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Abstract: Having shown in our previous works that the real-valued Schrödinger wave 

equation can be used to find mathematical functions to construct spacetime structures of 

quantum particles, in this work, we will discuss the possibility to formulate a real-valued 

Dirac equation in which all physical objects and all differential operators that are used to 

describe the dynamics of a particle are real quantities and, furthermore, since solutions to the 

Dirac equation are wavefunctions that have four components, it is possible to suggest that 

solutions to the real-valued Dirac equation should be interpreted as a parameterisation of 3-

dimensional differentiable manifolds which are embedded submanifolds of the Euclidean 

space   .  

 

In our previous works on the quantum structures of elementary particles [1,2,3], we suggested 

that instead of viewing elementary particles as point-particles we consider elementary 

particles as three-dimensional differentiable manifolds, therefore we will need to extend the 

description of the dynamics of elementary particles in classical physics as point-particles to 

the dynamics of elementary particles as three-dimensional differentiable manifolds in an 

ambient space. Being viewed as three-dimensional differentiable manifolds, elementary 

particles are assumed to possess internal geometrical and topological structures that in turns 

possess internal symmetries that give rise to intrinsic dynamics. In this work, we will show 

that it is possible to formulate a real-valued Dirac equation in which all physical objects and 

all differential operators that are used to describe their dynamics are real quantities and 

solutions to the real-valued Dirac equation can be interpreted as a parameterisation of 3-

dimensional differentiable manifolds that represent quantum particles as embedded 

submanifolds of the Euclidean space   . Also shown in our works on spacetime structures of 

quantum particles [4,5], in the time-independent Schrödinger wave mechanics, because the 

wavefunctions   are real-valued scalar functions therefore even though they themselves 

cannot be used to represent three-dimensional differentiable manifolds they can be employed 

as mathematical objects to construct the three-dimensional manifold structures of quantum 

particles via the Ricci scalar. For example, the spacetime structures of quantum particles can 

be constructed by applying the equation 
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with the quantities   and   are defined according to a line element of the form 

                                                                                                          

Unlike the Schrödinger wave equation, the Dirac equation is a system of four coupled first 

order partial differential equations whose solutions are wavefunctions that have four 

components. With this representation, the solutions of the Dirac equation can be used to 

described 3-dimensional submanifolds that are embedded into the four-dimensional 

Euclidean space   .  

 

REAL VALUED DIRAC EQUATION IN THE PSEUDO-EUCLIDEAN SPACETIME 

In the Minkowski spacetime of Einstein special relativity with pseudo-Euclidean metric, the 

energy-momentum relationship is given as 

                                                                                                                                              

From this relationship, the Dirac relativistic first order partial differential equation can be 

formulated by proposing that it is of the form [6] 

                                                                                                                         

where the unknown operators    and   are assumed to be independent of the momentum   

and the mass  . From Equation (4), we obtain 

                       
 
                                                                                               

By expanding Equation (5), and due the fact that all linear momentum operators commute 

mutually, in order to reduce to the form of the relationship given in Equation (3), the 

operators    and   must satisfy the following relations 

                                                                                                                                            

                                                                                                                                                     

  
                                                                                                                                                              

                                                                                                                                                               

As shown in Appendix 1, to satisfy the conditions given in Equations (6-9), the operators    

and   can be represented as 

    
   

   
                                                                                                                                            

   
  
   

                                                                                                                                             



where    are Pauli matrices given by     
  
  

 ,  
   
  

  and  
  
   

 . If we multiply 

Equation (4) by the operator   on the left and by applying the method of quantisation in 

quantum mechanics in which the energy  , the momentum   and the mass   are replaced by 

operators 

   
 

  
            

 

  
            

 

  
             

 

  
                                             

then with the mathematical units in which      , the Dirac equation can be rewritten in a 

covariant form as 

                                                                                                                                              

where                 ,        and     . In the original equation formulated by 

Dirac, the order of the    operators are as follows 

    
  
  

           
   
  

           
  
   

                                                                           

therefore the order of the    operators are given accordingly as 

    

    
    
    
    

         

     
    
     
    

