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Abstract. We specify a time vector for an event in the theory of special relativity (TSR). This vector is 
well suited to specify various types of simultaneity. Moving (possibly imagined) clocks, which are 
synchronized at a common ‘point of initiation’, play a crucial role. We can present the time vector as a 
complex variable, and there is a close relation to the Minkowski distance. We exemplify the approach 
by including a short discussion of the ‘travelling twin’.  
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1 Introduction 
The concept of simultaneity is crucial in the theory of special relativity (TSR). Within a single reference 
frame (RF) simultaneity is easily established by the synchronization of clocks, e.g. using light rays, for 
instance see textbooks like Giulini (2005) and Mermin (2005). Then we say that events with the same 
clock reading, ‘time’ (t) on a specific RF, are simultaneous in the perspective of this frame. So this type 
of simultaneity depends on the chosen RF.  

The situation is more complex when we have several inertial RFs which are moving relative to each 
other. However, in the case there is actually just a single event, which of course will have different (time, 
space) parameters – say (t, x) – within the different RFs. We could refer to this trivial case as basic 
simultaneity. 

However, when we have moving RFs, there is in TSR no unique definition of simultaneity of events 
occurring ‘at a distance’. The various RFs will disagree with respect to simultaneity. We have relativity 
of simultaneity, e.g. see the discussion in Debs and Redhead (1996). They argue for the conventionality 
of simultaneity; the definition of simultaneity is essentially a matter on convention.  

We will here argue that one can provide a single, sensible and consistent definition of simultaneity also 
‘at a distance’. Hokstad (2018) introduced an approach to obtain such a simultaneity for two RFs, 
postulating an auxiliary RF with origin always located at the midpoint between the two main RFs, and 
use a symmetry argument. In the present paper we pursue a slightly different approach.  

First, we point out that an essential requirement for the use of the fundamental Lorentz transformation 
(LT) for two RFs, moving relative to each other, is that we start out with three sets of synchronizations: 

1. All clocks on the first RF are synchronized; (so they are simultaneous in the perspective of this RF); 
2. Similarly, all clocks on the second RF are synchronized; 
3. The clocks at the origins of the two RFs: At time 0 these are at the same location, and they are then 

synchronized; this ‘point of initiation’ is a fundamental initial condition for the experiment. We refer 
to these two clocks as basic clocks (BCs), and this synchronization provides an example of basic 
simultaneity (see above). 

Further, one implicitly assume that the clocks on each of the RFs remain synchronized. We will here 
argue that also the two BCs at the origins of the RFs – which we synchronized at time 0 - will remain 
synchronized. They move away from each other at constant speed, v; but there is a symmetric situation; 
so there is no way to claim that one of the two clocks goes faster than the other.  

So our claim is that when the two ‘basic clocks’ at the origins of the two RFs show the same time, this 
corresponds (in some sense) to simultaneous events ‘at a distance’. Actually we could consider this to 
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be a consequence of the standard assumption of symmetry between the two RFs. We will find that this 
leads to a rather strong form of simultaneity, as all observers can agree on this. Further, in the above 
argument there is no need to restrict to consider just two RFs, so we can get simultaneity for any number 
of events. 

In the paper we start out by introducing a two dimensional time vectors related to any event (t, x). The 
clock readings of the BC on the location of the event is an essential element of the vector, which proves 
useful for defining simultaneity ‘at a distance’. Note that we restrict to consider just a single space 
parameter. 

This paper gives a purely mathematical description of the phenomenon, investigating implications of 
the LT, and there is no attempt of a physical interpretation. 

2 Time as a two-dimensional variable  
We now introduce a two-dimensional state vector. We refer to this as a time vector, and we will utilize 
it to define simultaneity. We first introduce this time vector for a single RF. 

2.1 Time vector of a single RF 
We consider a RF, K. At virtually any position, there is a synchronized clock with a clock reading 
denoted, t. When at position, x there is a clock reading, t, we will simply refer to (t, x) as an event. 
Further, we introduce the parameter 

                                                                      w = x/t                                                                              (1) 

which we of course can interpret as the velocity of an object that has moved from the origin at time 0 to 
the position, x at ’time’ (clock reading), t.  

