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Abstract

The Einstein-Hilbert action of general relativity is not invariant with respect to conformal transformations —
transformations in which the metric tensor is varied continuously via gµν → expπ(x) gµν, where π(x) is an
arbitrary scalar function. This basic type of local scale invariance was introduced in 1918 by the German
mathematical physicist Hermann Weyl, who believed that Nature should incorporate this type of mathematical
symmetry into her laws.

While Einsteinian general relativity is not scale invariant, there does exist an elementary quantity that is conformally
invariant in Riemannian geometry. Based on a combination of the Riemann-Christoffel curvature tensor Rµναβ
and its contracted variants Rµν and R2, the gravitational equations of motion associated with this quantity (usually
referred to as conformal gravity are highly complicated, and their physical relevance remains open to interpretation.
In this elementary paper we show that the conformal equations of motion can be obtained from the R2 term
alone, equations that are parameter-free yet fully consistent with the standard predictions of Einstein’s theory.
We demonstrate the formalism by deriving the classical Schwarzschild metrics for a point mass, the field of a
charged particle, and the Tolman-Oppenheimer-Volkoff equation of state, all of which are essentially identical to
their classical forms.

1. Introduction

Einstein’s 1915 theory of general relativity geometrized space and time, and its success motivated others to see if
the only other force of Nature known at the time—electromagnetism—might be geometrized as well. In 1918, the
German mathematical physicist Hermann Weyl proposed a more general form of Riemannian geometry that
indeed appeared to accomplish this feat based on the notion of what is known today as scale- or conformal
invariance. In doing so, Weyl was forced to introduce a vector field that he subsequently identified with the
four-vector of electromagnetism. In Weyl’s theory, this vector was a purely geometrical quantity that he associated
with the Ricci scalar R and its first derivatives. Weyl’s theory is actually an example of what is considered today a
conformally invariant theory, meaning that physics should not change when the lengths (or magnitudes) of vector
quantities are allowed to vary arbitrarily from point to point in spacetime. Although Weyl’s theory was quickly
shown to be unphysical, it gave birth to a variant of conformal symmetry known as gauge invariance, which today
is a cornerstone of modern theoretical physics.

For purposes of review, the Einstein-Hilbert action for conventional free-space gravity theory is given by

SEH =

∫

p

−g R d4 x (1.1)

where g is the determinant of the metric tensor (assumed to have the signature (1,−1,−1,−1) and
R= gµνRµν = Rµµ is the Ricci scalar. Upon variation with respect to the metric tensor gµν, this goes over to

δSEH =

∫

p

−g
�

Rµν −
1
2

gµν R
�

δgµν d4 x (1.2)

Setting the integrand to zero then gives the Einstein equations for free space,

Gµν = Rµν −
1
2

gµν R= 0 (1.3)

Classical Einstein gravity has proven to be a highly successful theory; its planetary and cosmological predictions
typically agree with observation to a very high degree. However, the theory has nothing to say regarding the
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phenomena known as dark matter and dark energy, a problem has spurred the search for modified versions of the
theory. While the addition of the cosmological constant (−2Λ) term to the action yields the revised Einstein tensor

Gµν = Rµν −
1
2

gµν R+Λgµν, (1.4)

it is not known whether it relates in any meaningful way to the dark energy question. Many attempts (going by
the general name modified gravity) have been made over the years to generalize (1.1) by imposing additional
parameters into the action, including scalar, vector, tensor and spinor fields designed to make the action
conformally invariant and to produce field equations that might explain the dark energy and dark matter
problems. To date, most such attempts have been discarded. Whether Nature demands such invariance in its laws
(including gravity) is open to conjecture, but in quantum mechanics we find that it is responsible for the
conservation of electric charge (where it appears as gauge invariance), a highly desirable aspect of quantum
theory. The conformal invariance of gravity thus remains a tantalizing challenge.

Like Weyl, we will assume in the following that conformal invariance is (or should be) a fundamental aspect of
Nature. Unlike Weyl’s non-Riemannian approach, however, we will see that conformal symmetry can easily be
incorporated into ordinary, parameter-free Riemannian gravity.

