
PROOF OF THE COLLATZ CONJECTURE 

 

KURMET SULTAN 

Almaty, Kazakhstan 

E-mail: kurmet.sultan@gmail.com 

 

ORCID   0000-0002-7852-8994 
 

 

ACKNOWLEDGMENTS 

  



2 

ABSTRACT 

This article contains a proof of the Collatz conjecture. It is shown that it is more efficient to start 

calculating the Collatz function 𝐶(𝑛) from odd numbers of the form 6𝑚 ± 1. Then, it is proved 

that if we calculate using the formula ((6𝑛 ± 1) ∙ 2𝑞 − 1)/3 on the basis of the sequence of 

numbers 6𝑛 ± 1, increasing the exponent of two by 1 at each iteration, then to each number of 

the form 6𝑛 ± 1, there will correspond a set whose elements are numbers of the forms 3𝑡, 6𝑚 −

1, and 6𝑚 + 1. Moreover, all sets do not intersect. It is further shown that if we construct 

micrographs of numbers by combining the numbers 6𝑛 ± 1  with their elements of the set 

3𝑡, 6𝑚 − 1, and 6𝑚 + 1 and then combine the micrographs by combining equal numbers 6𝑛 ± 1 

and 6𝑚 ± 1, we can then create a tree-like fractal graph of numbers. A tree-like fractal graph of 

numbers, each vertex of which corresponds to numbers of the form 6𝑚 ± 1, is a proof of the 

Collatz conjecture, as any of its vertices is connected with a finite vertex that is directly 

connected with unity. 

 

KEYWORDS: Collatz conjecture, 3 𝑥 + 1 problem, Syracuse problem, Ulam’s problem, 
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1. INTRODUCTION 

The Collatz conjecture, also known as the 3 𝑥 + 1 problem, the Syracuse problem, 

Ulam’s problem, and Kakutani’s problem, is one of the unresolved problems in mathematics. 

The following papers devoted to the 3 𝑥 + 1 problem [1-5] can be noted. 

The Collatz function 𝐶(𝑛) is defined on natural numbers as follows: 

𝐶(𝑛) = {
𝑛 2, 𝑖𝑓   𝑛 −⁄ 𝑒𝑣𝑒𝑛,

3𝑛 + 1, 𝑖𝑓   𝑛 − 𝑜𝑑𝑑.
           (1) 

To explain the Collatz conjecture, take any natural number n. If the number is even, then 

divide it by 2, and if the number is odd, then multiply by 3 and add 1 (we obtain 3 𝑛 + 1). On the 

number obtained, we perform the same actions, and so on. The Collatz conjecture is that 

regardless of the initial number n is taken, sooner or later, we arrive at unity. 

 

2. THE STARTING NUMBER 

According to the Collatz conjecture, the calculation can begin with any natural number 

greater than 1. Nevertheless, it is obvious that it is more efficient to start from an odd number, as 

any even number divided by 2 (one or several times) turns into an odd number. 

Since odd numbers are divided into multiple and non-multiples of the number 3, the 

following question arises: 

Question 1. From which odd numbers is it more efficient to start the calculation? 

As a result of calculating the Collatz function from any odd number, a number of the 

form 3𝑡 + 1 is formed, which does not have a factor of 3. 

Thus, it can be stated that all natural numbers that are multiples of 3 through one 

operation of 3𝑚 + 1 and division by certain powers of two, in the case of an even number, turn 

into odd numbers having the forms 6𝑛 − 1 and 6𝑛 + 1. Exceptions are numbers that after the 
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operation 3𝑚 + 1  are equal to powers of two. Let us formalize this fact in the form of a 

theorem. 

Theorem 1. If any natural number that is a multiple of 3 is multiplied by 3 and then added 

to 1 and the resulting even number is divided by a certain power of 2 until an integer is obtained, 

then this number will have the form 6𝑚 − 1  or 6𝑛 + 1. 

It follows from Theorem 1 that it is more efficient to begin the calculation of the Collatz 

function with odd numbers having the form 6𝑚 − 1or 6𝑚 + 1. 

Note. Different letters m and n are used in the notation of numbers of the same type 

6m∓1 and 6n∓1 to emphasize the numbers input into and output from the calculations. 