We have previously (Hokstad (2017)) suggested the following time vector for this event 

                                                              𝑡(𝑡, 𝑥) = ቀඥ௧మି(௫/௖)మ 
௫/௖

ቁ                                                              (2) 

Using, w = 𝑥/𝑡, we can also write this time vector as 

                                                         𝑡(𝑡, 𝑤) = ቀ𝒕𝟏

𝒕𝟐
ቁ = ቀඥଵି(௪/௖)మ

௪/௖
ቁ 𝑡                                                     (3) 

Now both components of this vector has a specific interpretation. The first component equals  

                                                                  𝑡஻஼ =  𝑡ඥ1 − (𝑤/𝑐)ଶ                                                          (4)                                                

Here we recognize the standard time dilation formula, (cf. App. A). We just imagine a RF, Kw moving 
relative to K at velocity w, and assume that at time 0 the origins of the two RFs where at the same 
location, and that the two clocks at this position where then synchronized. This synchronization implies 
that these clocks are of particular interest, and we call them Basic Clocks (BC). We also refer to this 
event of synchronization (at time, 0) as the ‘point of initiation’.  

Thus, we interpret 𝑡஻஼  of eq. (4) as the clock reading of the BC (located at the origin of Kw) at the 
moment when this clock has reached the position, x = wt on K, (at an instant when the local clock on K 
reads t). We may say that 𝑡஻஼  defines the ‘basic time’ of the event (t, x) on K. So now we have the 
following alternative expression for our time vector: 

                                                                       𝑡(𝑡, 𝑥) = ቀ  ௧ಳ಴

௫/௖
ቁ                                                                 (5) 

To summarize, eqs. (2), (3) and (5) are all valid expression for the time vector of the event (t, x) on K:  

                                            𝑡 = ቀ𝒕𝟏

𝒕𝟐
ቁ = ቀඥ௧మି(௫/௖)మ 

௫/௖
ቁ = ቀඥଵି(௪/௖)మ

௪/௖
ቁ 𝑡 = ቀ௧ಳ಴

௫/௖
ቁ                                                (6) 

We note that the first component of the time vector is a valid expression only when ∣x∣/c < t, (that is 
∣w∣<c). So at a given position, x the time vector is only defined for clock readings, t > ∣x∣/c. Here ∣x∣/c 
is the time required for a light flash occurred at the point of initiation to reach the position, x. Actually, 
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in the limit, when ∣w∣→c, the moving BC reaching x will read tBC = 0 (eq. (4)), and so apparently no 
time has then elapsed, even if the local clock on K reads t. So when v=c the clock reading remains 
constant, and there is purely a spatial expansion. We conclude that it is only after time t > ∣x∣/c that (6) 
defines the time vector at a fixed position, x. 

x/c
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𝑡𝐵𝐶  
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Figure 1 One specific time vector, 𝒕⃗(𝒕, 𝒘) = ቀ𝒕𝟏
𝒕𝟐

ቁ = ቀඥ𝟏ି(𝒘/𝒄)𝟐

𝒘/𝒄
ቁ 𝒕 =  ቀ𝒕𝑩𝑪

𝒙/𝒄
ቁ for a specific clock reading, t at the position, x = 

wt, when ∣t∣>x/c; (here sin 𝝋 = w/c). 

However, for t > ∣x∣/c we can present the time vector,  𝑡 =  𝑡(𝑡, 𝑤) = 𝑡(𝑡, 𝑥)  as a point on the semicircle 
with radius, t in the (tBC, x/c) space; see Fig. 1. In summary, the components of the time vector have 
simple interpretations: 

1. The first component, 𝑡஻஼ =  𝑡ඥ1 − (𝑤/𝑐)ଶ equals the clock reading of the BC of the (possibly 

imagined) RF, Kw which has now reached the position x = w 𝑡 on K. We call this the ‘basic time’ 
(or ‘BC reading’) at this position.  

2. The second component, x/c, equals the time required for a light flash to go to the distance, x from 
the origin of K (with its BC) to the given position. So this equals the distance in time between the 
BC at the origin of K and the BC at x. 

Thus, both components refer to aspects of ‘distance in time’ from the ‘point of initiation’, (x = t = 0).  