2. Notation

Much of the notation and analytical approaches follow those of Adler et al. Greek indices run from 0 to 3 as usual.
Ordinary partial differentiation is expressed by a single subscripted bar before the differentiation variable, as in

ξα|β =
∂ ξα
∂ xβ

Covariant differentiation is expressed by a subscripted double bar, as in

Fλµν||α = Fλµν|α + Fβµν

§

λ
αβ

ª

− Fλµβ

§

β
αν

ª

− Fλβν

§

β
αµ

ª

The quantities in braces are the Levi-Civita connection terms, symmetric in their lower indices, defined by
§

α
µν

ª

=
1
2

gαβ
�

gµβ |ν + gβν|µ − gµν|β
�

The end points of all the integrals appearing in this paper are [∞,−∞]. It is further assumed that surface terms
resulting from integration by parts vanish during the variation process.

3. Conformal Transformations

By a conformal (or scale) transformation we mean a change in the metric given by g ′µν = exp[π(x)] gµν, where π
is some arbitrary scalar field. Because the metric tensor accounts for vector length via L2 = gµνξ

µξν while also
defining the line element via ds2 = gµνd xµd xν, these quantities will naturally vary under a conformal
transformation.

For simplicity, let us consider only infinitesimal transformations, exp(π)→ (1+π), so that

g ′µν = (1+π) gµν , gµν ′ = (1−π) gµν

or
δgµν = π gµν , δgµν = −π gµν (3.1)

where the infinitesimal variations we will be using are defined by δgµν = g ′µν − gµν and δgµν = gµν ′ − gµν. As for
the metric determinant, it can easily be shown that

δ
p

−g = −
1
2

p

−g gµν δgµν (3.2)
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which, in four dimensions, is
δ
p

−g = 2π
p

−g (3.3)

In the following, we will also need the conformal variations of the Riemann-Christoffel curvature quantites
Rµναβ = gµλRλ

ναβ
, the contracted quantity Rνβ = Rα

ναβ
and the Ricci scalar R= gνβRνβ , all of which are

composed of the metric tensor and associated Levi-Civita connection terms. For review, we have

Rλναβ =
§

λ
να

ª

|β
−
§

λ
νβ

ª

|α
+
§

λ
σβ

ª§

σ
να

ª

−
§

λ
σα

ª§

σ
νβ

ª

along with the contracted quantity Rνβ = Rα
ναβ

, or

Rνβ =
§

α
να

ª

|β
−
§

α
νβ

ª

|α
+
§

α
λβ

ª§

λ
να

ª

−
§

α
λα

ª§

λ
νβ

ª

Lastly, we have the Ricci scalar
R= gνβ Rνβ

The conformal variations of these quantities are surprisingly simple, and will be presented in the following
sections.

4. Some Useful Identities

Any contravariant vector ξµ multiplied by
p
−g is called a vector density. A commonly used identity in what

follows relies heavily on the fact that the covariant divergence of a vector density is equivalent to its ordinary
divergence:

�p

−g ξµ
�

||µ =
p

−g ξµ||µ =
�p

−g ξµ
�

|µ (4.1)

as is easily verified by direct expansion using the contracted form of the Levi-Civita connection,
§

α
µα

ª

=
�

log
p

−g
�

|µ

The utility of (4.1) cannot be overemphasized, since ordinary divergences under an integral sign represent surface
terms that go to zero at the boundaries of integration.

Another useful identity follows from the fact that an arbitrary variation of the Levi-Civita connection is a true
tensor, whereas the Levi-Civita term by itself is not. Using this fact, it can be shown without difficulty that any
arbitrary variation of the Riemann-Christoffel tensor collapses to the simple identity

δRλναβ =
�

δ

§

λ
να

ª�

||β
−
�

δ

§

λ
νβ

ª�

||α
(4.2)

Similarly, we have

δRνβ = δRλνλβ =
�

δ

§

λ
νλ

ª�

||β
−
�

δ

§

λ
νβ

ª�

||λ
, (4.3)

while the variation of the Ricci scalar is

δR= Rνβ δgνβ + gνβ
�

�

δ

§

λ
νλ

ª�

||β
−
�

δ

§

λ
νβ

ª�

||λ

�

(4.4)

Because all the integral quantities we will encounter represent vector densities, we can integrate by parts using
the above covariant derivatives and thus greatly simplify the calculations.