         

    
     
    
     

                       

together with the operator   defined by 

   

    
    
     
     

                                                                                                                         

Using        and     , the    operators are found in the following order 

    

    
    
     
     

                     

    
    
     
     

                                                            

    

     
    
    
     

                       

    
     
     
    

                                                      

With the    operators given in Equation (17), the Dirac equation given in Equation (13) can 

be written out in the full form as below 



 

 
 
 
 
 
 

 
 

  
  

 

  
 

 

  
 

 

  

  
 

  
 

 

  
 

 

  
  

 

  

  
 

  
  

 

  
 

 

  
  

 

  
 

  
 

  
 

 

  
 
 

  
   

 

   

 
 
 
 
 
 

 

  

  

  

  

    

  

  

  

  

                                

Now we will show that the Dirac equation can be formulated to take real values rather than 

complex values as given in Equation (13). Instead of the order of the    operators given in the 

original Dirac equation as in Equation (14), we use a new order by swapping the operators    

and  . Accordingly, we now have the following order of the    operators and   

    

    
    
    
    

         

    
    
     
     

         

    
     
    
     

                     

together with the operator   defined by 

   

     
    
     
    

    

     
    
     
    

                                                                      

If we still apply the canonical method of quantisation in quantum mechanics given in 

Equation (12), we obtain the new form of the Dirac equation  

 
  

  
     

  

  
    

  

  
    

  

  
                                                                                       

It is seen from Equation (21) that since all the    operators now take real values, the new 

form of the Dirac equation is real and can be rewritten as 

  

  
    

  

  
   

  

  
   

  

  
                                                                                              

Multiplying Equation (22) by    on the left and since   
    , we obtain 

                                                                                                                                               

where         and      . The    operators can be calculated as 

    

     
    
     
    

                     

     
    
     
    

                                                            



     

    
     
     
    

                    

    
    
    
    

                                                             

With the    operators given in Equation (24), the real valued Dirac equation given in 

Equation (23) can also be written out as 

 

 
 
 
 
 
 

 
 

  

 

  
  

 

  
 

 

  
 

  

 

  

 

  
 

 

  
 

  
 

  
 

 

  
 

 

  

 

  
 

  
 

 

  
 

 

  

 

   

 
 
 
 
 
 

 

  

  

  

  

     

  

  

  

  

                                       

For the case of a particle at rest with    , the system of first-order partial differential 

equations given in Equation (25) reduces to following system of equations 

   

  
                                                                                                                                                    

   

  
                                                                                                                                                 

   

  
                                                                                                                                                 

   

  
                                                                                                                                                    

It is seen from Equations (26-29) that the component    is coupled with the component   , 

the component    is coupled with the component    and all the components    execute a 

simple harmonic motion with respect to time described by the following equation  

    

   
                                                                                                                                          

It is interesting to observe that the frequency of the harmonic motion is determined by the 

mass of an elementary particle. Equation (30) can be solved to give solutions to the real 

valued Dirac equation for a particle at rest,                
  as follows 

  

 

 

           

           

           

            

                                                                                                                          



  

 

 

           

           

           

             

                                                                                                                       

  

 

 

           

           

            

            

                                                                                                                        

  

 

 

           

           

            

             

                                                                                                                       

The undetermined quantities    and    are constants but while the quantities   and   are 

time-independent, they may depend on the spatial coordinates        . From the solutions 

given in Equations (31-34), we obtain the relations   
    

    ,   
    

     and  

      with         . While two pairs of components of the solutions form two 

separate circles, the solutions themselves form three-dimensional manifolds embedded in the 

four-dimensional space of states. These results suggest that the Dirac solutions with four 

components can be reinterpreted as a parameterisation of three-dimensional differentiable 

manifolds embedded in the four-dimensional Euclidean space   . Similar to the case when 

the circle   
    

     is embedded in the plane    with coordinates         given by the 

parameterisation                      , solutions to the Dirac equation given in Equations 

(31) can be considered as a parameterisation of a 3-sphere   
    

    
    

     

embedded in the Euclidean space    with coordinates               by the parameterisation 

                                                               , with the 

condition      . In this case, as shown in Appendix 2, circles forming by two pairs of 

coordinates can be visualised as the spinning rotor of a gyroscope whose intrinsic angular 

momentum can take half-integral values which are determined by the Schrödinger wave 

equation in two-dimensional space. 