Further, the absolute value of the time vector equals the clock reading of the event itself: 

                                                                 │𝑡(𝑡, 𝑤)│ = 𝑡                                                                 (7) 

Thus, events on K, with time vectors having the same absolute value, also have identical clock readings, 
and thus are simultaneous ‘in the perspective’ of K. The semicircle of Fig. 1 illustrates this. 

We essentially see Fig. 1 as an illustration of the time vectors of one specific RF. Different semicircles 
(of radius, t) which we could draw, represent different ‘clock times’. By specifying both a t and a 
position, x, we also obtain a corresponding tBC. Both at position x and –x there will be a BC which reads 
tBC, (they have moved in opposite directions from the origin of K).  
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We observe that there is a strong link between the above approach and Minkowski’s approach to space-

time; cf. space-time distance given as ඥ𝑐ଶ𝑡ଶ − 𝑥ଶ − 𝑦ଶ − 𝑧ଶ in his four-dimensional space, Minkowski 

(1909). As stated in Petkov (2012), Minkowski refers to our BC reading (see ඥ𝑡ଶ − (𝑥/𝑐)ଶ of eq. (2)), 
as ‘proper time, and our t as ‘coordinate time’. Below we apply this to pursue the concepts of 
simultaneity.  

It seems we could generalize the present approach to hold also for a three-dimensional space with 

coordinates (x, y, z). We would then define w by w =ඥ𝑥ଶ + 𝑦ଶ + 𝑧ଶ /𝑡.  

2.2 Time formulated as a complex variable 
We can of course formulate our time vector for the event (t, x) as a complex variable. In polar form, we 
can write the vector 𝑡(𝑡, 𝑤) in (3) as: 

                                                                       𝐭(𝑡, 𝑤) = 𝑡𝑒௜ఝ,                                                                (8) 

Here the argument,  𝜑 ∈ (−𝜋/2,   𝜋/2), is given by 

                                                                          sin 𝜑 = w/c.                                                                   (9) 

When 𝜑 = 0, we have w = x = 0. Then the corresponding event occurs at the origin of K, and the relevant 
BC is the one located on K itself. In this case only, the time variable becomes a real number. 

Further, the magnitude, t; the real part, Re(t(t, 𝑤)) = tඥ1 − (𝑤/𝑐)ଶ = 𝑡cos 𝜑 = 𝑡𝐵𝐶; and the imaginary 

part, Im(t(t, 𝑤)) = t ∙ (𝑤/𝑐) = 𝑡 sin 𝜑 = x/c all have interpretations as described in Section 2.1.  

2.3 Relating time vectors of different RFs (Lorentz Transformation) 
We now consider the relation between the time vectors of two different RFs, which move relative to 
each other. Thus, we have a Kv moving relative to a K0 at a speed, v. As in the previous notation, an 
event on Kv is specified by the clock reading, tv and the position, xv, (and thus applies also for v = 0). We 
further let wv = xv /tv, and define 𝜑௩ by 

                                                          sin 𝜑௩ =  𝑤௩/𝑐, (for 𝑤௩ < 𝑐)                                                    (10) 

As seen above, (eq. (6)) there are various ways to write the time vector on Kv, one alternative being: 

𝑡 = ቆ
  𝑡௩

஻஼

𝑥௩/𝑐
ቇ 

In analogy with the formulation as a complex variable (eqs. (8) and (9)) we can also write it in the form 

                                              𝑡(𝑡௩ , 𝑤௩) = ቀ𝒕𝒗,𝟏

𝒕𝒗,𝟐
ቁ = ቀୡ୭ୱ ఝೡ

ୱ୧୬ ఝೡ
ቁ 𝑡௩ =  ቀ ଵ

୲ୟ୬ ఝೡ
ቁ 𝑡௩

஻஼                                     (11) 

Now consider the case that 𝑡(𝑡௩ , 𝑤௩) and 𝑡(𝑡଴, 𝑤଴) describe the same event, just expressed by the co-
ordinates of Kv and K0, respectively (i.e. ‘basic simultaneity’). Then the Lorentz transformation (LT) 
will provide the relation between these vectors, cf. Appendix A. It is easily verified, (and rather well 
known cf. eq. (2)), that the first component 𝑡௩,ଵ is then invariant under the LT, and so in this case we 
have  

𝑡௩,ଵ = 𝑡஻஼, (independent of v). 

