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Abstract

We revisit fuzzy neural network with a cornerstone notion of generalized ham-
ming distance, which provides a novel and theoretically justified framework to
re-interpret many useful neural network techniques in terms of fuzzy logic. In par-
ticular, we conjecture and empirically illustrate that, the celebrated batch normaliza-
tion (BN) technique actually adapts the “normalized” bias such that it approximates
the rightful bias induced by the generalized hamming distance. Once the due bias
is enforced analytically, neither the optimization of bias terms nor the sophisticated
batch normalization is needed. Also in the light of generalized hamming distance,
the popular rectified linear units (ReLU) can be treated as setting a minimal ham-
ming distance threshold between network inputs and weights. This thresholding
scheme, on the one hand, can be improved by introducing double-thresholding on
both positive and negative extremes of neuron outputs. On the other hand, ReLUs
turn out to be non-essential and can be removed from networks trained for simple
tasks like MNIST classification. The proposed generalized hamming network
(GHN) as such not only lends itself to rigorous analysis and interpretation within
the fuzzy logic theory but also demonstrates fast learning speed, well-controlled
behaviour and state-of-the-art performances on a variety of learning tasks.

1 Introduction

Since early 1990s the integration of fuzzy logic and computational neural networks has given birth to
the fuzzy neural networks (FNN) [1]. While the formal fuzzy set theory provides a strict mathematical
framework in which vague conceptual phenomena can be precisely and rigorously studied [2, 3, 4, 5],
application-oriented fuzzy technologies lag far behind theoretical studies. In particular, fuzzy neural
networks have only demonstrated limited successes on some toy examples such as [6, 7]. In order to
catch up with the rapid advances in recent neural network developments, especially those with deep
layered structures, it is the goal of this paper to demonstrate the relevance of FNN, and moreover, to
provide a novel view on its non-fuzzy counterparts.

Our revisiting of FNN is not merely for the fond remembrances of the golden age of “soft computing”
[8]. Instead it provides a novel and theoretically justified perspective of neural computing, in which
we are able to re-examine and demystify some useful techniques that were proposed to improve
either effectiveness or efficiency of neural networks training processes. Among many others, batch
normalization (BN) [9] is probably the most influential yet mysterious trick, that significantly
improved the training efficiency by adapting to the change in the distribution of layers’ inputs (coined
as internal covariate shift). Such kind of adaptations, when viewed within the fuzzy neural network
framework, can be interpreted as rectifications to the deficiencies of neuron outputs with respect to the
rightful generalized hamming distance (see definition 1) between inputs and neuron weights. Once
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the appropriate rectification is applied , the ill effects of internal covariate shift are automatically
eradicated, and consequently, one is able to enjoy the fast training process without resorting to a
sophisticated learning method used by BN.

Another crucial component in neural computing, Rectified linear unit (ReLU), has been widely used
due to its strong biological motivations and mathematical justifications [10, 11, 12]. We show that
within the generalized hamming group endowed with generalized hamming distance, ReLU can be
regarded as setting a minimal hamming distance threshold between network input and neuron weights.
This novel view immediately leads us to an effective double-thresholding scheme to suppress fuzzy
elements in the generalized hamming group.

The proposed generalized hamming network (GHN) forms its foundation on the cornerstone notion
of generalized hamming distance (GHD), which is essentially defined as h(x,w) := x+ w − 2xw
for any x,w ∈ R (see definition 1). Its connection with the inferencing rule in neural computing is
obvious: the last term (−2xw) corresponds to element-wise multiplications of neuron inputs and
weights, and since we aim to measure the GHD between inputs x and weights w, the bias term then
should take the value x+w. In this article we define any network that has its neuron outputs fulfilling
this requirement (3) as a generalized hamming network. Since the underlying GHD induces a fuzzy
XOR logic, GHN lends itself to rigorous analysis within the fuzzy logics theory (see definition 4).
Apart from its theoretical appeals, GHN also demonstrates appealing features in terms of fast learning
speed, well-controlled behaviour and simple parameter settings (see Section 4).

