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Abstract  
Quasi-exactly solvable symmetrized sextic oscillators have been proposed 

and studied by Quesne, who categorized them based on the parity – 
natural or unnatural – of their known eigenfunction [2]. Herein, we 

examine the quasi-exact solvability of symmetrized sextic oscillators 
using a quotient-polynomial approach [3, 4, 5], which, in this case, opens 
up the possibility to construct non-analytic sextic oscillators from analytic 
quotient polynomials, and thus to distinguish the oscillators resulting from 

analytic quotient polynomials from those resulting from non-analytic 
quotient polynomials. We analyze the cases n=0 and n=1, and we show 

that the results are in agreement with those of Quesne [2]. In the case n=2, 
we construct sextic oscillators using only analytic quotient polynomials, 
and focusing on the non-analytic oscillators whose known eigenfunction 

is of unnatural parity, we register a relation between the coefficients of the 
two non-analytic terms of the exponential polynomial, which then we 

generalize to the higher cases n=3 and n=4, to construct new non-analytic 
sextic oscillators whose known eigenfunction is of unnatural parity. 

Keywords: polynomial oscillators, sextic oscillators, quotient polynomial, analytic 
sextic oscillators, non-analytic sextic oscillators, symmetrized sextic oscillators, 
analytic quotient polynomials, natural parity, unnatural parity, quasi-exactly solvable 
potentials, Bethe ansatz 
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Introduction 
Within the framework of the Bethe ansatz [6, 7, 8], the solvability of one-
dimensional, attractive at (least at) long distances, analytic or symmetrized, real 
polynomial potentials can be examined by means of quotient polynomials [3, 4, 5]. 
In this context, the closed-form eigenfunctions describing bound eigenstates of 
previous potentials are given by the ansatz 

( ) ( ) ( )( )2; , expn n mx m n A p x g xψ =% % %  (1) 

where ( )np x%  is a dimensionless, real polynomial of degree 0,1,...n = , and ( )2mg x%  is 

an also dimensionless, real polynomial of degree 2 2,3,...m = , i.e. 31, ,...
2

m =  [5]. 

The tilde indicates a dimensionless quantity [3]. 

Symmetrized sextic oscillators 
The general form of a symmetrized exponential polynomial ( )4g x%  ( 2m = ) is 

( )
2

34 234 2
4 14 3 2

gg gg x x x x g x= − + + +% % % % %  

with 2
4 0g > . 

The factors 1 1 1, ,
4 3 2

−  are put in for convenience, while the negative leading 

coefficient is necessary so that the ansatz (1) is square integrable, which, in turn, 
results from the fact that it describes a bound eigenstate. 
The constant term 0g  of the exponential polynomial corresponds to a constant 
exponential factor ( )0exp g , which can be incorporated into the normalization 
constant of the ansatz (1), and thus we omit it. 
For simplicity, we set 2

4 1g = . 

Besides, using that xx
l

=%  [3], we can choose the length scale l  so that the coefficient 

of 4x  is 1− . 
Thus, without sacrificing generality, we write the exponential polynomial as 

( ) 34 23 2
4 1

1
4 3 2

g gg x x x x g x= − + + +% % % % %  (2) 

For 0x >%  

( ) 4 3 23 2
4 1

1
4 3 2

g gg x x x x g x= − + + +% % % % % , 

and thus 

( ) 3 2
4 3 2 1g x x g x g x g′ = − + + +% % % %  

( ) 2
4 3 23 2g x x g x g′′ = − + +% % %  

For 0x <%  
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( ) 4 3 23 2
4 1

1
4 3 2

g gg x x x x g x= − − + −% % % % % , 

and thus 

( ) 3 2
4 3 2 1g x x g x g x g′ = − − + −% % % %  

( ) 2
4 3 23 2g x x g x g′′ = − − +% % %  

The potential is given by the general expression [3] 

( ) ( ) ( ) ( ) ( )2
2 2 2 1; , ;m m mV x m n g x g x q x n E−

′ ′′= + − +% %% % % %  (3) 

with ( ) ( )2 1 ;mq x n−
%  being the quotient polynomial [3], which is of degree ( )2 1m − . 

The energy E%  of the eigenstate described by the ansatz (1) is calculated by the 
condition ( )0; , 0V m n =% , provided that the potential is continuous at zero. 
For 2m = , from (3) we obtain sextic oscillators, and since the exponential 
polynomial is symmetrized, the sextic oscillators are also symmetrized. 
The respective quotient polynomial is an (in general) symmetrized polynomial of 
degree 2, which means that it is of even parity*, and thus it has the general form 

( ) ( ) ( ) ( )2
2 2 1 0;q x n q n x q n x q n= + +% % %  (4) 

* The symmetrized exponential polynomial ( )4g x%  is of even parity, and then 

( )4g x′ %  is of odd parity, and thus ( )2
4g x′ %  is again of even parity, while ( )4g x′′ %  is 

also of even parity. 