Lastly, for the conformal variation defined by (3.1) the variation of the Levi-Civita terms reduces to

δ

§

α
µν

ª

=
1
2

�

δαµ π|ν +δ
α
ν π|µ − gµν gαβ π|β

�

(4.5)
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while

δ

§

α
µα

ª

= 2
p

−g π|µ (4.6)

5. Standard Conformal Gravity

Because of the factor 2 in (4.6), conformal invariance necessarily requires that the action Lagrangian include two
terms involving the upper-index metric tensor gµν. A little thought shows that only the quadratic forms
Rµναβ Rµναβ , Rµν Rµν and R2 can be used to develop a conformally invariant Lagrangian in parameter-free
Riemannian geometry. While this involves terms that are of fourth order with respect to the metric tensor and its
derivatives (an undesirable aspect), we will discover that the action we end up with is only of second order, like
the Einstein-Hilbert action itself.

To begin, we note that there exists a unique, conformally invariant action in Riemannian geometry that Weyl
himself proposed in 1918. It is

S =

∫

p

−g Cµναβ Cµναβ d4 x (5.1)

where Cµναβ is known as the Weyl conformal tensor. In four dimensions, this quantity is defined via the purely
conformally invariant form

Cλναβ = Rλναβ +
1
2

�

δλβ Rνα −δλα Rνβ + gνα Rλβ − gνβ Rλα
�

+
1
6

�

δλα gβν −δλβ gαν
�

R (5.2)

By laborious expansion, (5.1) can be shown to be equal to

Cµναβ Cµναβ = Rµναβ Rµναβ − 2Rµν Rµν +
1
3

R2 (5.3)

so that our action now appears as

S =

∫

p

−g
�

Rµναβ Rµναβ − 2Rµν Rµν +
1
3

R2
�

d4 x (5.4)

Might (5.4) be suitable for deriving scale-invariant equations of motion? Perhaps, but the resulting equations are
complicated by both the fourth-order issue and the presence of the Rµναβ Rµναβ term in the Lagrangian, which
makes calculating equations of motion exceedingly difficult. However, that term can be effectively eliminated
using a clever approach first suggested by Lanczos in 1938, which will now detail following a more
straightforward approach that is of interest in its own right.

Let us assume that the general conformally invariant action

S =

∫

p

−g
�

Rµναβ Rµναβ + ARµν Rµν + B R2
�

d4 x (5.5)

exists, where A, B are constants. If we can find constants that maintain the conformal invariance of (5.4), then we
can then subtract the resulting expression from (5.4) and thus eliminate the curvature term, leaving an invariant
Lagrangian consisting of just two terms in Rµν Rµν and R2. As we will see, this approach in fact produces two
solutions, with one involving the Bianchi identities.

We now proceed to pass the conformal variation operator δ through the integral in (5.5). For instructional
purposes, we will demonstrate the procedure for the Rµναβ Rµναβ term in detail, from which the variations of
p
−g Rµν Rµν and

p
−g R2 should then be transparent. Using the identities from (3.3) and (4.2), it is easy to show

that

δS = 2

∫

p

−g gµλ Rλναβ δRµ
ναβ

d4 x (5.6)
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or

δS = 2

∫

p

−g gµλ Rλναβ
�

�

δ

§

µ
να

ª�

||β
−
�

δ

§

µ
νβ

ª�

||α

�

d4 x

Because the curvature tensor is antisymmetric in α,β , this simplifies to

δS = 4

∫

p

−g gµλ Rλναβ
�

δ

§

µ
να

ª�

||β
d4 x

In view of (4.1), we now use integration by parts to reduce this to

δS = −4

∫

p

−g gµλ Rλναβ||βδ
§

µ
να

ª

d4 x

Using (4.5), we then have

δS = −2

∫

p

−g gµλ Rλναβ||β
�

δµνπ|α +δ
µ
απ|ν − gνα gµκπ|κ

�

d4 x

Now, using the fact the curvature tensor is antisymmetric in λ,ν, the identity Rνµνα = Rµα and some simple
algebra, the student should have no difficulty showing that the variation of (5.6) reduces to

δS = −4

∫

p

−g Rµν||νπ|µ d4 x (5.7)

The above exercise can be used as a guide to show that the variations of the remaining terms in (5.5) are then