1.1 Related Work

Fuzzy logic and fuzzy neural network: the notion of fuzzy logic is based on the rejection of the
fundamental principle of bivalence of classical logic i.e. any declarative sentence has only two
possible truth values, true and false. Although the earliest connotation of fuzzy logic was attributed
to Aristotle, the founder of classical logic [13], it was Zadeh’s publication in 1965 that ignited the
enthusiasm about the theory of fuzzy sets [2]. Since then mathematical developments have advanced
to a very high standard and are still forthcoming to day [3, 4, 5]. Fuzzy neural networks were proposed
to take advantages of the flexible knowledge acquiring capability of neural networks [1, 14]. In theory
it was proved that fuzzy systems and certain classes of neural networks are equivalent and convertible
with each other [15, 16]. In practice, however, successful applications of FNNs are limited to some
toy examples only [6, 7].

Demystifying neural networks: efforts of interpreting neural networks by means of propositional
logic dated back to McCulloch & Pitts’ seminial paper [17]. Recent research along this line include
[18] and the references therein, in which First Order Logic (FOL) rules are encoded using soft logic
on continuous truth values from the interval [0, 1]. These interpretations, albeit interesting, seldom
explain effective neural network techniques such as batch normalization or ReLU. Recently [19]
provided an improvement (and explanation) to batch normalization by removing dependencies in
weight normalization between the examples in a minibatch.

Binary-valued neural network: Restricted Boltzmann Machine (RBM) was used to model an “en-
semble of binary vectors” and rose to prominence in the mid-2000s after fast learning algorithms
were demonstrated by Hinton et. al. [20, 21]. Recent binarized neural network [22, 23] approximated
standard CNNs by binarizing filter weights and/or inputs, with the aim to reduce computational
complexity and memory consumption. The XNOR operation employed in [23] is limited to binary
hamming distance and not readily applicable to non-binary neuron weights and inputs.

Ensemble of binary patterns: the distributive property of GHD described in (1) provides an intriguing
view on neural computing – even though real-valued pattens are involved in the computation, the
computed GHD is strictly equivalent to the mean of binary hamming distances across two ensembles
of binary patterns! This novel view illuminates the connection between generalized hamming
networks and efficient binary features, that have long been used in various computer vision tasks,
for instance, the celebrated Adaboost face detection[24], numerous binary features for key-point
matching [25, 26] and binary codes for large database hashing [27, 28, 29, 30].
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Figure 1: (a) h(a, b) has one fuzzy region near the identity element 0.5 (in white), two positively
confident (in red) and two negatively confident (in blue) regions from above and below, respectively.
(b) Fuzziness F (h(a, b)) = h(a, b) ⊕ h(a, b) has its maxima along a = 0.5 or b = 0.5. (c)
µ(h(a, b)) : U → I where µ(h) = 1/(1+exp(0.5−h)) is the logistic function to assign membership
to fuzzy set elements (see definition 4). (d) partial derivative of µ(h(a, b)). Note that magnitudes of
gradient in the fuzzy region is non-negligible.

2 Generalized Hamming Distance

Definition 1. Let a, b, c ∈ U ⊆ R, and a generalized hamming distance (GHD), denoted by ⊕, be a
binary operator h : U × U → U ; h(a, b) := a⊕ b = a+ b− 2 · a · b . Then

(i) for U = {0, 1} GHD de-generalizes to binary hamming distance with
0⊕ 0 = 0; 0⊕ 1 = 1; 1⊕ 0 = 1; 1⊕ 1 = 0;

(ii) for U = [0.0, 1.0] the unitary interval I , a⊕ b ∈ I (closure);
Remark: this case is referred to as the “restricted” hamming distance, in the sense that inverse
of any elements in I are not necessarily contained in I (see below for definition of inverse).

(iii) for U = R,H := (R,⊕) is a group satisfying five abelian group axioms, thus is referred to as
the generalized hamming group or hamming group:

• a⊕ b = (a+ b− 2 · a · b) ∈ R (closure);
• a⊕ b = (a+ b− 2 · a · b) = b⊕ a (commutativity);
• (a⊕ b)⊕ c = (a+ b− 2 · a · b) + c− 2(a+ b− 2 · a · b)c

= a+ (b+ c− 2 · b · c)− 2 · a · (b+ c− 2 · b · c) = a⊕ (b⊕ c) (associativity);
• ∃e = 0 ∈ R such that e⊕ a = a⊕ e = (0 + a− 2 · 0 · a) = a (identity element);
• for each a ∈ R \ {0.5}, ∃a−1 := a/(2 · a− 1) s.t. a⊕ a−1 = (a+ a

2·a−1 − 2a · a
2·a−1 )

= 0 = e; and we define∞ := (0.5)−1 (inverse element).