Thus, the polynomial ( ) ( )2
4 4g x g x′ ′′+% %  is of even parity. 

Besides, the symmetrized sextic oscillator, i.e. the potential ( );2,V x n% %  given by (3), 
is also of even parity. 
Then, writing (3) as 

( ) ( ) ( ) ( )2
2 4 4; ; 2,q x n g x g x V x n E′ ′′= + − +% %% % % % , 

we see that the polynomial in the right-hand side is a sum of even-parity 
polynomials, and thus it is itself of even parity, and then the quotient polynomial 

( )2 ;q x n%  is of even parity too. 

We note that, compared to the analytic sextic oscillator [4], the quotient polynomial 
(4) has a non-analytic (symmetrized) linear term, which is also the only intermediate 
term in the quotient polynomial (4). 
Based on the discussion in [3], the presence of this non-analytic term results in 
finding no more than one closed-form eigenfunction for each respective symmetrized 
sextic oscillator. 
On the contrary, in the case of symmetrized quartic oscillators, the quotient 
polynomial has no intermediate terms, it is a non-analytic (symmetrized) linear 
polynomial [5]. 
Now, using the above expressions of the first and second derivatives of the 
exponential polynomial, we have 
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( )4 10g g+′ =  ( )4 20g g+′′ =  

( )4 10g g−′ = −  ( )4 20g g−′′ =  

Thus 

( ) ( )4 40 0g g− +′ ′= −  

and then 

( ) ( )2 2
4 40 0g g− +′ ′=  

Also 

( ) ( )4 40 0g g− +′′ ′′=  

Thus, the polynomial ( ) ( )2
4 4g x g x′ ′′+% %  is continuous at zero. 

The quotient polynomial (4) is also continuous at zero, as its non-analytic term 
( )1q n x%  is continuous at zero. 

Thus, the symmetrized sextic oscillator ( );2,V x n% % , given by (3) for 2m = , is 
continuous at zero, and everywhere. 
Since the potential is continuous at zero, both the ansatz eigenfunction (1) and its 
derivative must be continuous at zero [1], i.e. 

( ) ( )0 ;2, 0 ;2,n nψ ψ− +=  (5) 

( ) ( )0 ;2, 0 ;2,n nψ ψ− +′ ′=  (6) 

Using (1), (5) is written as 

( ) ( )( ) ( ) ( )( )4 40 exp 0 0 exp 0n n n nA p g A p g− − + +=  

Since 0nA ≠  – otherwise the ansatz (1) is identically zero – and ( ) ( )4 40 0 0g g− += = , 
the last equation becomes 

( ) ( )0 0n np p− +=  (7) 

i.e. the polynomial ( )np x%  is continuous at zero, and everywhere. 
Besides, the derivative of the ansatz (1), for 2m = , is 

( ) ( ) ( ) ( )( ) ( )( )4 4; 2, expn n nx n A p x g x p x g xψ ′ ′′ = +% % % % %  

Then, (6) is written as 

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )4 4 4 40 0 0 exp 0 0 0 0 exp 0n n n n n nA p g p g A p g p g− − − − + + + +′ ′ ′ ′+ = +

 

Then, using that 0nA ≠ , ( ) ( )4 40 0 0g g− += = , and that 
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( )4 10g g−′ = −  ( )4 10g g+′ = , 

and (7), we obtain 

( ) ( ) ( ) ( )1 10 0 0 0n n n np g p p g p− + + +′ ′− = +  

and thus 

( ) ( ) ( )10 0 2 0n n np p g p− + +′ ′= +  (8) 

i.e. the first derivative of ( )np x%  has a finite jump at zero, which is equal to 

( )12 0ng p +− . 

The polynomials ( )np x%  satisfy the differential equation [3] 

( ) ( ) ( ) ( ) ( ) ( )2 2 12 ;n m n nmp x g x p x q x n p x−
′′ ′ ′+ = −% % % % %  

which, in our case, and in the region 0x >% , is written as 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )3 2 2
3 2 1 2 1 02n n np x x g x g x g p x q n x q n x q n p x′′ ′+ − + + + = − + +% % % % % % % %  (9) 

The leading coefficient ( )2q n  of the quotient polynomial is calculated by equating 
the coefficients of the highest terms in x% , in both sides of (9). 
The polynomial ( )np x%  is of degree n . 
As in the case of analytic polynomial potentials [3, 4], we can incorporate, without 
loss of generality, the non-zero leading coefficient of ( )np x%  into the normalization 
constant nA  of the ansatz eigenfunction (1). 
If 1n ≥ , we have 
In the positive region, where n nx x=% % , the leading term of ( )np x%  is nx% , and then the 

leading term of ( )np x′ %  is 1nnx −
% . 