δ

∫

p

−g Rµν Rµν d4 x = −
∫

p

−g
�

2 Rµν||ν + gµν R|ν
�

π|µ d4 x (5.8)

and

δ

∫

p

−g R2 d4 x = −6

∫

p

−g gµν R|νπ|µ d4 x (5.9)

(We will refrain from integrating by parts over the π|µ terms because we do not need to.) Putting this all together,
the conformal variation of (5.5) is then

δS =

∫

p

−g
�

2 (A+ 2)Rµν||ν + (A+ 6B) gµν R|ν
�

π|µ d4 x (5.10)

Setting the integrand to zero, we have the obvious solution A= −2, B = 1/3. However, this is just the expression
we discovered in (5.4) by tedious calculation and so provides nothing new. On the other hand, if A 6= −2 then we
can divide the 2(A+ 2) term out of (5.10), arriving at

δS =

∫

p

−g
�

Rµν||ν +
A+ 6B

2 (A+ 2)
gµν R|ν

�

π|µ d4 x (5.11)

If we now set
A+ 6B
A+ 2

= −1, (5.12)

then the integrand is just the set of Bianchi identities, which vanish automatically in Riemannian geometry:
�

Rµν −
1
2

gµν R
�

||ν
= 0

With the exception of A= −2, we are free to choose any set of constants A, B that satisfies (5.12); the conventional
choice (known as the Gauss-Bonnet solution) is A= −4, B = 1. The solution A= −1, B = 0 would seem to be a
better choice (if only out of simplicity), but it really doesn’t matter.
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Using A= −1, B = 0 for convenience as our constants, (5.5) is now

S =

∫

p

−g
�

Rµναβ Rµναβ − Rµν Rµν
�

d4 x (5.13)

We now need only subtract (5.4) from (5.13) to rid ourselves of the full Riemann-Christoffel curvature term. This
results in the conformally invariant action

S =

∫

p

−g
�

Rµν Rµν −
1
3

R2
�

d4 x (5.14)

Equation (5.14) is recognized as the formal action of modern conformal gravity theory.

By varying (5.14) with respect to gµν, in 1989 Mannheim and Kazanas managed to derive an exact solution for a
spherically symmetric gravitational field. The solution they obtained was very similar to the Schwarzschild metric,
along with several additional terms that the researchers believed might be relevant to the cosmological dark
matter and dark energy problems.

6. Toward a Simpler Approach to Conformal Gravity

While the Mannheim-Kazanas solution is exact, the associated equations of motion are highly complicated and
unwieldy, and questions regarding their applicability and relevance to gravitational physics and cosmology remain.
This prompts one to step back and ask why so much complication should be associated with a conformally
invariant version of gravity, particularly if one considers such an invariance to be a basic law of Nature. It must be
remembered that the goal after all is to derive a scale-invariant action. The simplification of (5.4) to (5.14) is
noteworthy, but it is still complicated, and it also depends on the validity of the Biachi identities, which generally
do not hold in non-Riemannian geometries (such as the one Weyl proposed).

In looking back at Weyl’s effort, one may ask if the action in (5.14) might be simplified even further. A glance at
(5.9), which was derived for the R2 term alone, indicates that it is itself conformally invariant if we impose the
condition that the Ricci scalar R be a non-zero constant. Although Weyl had to assume a non-Riemannian
geometry in his 1918 effort, we will now show that the R2 term represents a perfectly valid basis for conformal
gravity in Riemannian space when the Ricci scalar is considered a non-zero constant. This is not a new approach,
as Einstein’s equations long ago showed that the Ricci scalar can be associated with the cosmological constant Λ in
Riemannian geometry. In that case, it is easily shown that for Λ = R/4, Einstein’s equations for free space become

Rµν −
1
4

gµν R= 0

This form of Einstein’s equations has the characteristic of being traceless, a convenient characteristic that coincides
with the tracelessness of the energy-momentum tensor associated with electromagnetism. Indeed, the expression

Rµν −
1
4

gµν R= −
8πG

c2

�

Fαµ Fαν −
1
4

gµν Fαβ Fαβ
�

(where Fµν is the antisymmetric electromagnetic tensor) is completely traceless, and represents a quantity that
Einstein himself believed might correctly represent gravity in the presence of an electromagnetic field. But unlike
Weyl, who sought to geometrize electromagnetism in his effort to unify the equations of Maxwell with general
relativity, we will restrict ourselves to Riemannian geometry, and focus on the possibility that the simple
Lagrangian R2 can provide a conformally invariant gravity theory.