The point is simply that time vectors, 𝑡(𝑡௩ , 𝑤௩) refer to the same event, and thus experience the same 
BC reading, 𝑡஻஼ . Fig. 2 illustrates this. The time vector on K0 (blue) and the on Kv (red) have identical 
first component, 𝑡஻஼ , and are related by the LT. Fig. 3 gives another illustration, where KBC represents 
the RF of the BC being present at the event.  
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Figure 2 Time vector, 𝒕⃗(𝒕𝟎, 𝒘𝟎) on K0 when its clocks read time t0, (blue); and time vector, 𝒕⃗(𝒕𝒗, 𝒘𝒗) on Kv at the same 
position, (red). We actually consider the same event, described by two different RFs (and being related by the LT).  

0

xv
Kv 

K0 

0

0

x0

tv

t0

𝑡𝐵𝐶  KBC

 

Figure 3 Two events (x0, t0) and (xv, tv) representing basic simultaneity, and the clock reading, tBC of a BC at the same 
position. Origins of all RFs are marked with a zero, 0. 
 
3 Simultaneity and the time vector 
It should be quite clear by now that there is a rather close connection between the time vector and 
simultaneity. As indicated in Figs. 1 and 2 we consider two types of simultaneity. We will now refer to 
these as Type I and II, respectively, and now sum up the main features of these.  

3.1 Simultaneity, Type I 
The absolute value of the time vector is equal to the clock reading, t of the corresponding event. When 
we consider the events of one single RF, K, (but only then) we can use this as a measure of simultaneity;  
we say that events with identical, t are simultaneous ‘in the perspective of K’. We will refer to this as 
Simultaneity, Type I. So this occurs when the time vectors of a specific RF have the same absolute 
value; cf. vectors on the semicircles of Figs. 1 and 2.  

As we know, however, this a very weak form of simultaneity. The various RFs will give different results 
regarding ‘time’, and will even disagree on the ‘time’ of a specific event, (what we have called basic 
simultaneity), e.g. see the two vectors of Fig.2. So the RFs disagree regarding simultaneity, and if we 
want to take a holistic view, it seems no way to give preference to the claims of one of them.  

3.2 Simultaneity, Type II 
We use our concept of Basic Clocks (BCs) to define Simultaneity, Type II. At the point of initiation (t=0 
all RF) all BCs are located at the (common) origin and are moving relative to each other at various 
speeds. Thus for every event (t, x) on any RF (with t > ∣x∣/c) there is a BC present. Events that have the 
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same BC reading, tBC are simultaneous in this sense (Type II). The BCs may of course be imagined; we 
are just stating what these clocks would read, if they were present at the location of an events. 

We distinguish between two cases: 

i. We have just one event, described by two (or several) RFs, cf. Fig.2. So the BC reading, tBC is the 
same, independent of the RF considered. This is the situation described by the LT, and the red and 
the blue time vector are two representations (in two different RFs) of the same event. Thus, they have 
the same tBC. In this trivial case we apply just a single BC, and refer to Simultaneity Type II, Local. 

ii. The second case is much more interesting; it provides a means to give an objective definition of 
‘simultaneity at a distance’. The main point is that the above argument applies for various BCs ‘at a 
distance’. For instance, looking at Fig. 2 we immediately see that the event described with the two 
given time vectors are also simultaneous with the corresponding event on the negative x-axis; where 
there is another BC with the same 𝑡஻஼ . However, we are not limited to such a special case. There 
will be BCs at any speed (<c) available at any position, with the ability to specify simultaneity of 
events ‘at a distance’. Further, the requirement that various events have identical BC readings is 
obviously equivalent to (see (6)) that 

                                                            𝑡௩
஻஼  = ඥ𝑡௩

ଶ − (𝑥௩
ଶ/𝑐)ଶ = Const.                                                (12) 

cf. the Minkowski distance. As known, this expression is invariant under the LT, but more important 
is the case of using several BCs. We refer to this as Simultaneity, Type II, At a distance. 