 

3. REVERSE CALCULATION 

From the logic, it follows that if we carry out a reverse calculation, then numbers must be 

obtained from which the direct calculation yields a starting number. To confirm this assumption, 

we will perform calculations using the following formula: 

𝑁 = ((6𝑛 ∓ 1) ∙ 2𝑞 − 1)/3,  где 𝑞 = 0,1,2,3 (2) 

Calculations performed according to formula (2) based on the sequence of numbers 

6𝑛 ∓ 1 show that to each term of the sequence, there will correspond infinitely many alternating 

integers of the forms 3𝑡, 6𝑚 + 1, and 6𝑚 − 1. 

It follows from formula (2) that integers are obtained according to formula (2) only if 

multiples of 3 are formed in the bracket. Taking this into account, we will write the following 

equation: 

(6𝑛 ∓ 1) ∙ 2𝑞 − 1 = 3𝑡.         (3) 

Hence, we obtain: 
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𝑡 = ((6𝑛 ∓ 1) ∙ 2𝑞 − 1)/3.         (4) 

It is known that if we calculate according to the formula 𝑡 = (2𝑞 − 1)/3, increasing the 

exponent of two by one at each iteration, then integers are formed for even exponents of the 

degree. In addition, even multiples of 3, starting with 𝑞 = 6, generate multiples of 3, and for 

other even exponents of the degree, numbers of the form 6𝑚 − 1 and 6𝑚 + 1 are alternately 

formed. 

We note the following point: because in formula (4), the power of two is multiplied by 

the number 6𝑛 ∓ 1, according to formula (4), integers can be formed for even and odd 

exponents. In this case, the alternation of numbers of the forms 3𝑡, 6𝑚 − 1, and 6𝑚 + 1 will be 

preserved for any number 6𝑛 ∓ 1. Since in the calculations using formula (4), the number 

6𝑛 ∓ 1will be fixed, only the exponent of the power of two will change. This is an important 

result, so we will also provide it in the form of a theorem. 

Theorem 2. If, on the basis of each term of a continuous sequence of numbers having the 

form 6𝑛 ∓ 1, a calculation is performed using the formula ((6𝑛 ∓ 1) ∙ 2𝑞 − 1)/3, increasing the 

exponent of two by 1 at each iteration, then to each number of the form 6𝑛 ± 1 will correspond 

an ordered set of numbers whose elements are alternating numbers of the form 3𝑡, 6𝑚 − 1, and 

6𝑚 + 1, where 𝑡, 𝑚, 𝑛 = 1, 2, 3. 

Thus, if we calculate according to formula (2), then each term of a sequence of numbers 

of the form 6𝑛 ∓ 1 will form a set of numbers 𝐾𝑛 consisting of elements corresponding to 

numbers of the form 3𝑡, 6𝑚 + 1, and 6𝑚 − 1: 

𝐾𝑛 = {𝑘| 𝑘 = 6𝑚 ∓ 1, 3𝑡;   𝑚, 𝑡 ∈ 𝑁}.       (5) 

In other words, in the reverse calculation, numbers of the form 6𝑛 ∓ 1 split into three 

numbers of the forms 3𝑡, 6𝑚 + 1, and 6𝑚 − 1. With an increase in the degree of two, the 
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number of such sets, consisting of three integers, will also increase; there are an infinite number 

of them. 

The scheme of splitting the number of the form 6𝑛 ∓ 1 into three numbers of the forms 

3𝑡, 6𝑚 + 1, and 6𝑚 − 1, called a micrograph, is shown in Fig. 1. 

Note that in Fig. 1, only two sets of three integers of the form 3𝑡, 6𝑚 + 1, and 6𝑚 − 1 

formed when splitting a number of the form 6𝑛 ∓ 1 are shown. While the solid lines show the 

vertices and edges corresponding to the numbers of the first set, the dotted lines show the 

vertices and edges of the second set. The number of sets of three numbers of the form 3𝑡, 

6𝑚 + 1, and 6𝑚 − 1 depends on the degree of the deuce; therefore, the larger the boundary 

value of the exponent of the deuce, the more sets of three numbers there will be. 