As noted earlier, the action for the
p
−g R2 Lagrangian is conformally invariant when the Ricci scalar R is a

constant. We will now show that, with the added constraint that R be a non-zero constant, the associated
equations of motion reproduce all of the traditional predictions of Einsteinian gravity.

We therefore focus solely on the Lagrangian quantity
p
−g R2 in Riemannian space. As we have shown, its action

is scale invariant, but we now move to its more general variation, tha twith respect to the metric tensor gµν. This
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is straightforward, since the Lagrangian consists only of the metric tesnor and its first derivatives. We therefore
consider the variation of

δS = δ

∫

p

−g R2 d4 x

with respect to gµν which, following the identities presented earlier, can easily be seen to be

δS =

∫

p

−g
�

R
�

Rµν −
1
4

gµν R
�

+ R|µ||ν − gµν gαβ R|α||β

�

δgµν d4 x (6.1)

Given the constraint that R be a constant, this reduces to

δS =

∫

p

−g R
�

Rµν −
1
4

gµν R
�

δgµν d4 x (6.2)

Before proceeding any further, let us note that the dimensionality of the metric tensor is identically zero, while
that of the Riemann-Christoffel tensor and its variants—in view of the derivatives appearing in any variant—are of
length−2. Consequently, the dimensionality of the integrand of (6.2) is length−4. By comparison, that of the
conventional Einstein equations is just length−2. This may be considered a virtue, given that the overall
dimensionality of the quantity

p
−g R2 d4 x is zero, but it will present a problem later on when matter fields are

considered for the action. For example, if the density ρ and pressure P/c2 of some matter distribution were given
as kg/m3, then the dimensionality of the combined quantity 8πG/c2 is just length−2 (if matter is specified by
energy density, then we use 8πG/c4). Consequently, we’ll need to find a solution to the dimensionality issue
associated with (6.2).

We first consider the free-space equations

R (Rµν −
1
4

gµν R) = 0

which strongly resemble the Einstein field equations for free space. We can divide out R, since we must have R=
constant in order to preserve scale invariance. Therefore, our field equations are given by

Rµν −
1
4

gµν R= 0 (R 6= 0) (6.3)

For a spherically symmetric, time-independent point mass, we assume the usual Schwarzschild metric

ds2 = eν(r)c2d t2 − eλ(r)dr2 − r2
�

dθ 2 + sin2 θdϕ2
�

(6.4)

applies, where ν,λ are functions of the radial coordinate r alone. From any text on general relativity, we find the
only non-zero terms are

R00 = −
1
2

eν−λ
�

ν′′ +
1
2
ν′ 2 −

1
2
ν′λ′

�

−
1
r

eν−λν′ (6.5)

R11 =
1
2

�

ν′′ +
1
2
ν′ 2 −

1
2
ν′λ′

�

−
1
r
λ′ (6.6)

R22 =
1
2

r e−λ
�

ν′ −λ′
�

+ e−λ − 1 (6.7)

R33 = sin2θ R22 (6.8)

and

R= −e−λ
�

ν′′ +
1
2
ν′ 2 −

1
2
ν′λ′

�

−
2
r

e−λ
�

ν′ −λ′
�

−
2
r2

�

e−λ − 1
�

(6.9)

where the primes indicate differentiation with respect to r. From (6.3), we then have the three equations

−
1
2

eν−λ
�

ν′′ +
1
2
ν′ 2 −

1
2
ν′λ′

�

−
1
r

eν−λν′ −
1
4

eν R= 0 (6.10)
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1
2

�

ν′′ +
1
2
ν′ 2 −

1
2
ν′λ′

�

−
1
r
λ′ +

1
4

eλ R= 0 (6.11)

and
1
2

r e−λ
�

ν′ −λ′
�

+ e−λ − 1+
1
4

r2 R= 0 (6.12)

Like the standard Schwarzschild solution for general relativity, it is easy to see that ν′ = −λ′ and that the general
solution is

eν = e−λ = 1−
2m
r
− ar2

where 2m, a are constants. We will assume that m is the geometrical radius GM/c2 as usual. The constant a can
be related to RR by plugging the terms for eν, eλ into (6.9), where we find that a = R/12. Therefore,

eν = e−λ = 1−
2m
r
−

1
12

R r2 (6.13)

As noted earlier, the Ricci scalar R has dimension length−2, so that eν, eλ are dimensionless, as expected. Note also
that the free-space expression (6.3) is of second order in the metric. Furthermore, note while that R in the
free-space Einstein equations is identically zero, we cannot make such an assumption for R in the present case.
However, we are free to make it as negligibly small as we like. Consequently, all the traditional predictions of
free-space Einsteinian gravity (advance of Mercury’s perihelion, the deflection of light, gravitational redshift, etc.)
are preserved in our conformal approach.