Remark: note that 1 ⊕ a = 1 − a which complements a. “0.5” is a fixed point since ∀a ∈
R, 0.5⊕ a = 0.5, and 0.5⊕∞ = 0 according to definition1.

(iv) GHD naturally leads to a measurement of fuzziness: F (a) := a ⊕ a,R → (−∞, 0.5] :
F (a) ≥ 0,∀a ∈ [0, 1];F (a) < 0 otherwise. Therefore [0, 1] is referred to as the fuzzy
region in which F (0.5) = 0.5 has the maximal fuzziness and F (0) = F (1) = 0 are two
boundary points. Outer regions (−∞, 0] and [1,∞) are negative and positive confident regions
respectively. See Figure 1 (a) for the surface of h(a, b) which has one central fuzzy region, two
positive confident and two negative confident regions.

(v) The direct sum of hamming group is still a hamming group HL := ⊕l∈LHl: let x =
{x1, . . . , xL},y = {y1, . . . , yL} ∈ HL be two group members, then the generalized ham-
ming distance is defined as the arithmetic mean of element-wise GHD: GL(x ⊕L y) :=
1
L (x1 ⊕ y1 + . . .+ xL ⊕ yL).
And let x̃ = (x1 + . . . xL)/L, ỹ = (y1 + . . . yL)/L be arithmetic means of respective elements,

then GL(x⊕L y) = x̃+ ỹ − 2

L
(x · y) , where x · y =

∑L
l=1 xl · yl is the dot product.

1By this extension, it is R = R ∪ {−∞,+∞} instead of R on which we have all group members.
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(vi) Distributive property: let X̄M = (x1 + . . .xM )/M ∈ HL be element-wise arithmetic mean
of a set of members xm ∈ HL, and ȲN be defined in the same vein. Then GHD is distributive:

GL(X̄M ⊕L ȲN ) =
1

L

L∑
l=1

x̄l ⊕ ȳl =
1

M

1

N

1

L

M∑
m=1

N∑
n=1

L∑
l=1

xml ⊕ ynl

=
1

MN

M∑
m=1

N∑
n=1

GL(xm ⊕L yn).

(1)

Remark: in case that xml , y
n
l ∈ {0, 1} i.e. for two sets of binary patterns, the mean of binary

hamming distance between two sets can be efficiently computed as the GHD between two real-
valued patterns X̄M , ȲN . Conversely, a real-valued pattern can be viewed as the element-wise
average of an ensemble of binary patterns.

3 Generalized Hamming Network

Despite the recent progresses in deep learning, artificial neural networks has long been criticized
for its “black box” nature: “they capture hidden relations between inputs and outputs with a highly
accurate approximation, but no definitive answer is offered for the question of how they work” [16].
In this section we provide an interpretation on neural computing by showing that, if the condition
specified in (3) is fulfilled, outputs of each neuron can be strictly defined as the generalized hamming
distance between inputs and weights. Moreover, the computations of GHD induces fuzzy implication
of XOR connective, and therefore, the inferencing of entire network can be regarded as a logical
calculus in the same vein as described in McCulloch & Pitts’ seminial paper [17].

3.1 New perspective on neural computing

The bearing of generalized hamming distance on neural computing is elucidated by looking at the
negative of generalized hamming distance, (GHD, see definition 1), between inputs x ∈ HL and
weights w ∈ HL in which L denotes the length of neuron weights e.g. in convolution kernels:

−GL(w ⊕L x) =
2

L
w · x− 1

L

L∑
l=1

wl −
1

L

L∑
l=1

xl (2)

Divide (2) by the constant 2
L and let

b = −1

2

( L∑
l=1

wl +

L∑
l=1

xl
)

(3)

then it becomes the familiar form (w · x + b) of neuron outputs save the non-linear activation
function. By enforcing the bias term to take the given value in (3), standard neuron outputs measure
negatives of GHD between inputs and weights. Note that, for each layer, the bias term

∑L
l=1 xl is

averaged over neighbouring neurons in individual input image. The bias term
∑L

l=1 wl is computed
separately for each filter in fully connected or convolution layers. When weights are updated during
the optimization,

∑L
l=1 wl changes accordingly to keep up with weights and maintain stable neuron

outputs. We discuss below (re-)interpretations of neural computing in terms of GHD.