 

REAL VALUED DIRAC EQUATION IN THE EUCLIDEAN SPACETIME 

As shown in our works on the Euclidean relativity [7], the energy-momentum relationship of 

a particle is given as 

                                                                                                                                            

The energy-momentum relationship given in Equation (35) differs from that in the pseudo-

Euclidean Minkowski spacetime by the negative sign of the momentum term. We also 

showed that it is still possible to formulate a relativistic Dirac wave equation by proposing a 

first order relativistic partial differential equation in the form given in Equation (4). However, 



in order to reduce to the form of the relationship given in Equation (35), the operators    and 

  must now satisfy the following relations 

                                                                                                                                          

                                                                                                                                                    

  
                                                                                                                                                          

                                                                                                                                                             

As shown in Appendix 1, to satisfy the conditions given in Equations (36-39), the operators 

   and   can be represented as 

    
   

    
                                                                                                                                         

   
  
   

                                                                                                                                             

where    are Pauli matrices given by     
  
  

 ,  
   
  

  and  
  
   

 . If we multiply 

Equation (4) by the operator  , then by applying the canonical method of quantisation in 

quantum mechanics given in Equation (12), the Dirac equation can be rewritten in a covariant 

form as 

                                                                                                                                                     

where                 ,        and     . If we follow the order of the    operators 

as given in the original Dirac equation in Equation (14) then the order of the    operators are 

as follows 

    

    
    
     
     

         

     
    
    
     

         

    
     
     
    

                

together with the operator   defined by 

   

    
    
     
     

                                                                                                                         

Using the relations        and     , the    operators can be calculated and given in the 

following order 

    

    
    
     
     

                     

    
    
    
    

                                                             



     

     
    
     
    

                      

    
     
    
     

                                                      

Then Dirac equation given in Equation (42) takes the form 

 

 
 
 
 
 
 

 
 

  
  

 

  
 

 

  
 

 

  

  
 

  
 

 

  
 

 

  
  

 

  

 
 

  
 

 

  
 

 

  
  

 

  
 

 
 

  
 

 

  
  

 

  
   

 

   

 
 
 
 
 
 

 

  

  

  

  

    

  

  

  

  

                                       

Now instead of the order of the    operators given in the original Dirac equation, we change 

to a new order by swapping the operator    and   according to the following 

    

    
    
     
     

         

    
    
     
     

         

    
     
     
    

              

with the operator   now is defined by 

   

     
    
    
     

    

     
    
    
     

                                                                      

If we also apply the canonical method of quantisation in quantum mechanics given in 

Equation (12), then we obtain the following equation 

 
  

  
     

  

  
    

  

  
    

  

  
                                                                                       

The Dirac equation given in Equation (50) is rewritten as 

  

  
    

  

  
   

  

  
   

  

  
                                                                                              

Multiplying Equation (51) by    on the left and since   
   , we obtain 

                                                                                                                                               

where         and       are given as 



    

     
    
    
     

                        

    
     
    
     

                                                         

    

    
     
    
     

                       

     
     
     
     

                                              

With the    operators given in Equation (53), the real valued Dirac equation given in 

Equation (52) can also be written out as 

 

 
 
 
 
 
 

 

  
 

 

  
  

 

  
 

 

  

 
 

  
 

 

  

 

  
 

 

  
 

 
 

  
 

 

  

 

  
 

 

  

 
 

  
 

 

  
  

 

  
 

 

   

 
 
 
 
 
 

 

  

  

  

  

    

  

  

  

  

                                           

For the case of particle at rest in which    , the system of first-order partial differential 

equations given in Equation (54) reduces to following system 

   

  
                                                                                                                                                 

   

  
                                                                                                                                                 

   

  
                                                                                                                                                    

   

  
                                                                                                                                                    

It is seen from Equations (55-58) that all components    execute a motion described by the 

following equation  

    