7. The Field of a Charged Particle in Conformal Gravity

The gravitational field around a charged particle for our simple conformal approach follows almost exactly the
associated Schwarzschild problem, and we demonstrate it here for completeness. For review purposes, the
Einstein equations for gravity in an electromagnetic field are given by

Rµν −
1
2

gµν R= −
8πG

c2
Tµν

where the energy-momentum tensor for electromagnetism is

Tµν = Fαµ Fαν −
1
4

gµν Fαβ Fαβ

Note that the right-hand side is both traceless and conformally invariant, characteristics that are lacking on the
left-hand side (Einstein’s lament that the ‘‘marble’’ of geometry is not matched by the ‘‘wood’’ of
energy-momentum is quite apparent here). Nevertheless, the equations are easily solved, giving

eν = e−λ = 1−
2m
r
+

GQ2

4πc2r2
(7.1)

where Q is the charge of the particle. The details of the solution can be found in any text on general relativity, so
we will not expound on them here.

For our conformal approach, we wish to write

R
�

Rµν −
1
4

gµν R
�

= −
8πG

c2

�

Fαµ Fαν −
1
4

gµν Fαβ Fαβ
�

However, as we alluded to earlier, there is an issue with dimensions here, as the left side is clearly of dimension
length−4 while the right is of length−2. Since we will find that the Ricci scalar R is again undefinable in this case,
we might as well append it to the gravitational constant G and divide it out from both sides, so that

Rµν −
1
4

gµν R= −
8πG

c2

�

Fαµ Fαν −
1
4

gµν Fαβ Fαβ
�
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Using the same Schwarzschild approach as before, we find that the equations are exactly solvable, except in this
case we have

eν = e−λ = 1−
2m
r
+

GQ2

4πc2r2
−

1
12

R r2 (7.2)

Again, the magnitude of R is undefined, so we can make the Ricci scalar as small as we want, and we recover the
classical expression for the gravitational field of a point electromagnetic charge.

8. The Tolman-Oppenheimer-Volkoff Equation for Conformal Gravity

As a final example, we examine the applicability of our formalism to the interior of a massive uncharged body. We
will examine this case in some detail, because while the classical Tolman-Oppenheimer-Volkoff (TOV) equation is
again recovered, the solution for the metric time component eν differs substantially from the classical case
involving a body (a star, say) having a constant density.

We consider the conformal field equations for the interior of a body of incoherent matter having a density ρ(r)
and pressure P(r). The classical energy-momentum tensor for such a body is given as

Tµν = ρ
d xµ

ds
d xν

ds
+

P
c2

�

d xµ

ds
d xν

ds
− gµν

�

where d xµ/ds is the velocity four-vector. In lower-case matrix notation, we have

Tµν =







eνρ 0 0
0 eλ P/c2 0 0
0 0 r2P/c2 0
0 0 0 r2 sin2θ P/c2







With the density and pressure components expressed in terms of kg/m3, the field equations (adjusted as before
with R to preserve dimensionality) are

Rµν −
1
4

gµν R= −
8πG

c2
Tµν

At this point a problem arises: like the energy-momentum tensor for electromagnetism, the Tµν for a matter field
must be traceless. This requires that

gµν Tµν = ρ −
3P
c2
= 0 (8.1)

or ρ = 3P/c2. In cosmology, equations of state in which this relationship holds are valid only for bodies composed
of perfect relativistic fluids, such as a photon gas. To avoid this restriction, let us instead consider the completely
traceless expression

Rµν −
1
4

gµν R= κ
�

Tµν −
1
4

gµνT
�

where the coefficient κ is to be determined. Given the above expression for the stress-energy tensor, it will prove
convenient to use the equation of state for a perfect baryotropic cosmological fluid

P
c2
=ωρ (8.2)

where ω is a dimensionless constant that depends on the fluid composition. Non-relativistic matter corresponds to
ω≈ 0, while that of a highly relativistic gas is ω= 1/3 (another example is ω= −1 for the cosmological
constant).