Fuzzy inference: As illustrated in definition 4 GHD induces a fuzzy XOR connective. Therefore the
negative of GHD quantifies the degree of equivalence between inputs x and weights w (see definition
4 of fuzzy XOR), i.e. the fuzzy truth value of the statement “x ↔ w” where↔ denotes a fuzzy
equivalence relation. For GHD with multiple layers stacked together, neighbouring neuron outputs
from the previous layer are integrated to form composite statements e.g. “(x1

1 ↔ w1
1, . . . ,x

1
i ↔

w1
i ) ↔ w2

j” where superscripts correspond to two layers. Thus stacked layers will form more
complex, and hopefully more powerful, statements as the layer depth increases.
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Figure 2: Left to right: mean, max and min of neuron outputs, with/without batch normalized (BN,
WO_BN) and generalized hamming distance (XOR). Outputs are averaged over all 64 filters in the
first convolution layer and plotted for 30 epochs training of a MNIST network used in our experiment
(see Section 4).

Batch normalization demystified: When a mini-batch of training samples X = {x1, . . . ,xM} is
involved in the computation, due to the distributive property of GHD, the data-dependent bias term
L∑

l=1

xl equals the arithmetic mean of corresponding bias terms computed for each sample in the

mini-batch i.e. 1
M

M∑
m=1

L∑
l=1

xml . It is almost impossible to maintain a constant scalar b that fulfils

this requirement when mini-batch changes, especially at deep layers of the network whose inputs
are influenced by weights of incoming layers. The celebrated batch normalization (BN) technique
therefore proposed a learning method to compensate for the input vector change, with additional
parameters γ, β to be learnt during the training [9]. It is our conjecture that batch normalization is
approximating these rightful bias through optimization, and this connection is empirically revealed
in Figure 2 with very similar neuron outputs obtained by BN and GHD. Indeed they are highly
correlated during the course of training (with Pearson correlation coefficient=0.97), confirming our
view that BN is attempting to influence the bias term according to (3).

Once b is enforced to follow (3), neither the optimization of bias terms nor the sophisticated learning
method of BN is needed. In the following section we will illustrate a rectified neural network designed
as such.

Rectified linear units (ReLU) redesigned: Due to its strong biological motivations [10] and mathe-
matical justifications [11], rectified linear unit (ReLu) is the most popular activation function used for
deep neural network [31]. If neuron outputs are rectified as the generalized hamming distances, the
activation function max(0, 0.5− h(x,w)) then simply sets a minimal hamming distance threshold
of 0.5 (see Figure 1). Astute readers may immediately spot two limitations of this activation function:
a) it only takes into account the negative confidence region while disregards positive confidence
regions; b) it allows elements in the fuzzy regime near 0.5 to misguide the optimization with their
non-negligible gradients.

A straightforward remedy to ReLU is to suppress elements within the fuzzy region by setting outputs
between [0.5− r, 0.5 + r] to 0.5, where r is a parameter to control acceptable fuzziness in neuron
outputs. In particular, we may set thresholds adaptively e.g. [0.5 − r · O, 0.5 + r · O] where O
is the maximal magnitude of neuron outputs and the threshold ratio r is adjusted by the optimizer.
This double-thresholding strategy effectively prevents noisy gradients of fuzzy elements, since
0.5 is a fixed point and x ⊕ 0.5 = 0.5 for any x. Empirically we found this scheme, in tandem
with the rectification (3), dramatically boosts the training efficiency for challenging tasks such as
CIFAR10/100 image classification. It must be noted that, however, the use of non-linear activation as
such is not essential for GHD-based neural computing. When the double-thresholding is switched-off
(by fixing r = 0), the learning is prolonged for challenging CIFAR10/100 image classification but its
influence on the simple MNIST classification is almost negligible (see Section 4 for experimental
results).

3.2 Ganeralized hamming network with induced fuzzy XOR

Definition 2. A generalized hamming network (GHN) is any networks consisting of neurons, whose

outputs h ∈ HL are related to neuron inputs x ∈ HL and weights w ∈ HL by h = x⊕L w .
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Remark: In case that the bias term is computed directly from (3) such that h = x⊕L w is fulfilled
strictly, the network is called a rectified GHN or simply a GHN. In other cases where bias terms are
approximating the rightful offsets (e.g. by batch normalization [9]), the trained network is called an
approximated GHN.