Simultaneity, Type II obviously disagrees with Simultaneity, Type I. Events that are simultaneous 
according to the corresponding BC readings, tBC, are not simultaneous ‘in the perspective of the relevant 
RF. In conclusion, Type II is a much more sensible definition, as it is consistent and applies across RFs. 
Further, Type II, Local is rather trivial and really not that interesting. Type II, At a distance, however 
provides useful new insight   

We finally note the limitation of the given approach: We have defined simultaneity relative to a specific 
‘point of initiation’, only. However, if we first identify simultaneous events ‘at a distance’ relative to a 
given ‘point of initiation’, it should also be possible to define further simultaneities based on these 
events, now treated as new ‘common’ points of initiation.  
 
4 The travelling twin 
The travelling twin paradox is frequently discussed, e.g. see Schuler and Robert (2014). As stated for 
instance in Mermin (2005) the paradox illustrates that two identical clocks, initially in the same place 
and reading the same time, can end up with different readings if they move apart from each other and 
then back together. We gave a lengthy discussion in Hokstad (2018), and now restrict to a comment on 
the simultaneity of events related to the actual arrival. 

In this thought experiment we start out with two synchronized clocks at the origins of two reference 
frames: the RF of the earth, and the RF of the rocket of the travelling twin. We note that both clocks are 
located at the origin of their RFs, and so both are basic clocks (BCs) in our notation. This makes the 
case very well suited to illustrate the current approach. Actually it is sufficient to point out that both 
clocks are BCs. So if the travelling twin’s clock shows 4 years by his arrival, this is simultaneous with 
the event that the clock on the earth also shows 4 years. This follows from our Simultaneity, Type II, At 
a distance.  

However, to illustrate this further, we also consider the relevant time vectors. We use the numerical 
example of Mermin (2005). The distance from the earth to the star equals x0 = 3 light years, i.e.  x0/c = 

3 years, and the velocity of the rocket is v = 0.6c, giving ඥ1 − (𝑣/𝑐)ଶ = 0.8. It follows that by the 
arrival of the travelling twin, the clock at the star belonging to the earthbound twin will read x0/v = 3/0.6 
= 5 years, (assuming that the he has a clock, located on the star. being synchronized with his own). At 
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the same instant the clock of the travelling twin reads 5∙0.8= 4 years (time dilation). In the literature one 
now often just points out that ‘time’ equals 5 years ‘in the perspective’ of the earthbound twin, and 4 
years ‘in the perspective’ of the travelling twin. 

Fig. 4 illustrates the time vectors related to the arrival at the star: Red time vector for the travelling twin; 
his clock showing 4 years. Blue vector for the earthbound twin; his clock showing 5 years. We note that 

since x0/c = 3 years at this position, we also directly get tBC = √5ଶ − 3ଶ = 4 years, as already stated. The 
two semicircles represents times ‘in the perspectives’ of the two twins; obviously representing very 
conflicting views. We note that Fig. 4 is a special case of Fig. 2, as the RF of the BC equals that of the 
travelling twin, (red semicircle has radius tBC).  

However, we also have another BC, namely that of the earthbound twin. Thus, we conclude that when 
these two time vectors have the same tBC = 4 years, this represents Simultaneity Type II, at a distance. 

x/c

54

5
3

𝑡𝐵𝐶  

 

Figure 4. The time vectors at the star by the arrival: Red = RF of travelling twin. Blue = RF of earthbound twin. The relevant 

vectors are 𝑡 = ൫ଷ
ସ
൯ = 5 ቀ଴,଺

଴,଼
ቁ and 𝑡 = ൫ସ

଴
൯ = 4൫ଵ

଴
൯. 

So the main finding here is that the arrival at the star is simultaneous with the event that clock on the 
earth shows 4 years. Actually 4 years is the only feasible result, considering the symmetry of the 
situation, cf. Hokstad (2018). However, we point out that one will actually arrive at the standard result 
of 10 and 8 years, for the ages (or rather clock readings) by the reunion of the twins on the earth. The 
return of the travelling twin requires a change of direction, and therefore the introduction of a third RF, 
and this will significantly affect the development, in total providing in the standard result.  

5 Conclusions 
The above presentation is based on one fundamental claim. We postulate an infinite set of (possibly 
imagined) reference frames (RFs) moving relative to each other at constant speeds. At the origins of 
these RFs there is a clock, and initially these are all synchronized. From symmetry, we conclude that 
they remain synchronized, and refer to them as basic clocks (BCs). 