   
                                                                                                                                          

Equation (59) can be solved to give solutions to the real valued Dirac equation for a particle 

at rest,                
  as follows 

   

     

    

    

     

                                                                                                                                          



In the Euclidean plane    with coordinates        , a hyperbola of the form        , 

where   is a constant, can be parameterised by the parameter equations          and 

       , where  ,   and   are constants. Similarly, if we consider the solution given in 

Equation (60) as a parameterisation of a 3-dimensional manifold embedded in the Euclidean 

   with the parameter equations                                       , then we 

obtain the relations         ,          and                   . The geometrical, 

topological and physical properties of this type of three-dimensional manifolds which are 

embedded in the ambient Euclidean space    require further investigation. 

 

Appendix 1 

Assume the operators    are represented in terms of the operators    in the forms 

    
   
   

              
   

   
                      

   
    

                                                                 

then we obtain 

  
   

  
  

   
                                                                                                                                           

If   
    then   

   . On the other hand, if   
     then   

    . Now, if the operators 

   are given in the forms 

    
   

    
                                                                                                                                          

then in this case we have 

  
   

   
  

    
                                                                                                                                    

If   
    then   

    . On the other hand, if   
     and then   

   . 

Now, if we write the operator    as a two by two matrix in the form 

    
  
  

                                                                                                                                                

then from the requirement   
   , we arrive at the following system of equations for the 

unknown quantities             

                                                                                                                                                        

                                                                                                                                                      

                                                                                                                                                       



                                                                                                                                                        

From Equations (6) and (9) we require     . If       then       and the 

operator    can take the values     
  
  

  or  
   
   

 . If      and if      , then 

the operator    can be as     
  
   

  or  
   
  

 . If      but      and    , then 

the operator    can be written in the form     
  
  

  or     
   
  

 . These are only a 

few standard representations of the operators   . It is also seen from the representations of the 

operators    given in Equations (1) that there are many different combinations that can be 

chosen for the operators    and   to satisfy the following relations 

                                                                                                                                          

                                                                                                                                                    

  
                                                                                                                                                            

                                                                                                                                                             

The most common use of the forms of the operators    is that they are defined in terms of 

Pauli matrices     
  
  

 ,  
   
  

  and  
  
   

  as     
   

   
 . In this case the 

operators    are found as follows 

    

    
    
    
    

         

     
    
     
    

         

    
     
    
     

                       

In addition, if the operator   is defined in terms of the operators    as    
   
    

  then 

with     
  
  

  the operator   takes the form 

   

    
    
     
     

                                                                                                                         

 

Appendix 2 

In this appendix, we will show that if the topological structure of an elementary particle is 

assumed to possess the structure of a gyroscope then it is possible to obtain the half-integral 

values for its intrinsic spin angular momentum. In classical mechanics, expressed in plane 

polar coordinates, the Lagrangian of a particle of mass   under the influence of a 

conservative force with potential      is given as follows [8] 



  
 

 
   

  

  
 
 

    
  

  
 
 

                                                                                                        

With this Lagrangian, the canonical momentum    is found as 

   
  

        
    

  

  
                                                                                                                      

The canonical momentum given in Equation (2) is the angular momentum of the system. By 

applying the Lagrange equation of motion 

 

  

  

         
 

  

   
                                                                                                             

where    are the generalised coordinates, we obtain 

   

  
 

 

  
    

  

  
                                                                                                                             

It is shown that the conservation of angular momentum of a particle moving in a plane given 

by Equation (4) is equivalent to the conservation of the areal velocity, which is the area swept 

out by the position vector of the particle per unit time. Assume at the time  , the particle is 

located at the position      from an origin   and at the time     , the particle has moved to 

the position        , then the area   swept out by the particle is 

  
            

 
                                                                                                                               

From Equation (5), the areal velocity is found as 

  

  
 

         

 
                                                                                                                                      

On the other hand, in classical dynamics, the angular momentum of the particle is defined by 

the relation 

                                                                                                                                                  

From Equations (6) and (7), we obtain the following relationship between the angular 

momentum   of a particle and the areal velocity       

    
  