It is not difficult to understand that sets whose elements are numbers obtained by formula 

(2), corresponding to each number of the form 6𝑛 ∓ 1, are disjoint sets, i.e., the elements of the 

set of one number of the form 6𝑛 ∓ 1will not be repeated in the set of any other number of the 

same kind. Nevertheless, below, we mathematically show the impossibility of repeating numbers 

in different sets. 

Suppose that two numbers of the form 6𝑚 ∓ 1 formed from two different numbers of the 

form 6𝑛 ∓ 1, as a result of the calculation using formula (2), are equal: 

((6𝑛1 ∓ 1) ·  2𝑞1 − 1)/3 = ((6𝑛2 ∓ 1) ·  2𝑞2 − 1)/3. 

From this equation, after reduction, we obtain (6𝑛1 ∓ 1) ·  2𝑞1 = (6𝑛2 ∓ 1) ·  2𝑞2; hence, 

we have the following relation: 

(6𝑛1∓1)

(6𝑛2∓1)
= 2𝑞2−𝑞1 .           (6) 
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Obviously, the above relation does not have solutions of natural numbers, as the left side 

of the equation will certainly be an odd or fractional number, and the right side of the equation 

will always be an even number. 

The disjoint sets of the form (5) corresponding to each number of the form 6n∓1 exclude 

the formation of cyclic operations in calculating the Collatz function. 

 

4. PROOF OF CONJECTURE 

Since two vertices of a micrograph of any number of the form 6𝑛 ∓ 1 are numbers of the 

form 6𝑚 ∓ 1 and the third vertex corresponds to a multiple of 3, it is possible to combine 

micrographs by combining vertices with equal numbers of the forms 6𝑚 ∓ 1 and 6𝑛 ∓ 1. 

Fig. 2 shows an example of combining two micrographs, each of which consists of only 

one set of three numbers. For convenience, multiples of 3 are not shown on the graphs. For 

example, micrographs of numbers 5 and 13 are used. Since one of the vertices of the micrograph 

of the number 5 corresponds to the number 13, the main vertex of the micrograph of the number 

13 and the vertex 13 of the number 5 are combined. The result is the graph shown in Fig. 2(c). 

If we combine micrographs of numbers of the form 6𝑛 ∓ 1 into a large graph, taking into 

account the numbers on the vertices of the micrographs and showing the direction of the 

formation of numbers by the condition of the Collatz function, we obtain a tree-like oriented 

graph similar to the graph shown in Fig. 3. 

The tree-like oriented graph (Fig. 3), which consists of all possible combinations of 

numbers formed in calculating the Collatz function, is a classic example of a fractal graph. 
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Note that in Fig. 3, each micrograph is formed from only one set of three integers of the 

forms 3𝑡, 6𝑚 + 1, and  6𝑚 − 1. If we show other sets of three numbers, the graph is 

multidimensional. 

A tree-like oriented graph whose vertices correspond to numbers of the form 6𝑚 ∓ 1 is a 

proof of the validity of the Collatz conjecture, as any of its vertices is connected with a finite 

vertex that has a direct connection with unity. 

The tree-like fractal graph shown in Fig. 3 indicates that each vertex has its own multiple 

of 3, which corresponds to Theorem 2. At the same time, the multiples of 3, as shown in Fig. 3, 

do not influence the formation of the graph structure. If we begin the calculation with multiples 

of 3, then the path is joined to the vertex corresponding to a number of the form 6𝑚 ∓ 1. Then, 

the calculation path will be continued along the structure of the graph. 

It should be emphasized that the numbers corresponding to the vertices of one graph are 

not repeated in other graphs, i.e., each graph is unique, although the graph forms are the same. 

As seen from Fig. 3, the final vertex of a graph having a direct connection to unity has a 

special significance, as it is the basis of the graph. For this connection, the following question 

arises: 

Question 2. Which numbers of the form 6𝑚 ∓ 1 can be a finite vertex of a graph, and 

how many such numbers exist? 