Then for any event (t, x) on any RF, we define a time vector in two dimensions: 

1. the clock reading of the (imagined) basic clock BC currently at this position, (𝑡஻஼) 
2. the time required for a light flash to go from the origin of the RF (where there also is a BC) to the 

current position,(𝑥/𝑐).                

So, both components (dimensions) represent a ‘distance in time’ from the ‘point of initiation’, when the 
BCs were synchronized. We find that the absolute value of this time vector equals the clock reading, t 
of the event, and see this as a measure for the overall distance in time from the ‘point of initiation’. 
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This time vector provides a means to define various forms of simultaneity. Obviously, when time vectors 
on a specific RF have the same absolute value, t they will specify events that are simultaneous ‘in the 
perspective’ of this RF. This Simultaneity, Type I ,follows as t also equals the clock reading of the event.  

However, the main result is that time vectors, which have identical first component (𝑡஻஼) correspond to 
simultaneous events. This represents simultaneity in a much stronger sense, as we can use it as a holistic 
definition, valid for all RFs. We denote it Simultaneity Type II. The definition can be used locally: When 
we consider a specific event, described by various RFs, the vectors of all RFs of course have the 
same 𝑡஻஼, as for any event there is just one BC present.  

However, the most useful application is to consider this simultaneity ‘at a distance’. Events with the 
same 𝑡஻஼  will exhibit this form of simultaneity, also for distant events!  

The travelling twin paradox represents a trivial application of this definition of simultaneity (Type II). 

We note that the results apply for simultaneity relative to a common ‘point of initiation’. Finally, observe  
that we can also formulate the time vector as a complex variable, and that there is a close link to the 
time-space of Minkowski.  
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Appendix A   The Lorentz transformation (LT) and time dilation 

This Appendix reproduces some material from Hokstad (2018). 

A.1 Alternative formulation of the LT 

The LT represents the fundament for our discussions. In our notation the LT takes the form  

                                                                 𝑡௩ =  
௧బି(௩/௖మ)௫బ

ඥଵି(௩/௖)మ
                                                                 (A1) 

                                                                  𝑥௩ =  
௫బି௩௧బ

ඥଵି(௩/௖)మ
                                                                  (A2) 

We prefer a modified version of the LT. At any time, tv and position, xv we introduce wv equal to wv = 
xv/tv, (and therefore also w0 = x0/t0). Then we insert x0 = w0t0, and (A1) directly gives that the clock 
reading on the RF, Kv at this position equals: 

                                                          𝑡௩ = 𝑡௩(𝑤଴) =
ଵି ௩௪బ/௖మ

ඥଵି(௩/௖)మ
𝑡଴                                                       (A3) 

Note that we here also write 𝑡௩ = 𝑡௩(𝑤଴) to stress the dependence on w0.  
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Figure A1. Clock readings in the perspective of K0. Thus, ‘time’ all over K0 equals t0, while clock readings, tv(w0) on the 
other RF is given as a function of w0, where w0 = x0/t0 provides the ‘position’ on K0; cf. (3). 

 

Further, by also inserting x0 = w0t0 and xv = wv∙tv, we obtain 

                                                             𝑤௩ =  
௫ೡ

௧ೡ(௪బ)
=

௪బି௩

ଵି
ೢబ

೎
∙
ೡ

೎

                                                                              (A4) 

So equations (A3), (A4) express the LT by parameters (t, w) rather than (t, x). We observe that clock 
readings, t0  and tv enters (A3) only! 

Fig.A1 provides an illustration of the time dilation formula, (A3). This gives the clock reading both on 
K0 and Kv in the perspective of K0; (i.e. all clocks on K0 having the same clock reading). Therefore, the 
figure illustrates an instant when clocks read t0 all over this RF. The horizontal axis gives the ‘position’ 
w0 = x0/t0 on K0 at which the clock measurements are carried out. The vertical axis gives the actual clock 
readings. So as clocks on K0 reads t0 at any ‘position’, w0, the clock readings on Kv at this instant, 
𝑡௩ = 𝑡௩(𝑤଴), is a linear function of w0, see (A3). 

A.2 Two standard special cases (observational principles) 
Two special cases are of particular interest. Recall that the first clock comparison is carried out at the 
origins xv = x0 = 0 when tv = t0 = 0.  We specify two choices for the second comparison of clock readings. 

