
Does the blackbody radiation spectrum suggest an intrinsic 
structure of photons? 

 
Alex Khaneles 

Email: akhaneles@yahoo.com 
 

Photons are considered to be elementary bosons in the Standard Model. 
An assumption that photons are not elementary particles is assessed from 
an outlook of equilibrium statistical mechanics with insights from 
computer simulation. 
 

I. INTRODUCTION 

In the derivation of his formula, Planck utilized the product of two factors: the spatial density 
of radiation energy (in parentheses) and the mean energy Uν  for resonators of frequency 
ν [1]: 
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The resonators can accommodate an integer number of energy quanta hν , so the mean 
energy at temperature T  is 
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The constants above: Boltzmann’s Bk , Planck’s h , and the speed of light c . 

While, after the introduction of quanta by Planck, the quantization ideas had flourished in a 
variety of physical applications, the radiation density (above) had not been understood in the 
same classical, statistical terms as energy quanta. Only after 24 years, Bose came up with a 
new counting of states. That was the invention of quantum statistics with “different species 
of quanta each characterized by the number sN  and energy shν ( 0s =  to s = ∞ )” [2]. 

With the quick development of quantum theories in the mid-1920s, the physics community 
became more acceptive of new probabilistic/statistical ideas. Even if Bose’s derivation of 
Planck’s formula was “obscure” (in Einstein’s words) and Bose himself did not fully 
recognize his departure from classical statistics1, the new suggestions could be postulated and 
used. The new probabilities were not necessarily rooted in underlying microscopic dynamics 

                                                 
1 “I was not a statistician to the extent of really knowing that I was doing something which was really different 
from what Boltzmann would have done, from Boltzmann statistics.” (as quoted in [3]) 
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but rather heuristically determined. For example, in quantum electrodynamics: “… the price 
of this great advancement of science is a retreat by physics to the position of being able to 
calculate only the probability that a photon will hit a detector, without offering a good model 
of how it actually happens … theoretical physics has given up on that” [4]. To be fair, many 
modern tools of equilibrium statistical mechanics would not be viable without computers a 
century ago. 

Time reversal invariance is an important notion in classical and quantum physics. Nowadays, 
one can build a working model of a statistical system from the bottom up – from assumptions 
of time-reversible microdynamics and keep track of every element and actually reverse the 
evolution of entire system. It can be done with a cellular automata simulation that reproduces 
classical statistics with Plank’s mean energy factor (2) for a single mode of radiation [5]. 
However, the expansion of this method into multiple species of quanta in Bose reasoning 
looks problematic: the reversibility implies conservation of information and input states 
(cells) should always be uniformly mapped to the same number of output states, or the 
mapping function cannot be reversible. The symmetrical (bijective) mapping cannot be done 
between different numbers of states for two or more species. Thus, the Bose logic for 
multiple species of quanta is not reversible. Different energy for particles of different species 
does not help in energy exchange between species either. This disconnection or “retreat” 
from principles of underlying microdynamics remains often overlooked. 

There are other ways to expand the cellular system while staying on a causal, reversible 
basis. It can be done by adding integer characteristics to the states (cells). The grid can be 
more than 2-dimensional. One can treat the cell attributes as representation of internal 
components of a composite structure and study statistical distributions for a variety of 
possible formations. Moving forward these approaches would be challenging and progress 
would be quite limited without computers. The current day advancement in computer 
simulation enables one to revise the old statistical concepts.  

According to Bose, the photon does not have any intrinsic structure. In quantum 
electrodynamics, which is integrated into the Standard Model, the photon is still elementary 
with no known persistent constituents2. Could the blackbody radiation (BBR) spectrum be a 
manifestation of the photon’s structure with a few constituents, but without a need for 
multiple species of elementary quanta? This paper attempts to address this question from the 
viewpoint of statistical thermodynamics. To make a proper comparison of energy spectrum 
for “constructed” photons to Planck’s law, the number of photons in both models should be 
the same. 

