalently:

A2 = 1− 2mr

r2 + a2 cos2 θ
, f3 = A−2g43 (9)

and:

ḡ11 = 1− a2 sin2 θ

a2 − 2mr + r2
(10)

ḡ22 = a2 cos2 θ − 2mr + r2 (11)

ḡ33 = (a2 − 2mr + r2) sin2 θ (12)

ḡ12 =
a2 cos θ sin θ(2µr + r2)

(a2 sin2 θ + 2rµ+ r2)µ
(13)

where m is the mass parameter, a with a2 ≤ m2, is the angular momentum
parameter, and:
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µ =
√
m2 − a2 cos2 θ (14)

Notice that while there is no problem considering the limit m→ 0 of ds2,
this is not the case with ds̄2.

Assuming that a = m = 0 ds̄2 becomes the Euclidean metric:

ds̃2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (15)

there is no problem identifying θ and φ as polar angles. But this does not
authorizes to identify r with the corresponding radial distance, because any
radial coordinate transformation:

r ⇀ ψ(r, θ; a,m) such that ψ(r, θ; 0, 0) = r (16)

would change the meaning of r. The next section illustrates this assertion.

4 A global extension of the Kerr metric

A2 becomes zero in two circumstances that correspond to two singular points
of the metric . Namely when the r coordinate is:

r± = m± µ (17)

Since r+ > r− and both are positive this means that the Kerr metric is
globally hyperbolic with positive values of r only in the interval [r+,∞], r+

being a function of θ and the two parameters m and a. In this domain only
the Kerr metric is a legitimate space-time relativistic model.

Let us consider the coordinate transformation:

r− > r + r+ = r +m+
√
m2 − a2cos2θ (18)

the new values of the variables A, f3, and ḡij are:

g44 = −1 +
2mσ

σ2 + a2 cos2 θ
(19)

g11 =
σ2 + a2 cos2 θ

(a2 − 2mσ + σ2
(20)

g22 =
σ2 + a2 cos2 θ)a4 cos2 θ sin2 θ

µ2(a2 − 2mσ + σ2)
(21)

g33 =

(
σ2 + a2 +

2mσa2 sin2 θ

σ2 + a2 cos2 θ

)
sin2 θ (22)
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g34 =
2mσa sin2 θ

σ2 + a2 cos2(θ)
(23)

g12 =
(σ2 + a2 cos2 θ)a2 cos θ sin θ

(a2 − 2mσ + σ2)µ
(24)

with the the notation simplification:

σ ≡ r +m+ µ (25)

Equivalently:

A2 = −g44, f3 = −2m(r +m+ µ)a sin2 θ

2µr + r2
(26)

and:

ḡ11 =
2µr + r2

a2 sin2 θ + 2rµ+ r2
(27)

ḡ22 =
(a2(m2 + r2) sin2 θ + (m2 − a2)r2 + 2µ3r)(2µr + r2)

µ2(2rµ+ r2 + a2 sin2 θ)
(28)

ḡ33 = (a2 sin2 θ + 2µr + r2) sin2 θ (29)

ḡ12 =
a2 cos θ sin θ(2µr + r2)

(a2 sin2 θ + 2rµ+ r2)µ
(30)

The two interesting limit cases of the preceding line-element are the Bril-
louin line-element [10]-[14] corresponding to a = 0 and that corresponding
to a = m that is the maximum value that a can have.

5 The Weyl space-like metric

The Weyl space-like metric ds̄2 with (36)-(36) can easily be written in diag-
onal form:

ds̄2 = ḡ11

(
dr +

ḡ12
ḡ11

dθ

)2

+
1

ḡ11
(ḡ11ḡ22 − ḡ212)dθ2 + ḡ33dφ

2 (31)

From inspection of (36) we see that ḡii, i = 1, 2, 3, are definite positive and
it is easy to prove that:

ḡ11ḡ22 − ḡ212 =
r2(2µ+ r)2(a2 sin2 θ + r2 + 2µr)

a4 sin4 θ + 2a2r(r + 2µ) sin2 θ + r3(r + 4µ)
(32)
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Therefore ds̄2 is a proper Riemannian metric.
It is the relationship between this metric and the Euclidean metric (15)

that allows to calculate the optical length of an optic fiber whatever the
circuit that is considered.

6 Polar plots

The first figure below is the polar-plot of the singular line g44 = 0, assuming
that a = m = 1, when using the Boyer-Linquist coordinates (red graph).
Notice that θ being a polar angle its value is constrained to be in the closed
interval [0, π] and therefore only the upper part of the plot is relevant.

Using the global coordinates of this paper the graph is reduced to the
center of the plot. This makes unambiguous the choice of r, frozens its
interpretation as the distance from the singular source of the point of space
being considered and selects the interval ]0,∞[ as the interval where ds̄2 is a
positive definite metric.

7 Circular orbits

I consider in this section the geodesics whose space orbits are circles on the
equator plane of symmetry θ = 0 and Ω = dφ/dt is constant. The relevant
non zero, Christoffel symbols to take into account are:

Γ3
41 = − ma

(r +m)2(a2 + 2mr + r2)
, Γ3

31 = −ma
2 − 4m2r − 4mr2 − r3)

(r +m)2(a2 + 2mr + r2)
(33)

The algebraic equation to be solved is:

2(a2m− 8m3 − 12m2r − 6m2r2 − r3)Ω2 + 2maΩ +m = 0 (34)

and leads easily to the following angular velocity solutions:

Ω± =
−ma±

√
m(2m+ r)3

a2m− 8m3 − 12m2r − 6mr2 − r3
(35)

Consider the following quantity:

Ge(Ω±) = g44 + 2g34Ω
± + g33(Ω

±)2) (36)

If Ge is negative the circular orbit is time-like. If it is zero it is light-like.
Otherwise it is space-like.
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The green graph of the second figure below is that of G+
e = Ge− cor-

responding to the Brillouin solution, a = 0, assuming that m = 1. In this
case there is a single light-like geodesic satisfying the required conditions at
r = 1/2. Below this value the corresponding geodesics are space-like, i.e.
tachyon ones.

The graphs red and blue are the those of Ge+ and Ge− corresponding to
the extreme Kerr model with m = a = 1. In this second case while for one
direction of rotation all circular geodesic orbits are time-like. For the other
rotation direction there are both time-like and space-like circular geodesic
orbits separated by by a light one at r ∼= 1.292063116.

The two main results of this paper are: i) The first postulate of General
relativity requiring that a space-time model should be globally hyperbolic on
R3 leaves out of physics such phantasies as ”black or white holes”; ii) Surpris-
ingly it appears that geodesic space-like trajectories appear quite naturally
in Kerr model, and if it turns out that this is a general feature of many other
solutions it might be a clue to why tachyons come out also naturally in some
quantum gravity theories.
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