As before, let us write down the terms corresponding to R00, R11, R22 (again, R33 = sin2 θ R22) and R, respectively:

−
1
2

eν−λ
�

ν′′ +
1
2
ν ′ 2 −

1
2
ν ′λ′

�

−
1
r

eν−λν ′ −
1
4

eν R= κ
�

eνρ −
1
4

eν
�

ρ −
P
c2

��

9



which, in view of (8.2), is

−
1
2

eν−λ
�

ν′′ +
1
2
ν ′ 2 −

1
2
ν ′λ′

�

−
1
r

eν−λν ′ −
1
4

eν R=
3
4
κeνρ (ω+ 1) (8.3)

Similarly,
1
2

�

ν′′ +
1
2
ν′ 2 −

1
2
ν ′λ′

�

−
1
r
λ′ +

1
4

eλ R=
1
4
κeλρ (ω+ 1) (8.4)

along with
1
2

r e−λ
�

ν ′ −λ′
�

+ e−λ − 1+
1
4

r2 R=
1
4
κr2ρ (ω+ 1) (8.5)

and

R= −e−λ
�

ν′′ +
1
2
ν ′ 2 −

1
2
ν ′λ′

�

−
2
r

e−λ
�

ν′ −λ′
�

−
2
r2

�

e−λ − 1
�

(8.6)

Using (8.3) and (8.4), we can show that

ν ′ +λ′ = −κrρ (ω+ 1) eλ (8.7)

while (8.5) is equivalent to

ν ′ −λ′ =
�

1
2
κrρ (ω+ 1)−

2
r

�

e−λ − 1
�

−
1
2

Rr
�

eλ (8.8)

Subtracting (8.8) from (8.7) and reducing, we arrive at an expression involving only e−λ and its derivative:

e−λλ′ = −
3
4
κrρ (ω+ 1) +

1
r

�

e−λ − 1
�

+
1
4

Rr (8.9)

At this point, let us assume a solution for e−λ like that in (6.13), but with the provision that the geometric mass m
is now a function of the interior radial coordinate r:

e−λ = 1−
2m(r)

r
−

1
12

Rr2 (8.10)

so that

e−λλ′ =
2m′

r
−

2m
r2
+

1
6

Rr (8.11)

and (8.9) reduces to

e−λλ′ = −
3
4
κrρ (ω+ 1)−

2m
r2
+

1
6

Rr (8.12)

Equating (8.11) and (8.12), we see that

m′ = −
3
8
κr2ρ (ω+ 1) (8.13)

Now, the geometric mass m(r) = GM(r)/c2, and we know that

M ′(r) = 4πρr2

where the fluid density ρ in general is some function of r. This is the classical expression for the mass of a body as
a function of the density and the radius. For constant density, we have simply

M =
4πρr3

3

as expected. Comparing the above expressions for m′ and M ′, we see that the coefficient κ is then

κ= −
32πG

3 c2(ω+ 1)
(8.14)
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For a relativistic fluid, ω= 1/3 and (8.14) reduces to the more familiar

κ= −
8πG

c2

In order to solve for R, we need to have identities for e−λν′′, e−λν ′ 2 and e−λν ′λ′. We can accomplish this by using
(8.7) and (8.12) to solve for e−λν ′, which comes out to be

e−λν ′ = −
1
4
κrρ (ω+ 1) +

2m
r2
−

1
6

Rr (8.15)

from which all the other terms we’ll need to compute R can be determined. After some tedious (and messy)
algebra, these identities are

e−λν ′′ = e−λν ′λ′ −κρ (ω+ 1)−
1
4
κrρ′ (ω+ 1)−

4m
r3
−

1
6

R (8.16)

e−λν ′ 2 =

�

1
16
κ2r2ρ2 (ω+ 1)2 +

4m2

r4
+

1
36

R2r2 −
1
r
κmρ (ω+ 1) +

1
12
κr2Rρ (ω+ 1)−

2mR
3r

�

eλ (8.17)

and

e−λν ′λ′ =

�

3
16
κ2r2ρ2 (ω+ 1)2 −

1
r
κmρ (ω+ 1) +

1
12
κr2Rρ (ω+ 1)−

4m2

r4
+

2mR
3r
−

1
36

R2r2

�

eλ (8.18)