Compared with traditional neural networks, the optimization of bias terms is no longer needed in
GHN. Empirically, it is shown that the proposed GHN benefits from a fast and robust learning process
that is on par with that of the batch-normalization approach, yet without resorting to sophisticated
learning process of additional parameters (see Section 4 for experimental results). On the other hand,
GHN also benefits from the rapid developments of neural computing techniques, in particular, those
employing parallel computing on GPUs. Due to this efficient implementation of GHNs, it is the first
time that fuzzy neural networks have demonstrated state-of-the-art performances on learning tasks
with large scale datasets.

Often neuron outputs are clamped by a logistic activation function to within the range [0, 1], so
that outputs can be compared with the target labels in supervised learning. As shown below, GHD
followed by such a non-linear activation actually induces a fuzzy XOR connective. We briefly review
basic notion of fuzzy set used in our work and refer readers to [2, 32, 13] for thorough treatments and
review of the topic.
Definition 3. Fuzzy Set: Let X be an universal set of elements x ∈ X , then a fuzzy set A is a set
of pairs: A := {

(
x, µA(x)

)
|x ∈ X,µA(x) ∈ I}, in which µA : X → I is called the membership

function (or grade membership).

Remark: In this work we let X be a Cartesian product of two sets X = P × U where P are (2D or
3D) collection of neural nodes and U are real numbers in ⊆ I or ⊆ R. We define the membership
function µX(x) := µU (xp),∀x = (p, xp) ∈ X such that it is dependent on xp only. For the sake of
brevity we abuse the notation and use µ(x), µX(x) and µU (xp) interchangeably.
Definition 4. Induced fuzzy XOR: let two fuzzy set elements a, b ∈ U be assigned with respective
grade or membership by a membership function µ : U → I : µ(a) = i, µ(b) = j, then the
generalized hamming distance h(a, b) : U ×U → U induces a fuzzy XOR connective E : I× I → I
whose membership function is given by

µR(i, j) = µ(h(µ−1(i), µ−1(j))). (4)

Remark: For the restricted case U = I the membership function can be trivially defined as the identity
function µ = idI as proved in [4].

Remark: For the generalized case where U = R, the fuzzy membership µ can be defined by a sigmoid
function such as logistic, tanh or any function : U → I . In this work we adopt the logistic function
µ(a) = 1

1+exp(0.5−a) and the resulting fuzzy XOR connective is given by following membership
function:

µR(i, j) =
1

1 + exp
(
0.5− µ−1(i)⊕ µ−1(j)

) , (5)

where µ−1(a) = − ln( 1
a − 1) + 1

2 is the inverse of µ(a). Following this analysis, it is possible to
rigorously formulate neuron computing of the entire network according to inference rules of fuzzy
logic theory (in the same vein as illustrated in [17]). Nevertheless, research along this line is out of
the scope of the present article and will be reported elsewhere.

4 Performance evaluation

4.1 A case study with MNIST image classification

Overall performance: we tested a simple four-layered GHN (cv[1,5,5,16]-pool-cv[16,5,5,64]-pool-
fc[1024]-fc[1024,10]) on the MNIST dataset with 99.0% test accuracy obtained. For this relatively
simple dataset, GHN is able to reach test accuracies above 0.95 with 1000 mini-batches and a
learning rate 0.1. This learning speed is on par with that of the batch normalization (BN), but without
resorting to the learning of additional parameters in BN. It was also observed a wide range of large
learning rates (from 0.01 to 0.1) all resulted in similar final accuracies (see below). We ascribe this
well-controlled robust learning behaviour to rectified bias terms enforced in GHNs.
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Figure 3: Test accuracies of MNIST classification with Generalized Hamming Network (GHN). Left:
test accuracies without using non-linear activation (by setting r = 0). Middle: with r optimized for
each layer. Right: with r optimized for each filter. Four learning rates i.e. {0.1, 0.05, 0.025, 0.01} are
used for each case with the final accuracy reported in brackets. Note that the number of mini-batch
are in logarithmic scale along x-axis.

Influence of learning rate: This experiment compares performances with different learning rates
and Figure 3 (middle,right) show that a very large learning rate (0.1) leads to much faster learning
without the risk of divergences. A small learning rate (0.01) suffice to guarantee the comparable final
test accuracy. Therefore we set the learning rate to a constant 0.1 for all experiments unless stated
otherwise.