  
                                                                                                                                                  

In magnitudes, we have 

    
  

  
                                                                                                                                                  



It is seen from these results that the use of conservation of angular momentum for the 

description of the dynamics of a particle can be replaced by the conservation of areal 

velocity. For example, consider the circular motion of a particle under an inverse square field 

        . Applying Newton’s second law, we obtain 

   

 
 

   

  
                                                                                                                                                

Using Equations (9) and (10) and the relation      , we obtain 

  
  

   
 
  

  
 
 

                                                                                                                                         

The total energy   of the particle is 

  
 

 
    

   

 
  

   

  
                                                                                                                   

Using Equations (11), the total energy can be re-written as 

   
    

   
  
  

 
                                                                                                                                      

It is seen from Equation (13) that the total energy of the particle depends on the rate of 

change of the area      . In the case of Bohr’s model of a hydrogen-like atom, from the 

quantisation condition          , we have 

  

  
   

 

   
                                                                                                                                          

Equation (14) shows that the rate of change of the area swept out by the electron is quantised 

in unit of      . These considerations suggest that the physical dynamics of an elementary 

particle may approximately be described in terms of a membrane.  

It has been stated in quantum mechanics that spin is an intrinsic angular momentum that must 

be assigned to an elementary particle and the spin cannot be interpreted in terms of classical 

dynamics. In the following, however, we will show that if elementary particles are assumed 

to possess an internal structure that has the topological structure of a gyroscope, whose main 

dynamics is that of the rotor, as visualised in the figure below [9], then it is possible to show 

that elementary particles have an intrinsic angular momentum that can take half-integral 

values.  

 



 

 

If the main component of the topologically gyroscopic structure of an elementary particle is 

the rotor then the elementary particle can be viewed as a planar system whose configuration 

space is multiply connected. With these assumptions, since the Schrödinger wave equation 

 
  

  
                      is invariant under rotations therefore we can invoke the 

Schrödinger wave equation for an analysis of the dynamics of the rotor. If we also assume 

that the overall potential      that holds the rotor together has the form         , where 

  is a physical constant that is needed to be determined, then using the planar polar 

coordinates in two-dimensional space, the Schrödinger wave equation takes the form [10] 

 
  

  
 
 

 

 

  
  

 

  
  

 

  

  

   
        

 

 
                                                                  

Solutions of the form                 reduce Equation (15) to two separate equations 

for the functions      and      as follows 

   

   
                                                                                                                                             

   

   
 

 

 

  

  
 

  

  
  

  

  
 
 

 
                                                                                                

where   is identified as the intrinsic angular momentum of the rotor. Equation (16) has 

solutions of the form 

                                                                                                                                                

Normally, the intrinsic angular momentum   must take integral values for the single-

valuedness condition to be satisfied. However, if we consider the configuration space of the 

rotor to be multiply connected and the polar coordinates have singularity at the origin then 

the use of multivalued wavefunctions is allowable. As shown below, in this case, the intrinsic 

angular momentum   can take half-integral values. If we define, for the case    , 

   
      

  
 

   

                                                                                                                                  



   
  

       
 
   

                                                                                                                                  

then Equation (17) can be re-written in the following form 

   

   
 

 

 

  

  
 

  

  
  

 

 
  

 

 
                                                                                                    

If we seek solutions for      in the form 

                                                                                                                                      

then we obtain the following differential equation for the function      

   

   
  

    

 
   

  

  
  

     
 

 
                                                                                    

Equation (23) can be solved by a series expansion of      

         
 

 

   

                                                                                                                                      

with the coefficients    satisfying the recursion relation 

     
     

 
  

             
                                                                                                           

The energy spectrum for   from Equation (20) can be written explicitly in the form 

  
   

         
 
 
                                                                                                                             

Even though it is not possible to specify the actual values of the intrinsic angular momentum 

  at the present state of development of physics, however, if the result given in Equation 

(26) can also be applied to the hydrogen-like atom, which is viewed as a two-dimensional 

physical system, then the intrinsic angular momentum   must take half-integral values.  
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