                                                 

2 Due to the uncertainty principle, any elementary particle in the quantum field theory, including a photon, can 
fluctuate into a variety of short-lived virtual states. If virtual particle interacts with another object, it could 
expose the photon structure. The existence of such structure has been well established experimentally at high 
energies [6,7]. Though, the blackbody radiation is observed at low energies where the quantum fluctuations are 
more difficult to observe. Some researchers have concluded that “from the foundations of quantum 
electrodynamics the photon should be a dressed, i.e., a composite particle for all times” [8] and discuss a 
replacement of quantum electrodynamics with “quantum field theory of composite photons”. The majority of 
other bosons in the Standard Model are recognized to be composite. 
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II. PLANCK’S RADIATION LAW FOR A FIXED NUMBER OF PHOTONS 

Frequency is attributed to a photon as a whole, and is not very appropriate for the 
constituents that will be introduced in the next section. Using energy ε  instead of hν , 
Planck’s law for the unit volume can be rewritten as:  
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The corresponding number of photons is distributed with energy as: 
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And the total number of photons in the unit volume at temperature T  can be found from 
integration: 
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where (3)ζ  is the Riemann zeta function, also known as Apéry’s constant. This results in 
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with the fixed number of photons, N , distributed by energy as: 
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So, the notions of length and volume have been excluded from any considerations herein. 
(The spatial aspects of BBR could be discussed somewhere else.) 
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III. PROTO-PARTICLES 

The following is assumed: 

1. Quantization of energy or existence of “proto-particles” with sole energy zε  that can 
share the same state, like Planck’s energy quanta. However, unlike Planck’s quanta, 
they are not considered to be separate physical entities that can be observed. 

2. Each state contains at least one proto-particle (zero-point energy is equal to unity – no 
empty states). 

A simple Monte-Carlo technique similar to the one used in numerical integration can be 
deployed to populate an array of N  integers and obtain distribution of given shape ( )y f x=  
for those numbers.3 The same stochastic procedure could be utilized to compute the integral 
(5) above as well. 

Two sets { }ie  and { }im  of N  random integers can be generated. Each set would form a most 
probable Boltzmann distribution defined by the exponential function ( ) z Bx k Ty f x e ε−= = . 
The integer would stand for the number of proto-particles in the state. The rounding up 
makes the spectrum discrete and sets its minimum to unity. Distributions of this kind are seen 
as a result of underlying microdynamics, but Monte-Carlo simulation provides a fast way of 
getting specific distribution disregarding microdynamics. 

Another option is to generate the sets of integers { }ie  and { }im  by a reversible integer lattice 
gas simulation of an isolated system [5] based on continuation of motion without interactions 
and detailed balancing in interactions. For a model of BBR, the thermalization (interactions) 
is happening on cavity walls through emission and absorption. So, the automaton represents 
an emission and absorption processes. Such an automaton can be interpreted in terms of 
kinetic theory of gases as well, where redistribution of energy occurs by collisions between 
gas particles inside a cavity, but the interpretation does not affect the resulting occupation 
number or energy distributions. The cellular grid, as a framework (substitution to space), 
enables one to organize the set of states into a certain number of dimensions but does not 
require a metric to be defined. The evolution leads the cellular system to statistical 
equilibrium, if it was initialized with “elements of disorder”. 

Integer lattice gas provides a working model of a statistical system, and in this sense, it is a 
better reflection of statistical thermodynamics ideas than the Monte Carlo approach. 
However, the lattice gas requires more computational resources and could have a long 
relaxation time. Either way, one can produce integer states that will be used as building 
blocks for the composite structure below. 
                                                 
3 To do so, pairs of real pseudorandom numbers ( Rx  and Ry ) can be generated as points in the rectangular 
region that entirely covers the function graph ( )y f x= . If Ry  falls below ( )f Rx , the value Rx  will be 
rounded up to the nearest integer and will populate one element in the array of integers. Otherwise, the pair of 
pseudorandom numbers will be discarded. The cycle is repeated till all elements of the array are filled. 
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IV. PHOTON STRUCTURE 