Influence of non-linear double-thresholding: The non-linear double-thresholding can be turned off by
setting the threshold ratio r = 0 (see texts in Section 3.1). Optionally the parameter r is automatically
optimized together with the optimization of neuron weights. Figure 3 (left) shows that the GHN
without non-linear activation (by setting r = 0) performs equally well as compared with the case
where r is optimized (in Figure 3 left, right). There are no significant differences between two settings
for this relative simple task.

4.2 CIFAR10/100 image classification

In this experiment, we tested a six-layered GHN (cv[3,3,3,64]-cv[64,5,5,256]-pool-cv[256,5,5,256]-
pool-fc[1024]-fc[1024,512]-fc[1024,nclass]) on both CIFAR10 (nclass=10) and CIFAR100
(nclass=100) datasets. Figure 4 shows that the double-thresholding scheme improves the learn-
ing efficiency dramatically for these challenging image classification tasks: when the parameter r
is optimized for each feature filter the numbers of iterations required to reach the same level of test
accuracy are reduced by 1 to 2 orders of magnitudes. It must be noted that performances of such a
simple generalized hamming network (89.3% for CIFAR10 and 60.1% for CIFAR100) are on par
with many sophisticated networks reported in [33]. In our view, the rectified bias enforced by (3) can
be readily applied to these sophisticated networks, although resulting improvements may vary and
remain to be tested.

4.3 Generative modelling with Variational Autoencoder

In this experiment, we tested the effect of rectification in GHN applied to a generative modelling
setting. One crucial difference is that the objective is now to minimize reconstruction error instead of
classification error. It turns out the double-thresholding scheme is no longer relevant for this setting
and thus not used in the experiment.

The baseline network (784-400-400-20) used in this experiment is an improved implementation [34]
of the influential paper [35], trained on the MNIST dataset of images of handwritten digits. We have
rectified the outputs following (3) and, instead of optimizing the lower bound of the log marginal
likelihood as in [35], we directly minimize the reconstruction error. Also we did not include weights
regularization terms for the optimization as it is unnecessary for GHN. Figure 5 (left) illustrates
the reconstruction error with respect to number of training steps (mini-batches). It is shown that
the rectified generalized hamming network converges to a lower minimal reconstruction error as
compared to the baseline network, with about 28% reduction. The rectification also leads to a faster
convergence, which is in accordance with our observations in other experiments.
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Figure 5: Left: Reconstruction errors of convolution VAE with and w/o rectification. Right: Evalua-
tion accuracies of Sentence classification with GHN rectification and w/o rectification).

4.4 Sentence classification

A simple CNN has been used for sentence-level classification tasks and excellent results were
demonstrated on multiple benchmarks [36]. The baseline network used in this experiment is a
re-implementation of [36] made available from [37]. Figure 5 (right) plots accuracy curves from both
networks. It was observed that the rectified GHN did improve the learning speed, but did not improve
the final accuracy as compared with the baseline network: both networks yielded the final evaluation
accuracy around 74% despite that the training accuracy were almost 100%. The over-fitting in this
experiment is probably due to the relatively small Movie Review dataset size with 10,662 example
review sentences, half positive and half negative.

5 Conclusion

In summary, we proposed a rectified generalized hamming network (GHN) architecture which materi-
alizes a re-emerging principle of fuzzy logic inferencing. This principle has been extensively studied
from a theoretic fuzzy logic point of view, but has been largely overlooked in the practical research
of ANN. The rectified neural network derives fuzzy logic implications with underlying generalized
hamming distances computed in neuron outputs. Bearing this rectified view in mind, we proposed to
compute bias terms analytically without resorting to sophisticated learning methods such as batch
normalization. Moreover, we have shown that, the rectified linear units (ReLU) was theoretically
non-essential and could be skipped for some easy tasks. While for challenging classification problems,
the double-thresholding scheme did improve the learning efficiency significantly.

The simple architecture of GHN, on the one hand, lends itself to being analysed rigorously and this
follow up research will be reported elsewhere. On the other hand, GHN is the first fuzzy neural
network of its kind that has demonstrated fast learning speed, well-controlled behaviour and state-
of-the-art performances on a variety of learning tasks. By cross-checking existing networks against
GHN, one is able to grasp the most essential ingredient of deep learning. It is our hope that this kind
of comparative study will shed light on future deep learning research and eventually open the “black
box” of artificial neural networks [16].
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