First we compare the clock located at xv = 0 on Kv (with the passing clocks on K0 showing t0). Thus, also 
wv = 0, and (A4) implies w0 = v, and (3) gives the relation between the two clock readings at this position, 
cf. Fig. A1:  

                                                         𝑡௩ = 𝑡௩(𝑣) = 𝑡଴ ඥ1 − (𝑣/𝑐)ଶ                                                   (A5) 

This equals the standard ‘time dilation formula’. Secondly, we can compare the clock located at x0 = 0 
on K0 with a passing clock on Kv. For x0 = w0 = 0, i.e. following the basic clock at the origin of K0, eq. 
(A3) gives the following relation, (again see Fig. A1): 

                                                          𝑡௩ = 𝑡௩(0) =  𝑡଴/ඥ1 − (𝑣/𝑐)ଶ                                                     (A6) 

Apparently, the relations, (A5), (A6) are contradictory; eq. (A5) tells that the clock on Kv goes slower, 
and (A6) tells that the clock on K0 goes slower; cf. the Dingle’s question, (McCausland 2008, 2012). 
Thus, the time dilation is not a feature of the RF, but follows from which single clock we choose to 
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follow when we perform the second clock comparisons. Therefore, we prefer to formulate the time 
dilation formulas (A5) and (A6) in compact form as 

                                                           𝑡஻஼ =  𝑡ெ஼  ඥ1 − (𝑣/𝑐)ଶ                                                         (A7) 

Here we have introduced the notation regarding the second clock comparison. 

tBC = The clock reading of a basic clock (BC)1. Thus, on this RF the same clock is used in the second 
clock comparison. 

tMC = The clock reading at the same location, but on the other RF. Therefore, this is the clock reading 
on the RF which use multiple clocks (MC) for the clock comparison; (i.e. it uses another clock 
in the second comparison). 

Thus, both RFs can apply a BC for a certain clock comparison, and then conclude that ‘time goes slower’ 
on the RF which use BC. However, the same RF could also apply two clocks (MC) for a clock 
comparison with a BC on the other RF; and we would then conclude that ‘time goes slower’ on this 
other RF. Therefore, it is the observational principle, i.e. choice of clocks for the clock comparisons 
that matters; cf. discussion in Hokstad (2018). This is a well-known result. However, this duality has 
perhaps not received the attention it deserves in standard literature.  

A.3  The symmetric case 

There is another interesting special case of the LT, (A3), (A4). We can ask which value of w0 (and thus 
wv) will result in tv = t0. We easily find that this equality is obtained by choosing w0 = 𝑤∗, where   

                                                    𝑤∗ =
௖మ

௩
ቀ1 − ඥ1 − (𝑣/𝑐)ଶቁ =  

௩

ଵାඥଵି(௩/௖)మ
                                        (A8) 

Further, by this choice of w0 we also get wv = – 𝑤∗. This means that if we consistently consider the 
positions where simultaneously x0 = 𝑤∗t0 and xv = – 𝑤∗tv = – 𝑤∗t0, then no time dilation will be observed 
at these positions. In other words (cf.  Fig. A1): 

                                                                         𝑡௩(𝑤∗) = 𝑡଴      

At this position we also find xv = - x0, thus, providing a nice symmetry. Note that when we choose the 
observational principle, (A8), then absolutely everything is symmetric, and it should be no surprise that 
we get tv = t0.  

Here we note that the result (A8) has a direct interpretation related to velocities. According to standard 
results of TSR, the velocities v1 and v2 sums up to v, given by the formula 

                                                                 𝑣 = 𝑣ଵ⨁ 𝑣ଶ  ≝  
௩భା௩మ

ଵା
ೡభ
೎

∙
ೡమ
೎

                                                       (A9) 

This gives a definition of the operator ⨁ for adding velocities in TSR. Now it is easily verified that 
when  𝑤∗ is given by (A8), then from (A9) we get 𝑤∗⨁𝑤∗= v. So this confirms that when our point of 
observation ‘moves’ with velocity  𝑤∗ relative to K0 and velocity - 𝑤∗, relative to Kv, it corresponds 
exactly to the case that the relative speed between K0 and Kv equals v. 

 

                                                           
1 We have previously used Single Clock (SC) to denote this clock reading 