“I must look like an ostrich that keeps his head buried in 
relativistic sand so that he does not have to look the evil quanta in 
the eye. In reality I am, just like you, convinced that one should 
look for a substructure, the necessity of which has been cleverly 
disguised by the current quantum theory through its use of the 
statistical mold …” 
 

Einstein letter to de Broglie, (as quoted in [9]) 

Now, a new variable, iε , can be introduced by combining integers from the sets { }ie  and 
{ }im . By examining statistics for different combinations, it has been found in this study that 
the sum of both plus the geometric mean, 

i i i i ie m e mε = + + ,         (7) 

produces a distribution that approaches (6). Figure 1 is for the same number of “photon” 
combinations, (7), as the number of photons in (6), and for the same temperature in simulated 
exponential distributions for the sets and function (6). The same units of energy ( 1zε = ) are 
assumed for both. 

The energy quantization for constituents would cause degradation of the energy distribution 
for composite photons at low temperatures (a quantum freeze-out effect) that would become 
pronounced at / 30B zk T ε < . Such degradation is not foreseen for bosons. To avoid this 
effect, the computations in the picture are for / 600B zk T ε = . 

The two independent, random variables in (7) can be understood as two constituents of a 
photon for which energy can vary. The geometric mean can be seen as rotational or 
interaction energy between the two. This is reminiscent of mesons’ structure in the Standard 
Model: one quark and one antiquark bound together by the strong interaction. The average 
energy per photon in the BBR spectrum, 2.7 Bk Tε ≈ , points to the degrees of freedom from 
the perspective of the structure ( Bk T  per degree of freedom for a massless particle). The 
interaction part comprises about 0.7 Bk T  of it. 

The two constituents, with a quite arbitrarily defined interaction, bring one close to Planck’s 
radiation law over a broad spectral range. The combination of three independent random 
variables would lead to Wien’s empirical formula that was introduced in 1896. With quick 
experimental progress, a call for reassessment came to Planck in 1900, and he improved 
Wien’s formula. Although, such three components (dimensions) are more relevant for a 
theory of specific heat. 
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The first composite photon theory was proposed by de Broglie in 1932 to reconcile photons 
with Maxwell’s electrodynamics. In that search for continuity the photon consisted of two 
then hypothetical corpuscles: a neutrino and anti-neutrino. Initially the idea had been pursued 
by many researchers, but it had not found much traction later (see [10] and references 
therein). This paper represents another search for continuity, now in statistics, but again, 
points to the structure that is akin to de Broglie’s or mesons’. 

 

V. CONCLUSION 

Bose-Einstein statistics was introduced first to explain the BBR spectrum. It was a step in 
evolution from Einstein’s light quanta to photons as particles. The further advances in 
particle physics discovered multiple other bosons in addition to photons. The large portion of 
all bosons is believed to be constructed from an even number of quarks/antiquarks, while the 
photon, along with other gauge bosons, is still regarded as an elementary particle. 

The motivation for this investigation came from an inability to build a reversible algorithm 
for an isolated system based on Bose-Einstein statistics, while it can be done for classical 
statistics. In the effort to explain the BBR spectrum from assumptions of statistical 
thermodynamics, the author came to the structure that is similar to the structure of some 
composite bosons in the Standard Model. Non-statistical arguments for photon’s structure, 
[10,8] support the formation of the same kind.  

If one accepts the photon structure as a foundation of Planck’s law, one may also infer that 
other fundamental bosons have a similar intrinsic organization and are not elementary. 
Would there be a need for Bose-Einstein statistics at all? 
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FIG. 1. The number of combinations ( i i i i ie m e mε = + + ) in the distribution is 
N  - the same as the number of photons in the function graph. The arrays of 
constituents used in this simulation are composed of 6~ 12 10N ⋅  integers each. 
 

 
 
 

 