Plugging all this into the definition of R in (8.6), we find that most terms cancel out, leaving

e−λρ′ =
1
2
κrρ2 (ω+ 1)−

4mρ
r2
+

1
3

Rrρ

We can now use the equation of state (8.2) to get the derivative of the fluid pressure. Using the identity for κ from
(8.14), we have, after some simple reduction,

P ′ = −4
ω

ω+ 1

�

ρ +
P
c2

�

�

m+ 4πGr3 P
3ωc4 − 1

12 Rr3
�

c2

r
�

r − 2m− 1
12 Rr3

� (8.19)

For a relativistic fluid, ω= 1/3, and this reduces to

P ′ = −
�

ρ +
P
c2

�

�

m+ 4πGr3P/c4 − 1
12 Rr3

�

c2

r
�

r − 2m− 1
12 Rr3

� (8.20)

Note that the Ricci scalar R reappears, but the only restriction on its magnitude is R 6= 0. Again, we can set it to
some small constant, and in doing so we recover the classical TOV equation.

While it is heartening that our conformal gravity approach appears capable of reproducing three quantities
normally associated with ordinary Einsteinian gravity, it can be shown to fail when we consider the case of a
relativistic fluid sphere having a constant gas density ρ. Unlike the classical TOV case, the various differential
equations we have derived from the field equations lead to contradictory results when we consider such a system.
With ρ = constant, Equation (8.7) can be integrated immediately, yielding (with the appropriate constant of
integration) the interior solution

eν =
�

1− r2
0/R̂

2
�2 �

1− r2/R̂2
�−1

(8.21)

Here, r is the interior distance from the fluid sphere’s center, r0 is the sphere’s radius at the surface, and R̂ is a
convenient radial constant defined by

R̂2 =
3c2

8πGρ

In (8.21) we set ω= 1/3 and R= 0 for clarity, but even so it in no way resembles the classical TOV interior
solution

eν =
�

3
2

q

1− r2
0/R̂2 −

1
2

q

1− r2/R̂2

�2

(8.22)
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At the sphere’s surface and beyond, both solutions revert to the usual eν = 1− 2m/r expression, but the interior
solution (8.21) differs significantly from (8.22) for typical values of r/R̂ and r0/R̂. The most plausible reason for
this is that our formalism simply does not hold in situations in which matter is represented by a traceless
energy-momentum tensor.

9. Conclusions

Theories of modified gravity have multiplied in recent decades, mostly with the intent of obtaining a conformally
invariant action that is linear in the Ricci scalar (like the Einstein-Hilbert action) coupled with various ad hoc
parameters (scalar, vector, tensor and spinor fields) in the hope of providing a solution to the dark matter and
dark energy problems. The work of Mannheim and others, based on their solutions to the full set of field
equations derived from the action in (5.14), is particularly interesting.

The intent of this paper is far less ambitious. Certainly, application of the simplified action presented in Section 6
to the examples of a radial electromagnetic field and the interior of a baryotropic fluid is overly simplistic. But by
merely requiring that the Ricci scalar in Riemannian geometry be a non-zero constant, the parameter-free action

S =

∫

p

−g R2 d4 x (9.1)

is not only conformally invariant, but for free space yields a traceless set of field equations that are of only second
order in the metric tensor and its derivatives, a distinct advantage over fourth-order approaches. The field
equations in turn yield solutions for simple Schwarzschild problems that appear to be equivalent to those of
classical general relativity. For finite values of R in the metric coefficients

eν = e−λ = 1−
2m
r
−

1
12

R r2

the Ricci scalar can be shown to behave like a cosmological acceleration term via

Φ= −
GM

r
−

1
24

R c2r2

where Φ is the classical gravitational potential. However, recent research by Mannheim, Mureika and others
indicates that R is likely to be vanishingly small, eliminating the possibility that a Ricci scalar of finite magnitude
can explain the observed acceleration of the expansion of the universe. Even if this is indeed the case, (9.1) is still
equivalent to the Einstein-Hilbert action, and this is exactly what we set out to demonstrate.
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