Numbers of the form 6𝑚 ∓ 1 that are the final vertex of the graph, i.e., odd numbers of 

the form 6𝑚 ∓ 1 that form an even number equal to a power of two when multiplied by 3 and 

then added to 1, are infinitely many. 
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Such numbers correspond to even exponents of the power of two (starting with 𝑞 = 4), 

except for even exponents of multiples of 3. Such numbers can be calculated from the following 

formula: 

6𝑚 ∓ 1 = (2𝑞 − 1)/3,         (7) 

where 𝑞 ≥ 4 is an even number not divisible by 3. 

For example, if the numbers 5, 85 and 341, which correspond to numbers of the form 

6𝑚 ∓ 1, are multiplied by 3 and then added to 1, then the even numbers 16, 256 and 1024 are 

formed, which are powers of two. 

Since there are infinitely many numbers of the form 6𝑚 ∓ 1 corresponding to the finite 

vertex of a graph, the number of tree graphs is also infinitely large; the tree-like graphs form a 

forest of graphs. 

Thus, the proof of the Collatz hypothesis is based on the following facts and patterns: 

1. Any even number in the calculation of the Collatz function turns into an 

odd number, and any odd multiple of 3 in the calculation of the Collatz 

function becomes a number of the form 6𝑛 − 1 or 6𝑛 + 1, where 𝑛 ∈ ℕ.  

2. From point 1, it follows that it is more efficient to start the calculation of a 

function from numbers of the form 6𝑚 ∓ 1, where 𝑚 ∈ ℕ. This means 

that to prove the Collatz conjecture, it is important to investigate a 

sequence of numbers of the form 6𝑚 ∓ 1. 

3. In the inverse calculation performed according to formula (2), to each 

number of the form 6𝑛 ∓ 1, there will correspond a set whose elements 

are alternating numbers of the forms 3𝑡, 6𝑚 + 1 and 6𝑚 − 1, with all sets 

being disjoint. 
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4. If we combine the elements of the sets corresponding to each number 

6𝑛 ∓ 1 in the form of a graph, each vertex of which corresponds to one 

number of the form 6𝑚 ∓ 1, then we obtain a tree-like oriented graph. 

5. Numbers of the form 6𝑚 ∓ 1 that are the final vertex of the graph, i.e, odd 

numbers of the form 6𝑚 ∓ 1 that form an even number equal to a power 

of two when multiplied by 3 and then added to 1, are infinitely many. 

Such numbers, which are directly related to unity, are calculated using 

formula (7). 

6. Tree-like oriented graphs, the number of which is infinite, are proof of the 

validity of the Collatz conjecture, as any vertex of each graph is connected 

with a finite vertex that has a direct connection with unity. 

Since all of the above facts and patterns are supported by indisputable evidence, it can be 

argued that the Collatz hypothesis is correct and that it is proved. 

  



11 

REFERENCES 

1. Collatz, L.: On the motivation and origin of the (3n+1)-problem. J. Qufu Norm. Univ. 

Nat. Sci. Ed. 12, 9–11 (1986) 

2. Lagarias, J.C.: The Ultimate Challenge: The 3x+1 Problem. American Mathematical 

Society, Providence, RI (2010) 

3. Lagarias, J.C.: The 3x + 1 problem: An annotated bibliography (1963–1999). 

http://arxiv.org/abs/math/0309224v13 

4. Lagarias, J.C.: The 3x + 1 Problem: An Annotated Bibliography, II (2000–2009). 

http://arxiv.org/abs/math/0608208v6 

5. Crandall, R.E.: On the “3x+1”  problem. Math. Comput. 32, 1281–1292 (1978) 

  



12 

FIGURE CAPTIONS 

Fig. 1 Micrograph of numbers of the form 𝑘𝑛
∓ = 6𝑛 ∓ 1 

Fig. 2 Example of combining two micrographs 

Fig. 3 Tree-like oriented graph 
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FIGURES 

 

Note: 𝑘1
− = 6𝑚1 − 1, 𝑘1

+ = 6𝑚1 + 1, 𝑘2
− = 6𝑚2 − 1, and 𝑘2

+ = 6𝑚2 + 1. 

Fig. 1 
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Fig. 2 
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Note: 𝑘−= 6𝑚 − 1, 𝑘+= 6𝑚 + 1, and 𝑘∓= 6𝑛 ∓ 1. 

Fig. 3 