Then, we have 

( )deg 2np n′′ = −  if 2n ≥ , ( )deg 0np ′′ =  if 1n =  

( )3deg 2nx p n′ = +%  ( )2deg 1nx p n′ = +%  ( )deg nxp n′ =%  ( )deg 1np n′ = −  

( )2deg 2nx p n= +%  ( )deg 1nxp n= +%  ( )deg np n=  

Then, the highest powers in x% , in both sides of (9), are of 2n +  degree, with one term 
in each side of (9), with the respective coefficients being 2n−  and ( )2q n− , and thus 

( )2 2q n n=  (10) 

If 0n = , then ( )0 1p x =% , and thus ( ) ( )0 0 0p x p x′ ′′= =% % , and then (9) gives 

( ) ( ) ( )( )2
2 1 00 0 0 0q x q x q− + + =% %  

and thus 
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( ) ( ) ( )0 1 20 0 0 0q q q= = =  

Besides, for 0n = , (10) gives ( )2 0 0q = , which is the correct result, and thus (10) 
also holds for 0n = . 

Since the quotient polynomial is of even parity, its coefficients in the negative 
region are the same as those in the positive region.  

Substituting (10) into (9) yields 

( ) ( ) ( ) ( ) ( )( ) ( )3 2 2
3 2 1 1 02 2n n np x x g x g x g p x nx q n x q n p x′′ ′+ − + + + = − + +% % % % % % % %  (11) 

The coefficients of the terms of degree 0k ≥  in x% , in both sides of (11), are, 
respectively, 

( ) ( )( ) 22 1n kp x k k p +
′′ → + +%  

( ) ( ) ( ) ( ) ( )( )3 2
3 2 1 2 3 1 2 1 12 2 2 1 1n k k k kx g x g x g p x k p k g p kg p k g p− − +

′− + + + → − − + − + + +% % % %

 

( ) ( )( ) ( ) ( ) ( )( )2
1 0 2 1 1 02 2n k k knx q n x q n p x np q n p q n p− −− + + → − + +% % %  

Thus, equating the coefficients of the terms of degree k  in x% , in both sides of (11), 
we obtain 

( ) ( ) ( ) ( ) ( )( )2 2 3 1 2 1 12 1 2 2 1 1k k k k kk k p k p k g p kg p k g p+ − − ++ + + − − + − + + + =

( ) ( )( )2 1 1 02 k k knp q n p q n p− −= − + + ⇒

( )( ) ( ) ( ) ( )2 2 3 1 2 1 12 1 2 2 2 1 2 2 1k k k k kk k p k p k g p kg p k g p+ − − +⇒ + + − − + − + + + =

( ) ( )2 1 1 02 k k knp q n p q n p− −= − − −  

Thus, we end up to the five-term recursion relation 

( )( ) 22 1 kk k p ++ + =

( ) ( )( ) ( ) ( )( ) ( )1 1 0 2 3 1 1 22 1 2 2 1 2 2  (12)k k k kk g p q n kg p k g q n p k n p+ − −= − + − + − − + + − −
 

We note that (12) holds in the region 0x >% . 
If the coefficients of the two non-analytic terms of the exponential polynomial vanish, 
i.e. if 1 3 0g g= = , the exponential polynomial becomes the analytic exponential 
polynomial of the analytic sextic oscillator, the quotient polynomial of which is also 
analytic [4]. 
Thus, a smooth transition from the symmetrized to the analytic sextic oscillator 
requires that if 1 3 0g g= = , then ( )1 0q n = . 

However, as we’ll see below, the opposite does not hold, i.e. if ( )1q n  vanishes, i.e. if 
the quotient polynomial is analytic, 1g  and 3g  are not necessarily zero, and the 
resulting sextic oscillator can be non-analytic (symmetrized). 
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Thus, non-analytic (symmetrized) sextic oscillators can result from analytic 
quotient polynomials. 

Also, based on the discussion in [3], the absence of intermediate terms in the quotient 
polynomial, which in the case of symmetrized sextic oscillators implies the analyticity 
of the quotient polynomial, is a quasi-exact solvability condition. 

Thus, non-analytic (symmetrized) sextic oscillators resulting from analytic 
quotient polynomials can be quasi-exactly solvable. 

For 0k = , dropping 1p−  and 2p− , whose indices are negative and thus unacceptable, 
as they do not correspond to polynomial coefficients, (12) gives 

( )2 1 1 0 02 2p g p q n p= − −  (13) 

For 1k = , dropping 1p− , whose index is negative, (12) gives 

( )( ) ( )3 1 2 0 2 1 1 06 4 2p g p q n g p q n p= − − + −  (14) 

For 2,3,..., 2k n= − , all five terms are present in (12). 
For 1k n= − , dropping 1np + , whose index exceeds the degree of ( )np x% , and thus it is 
unacceptable, and using that 1np =  in the region 0x >% , (12) gives 

( ) ( )( ) ( ) ( )( )1 0 2 1 3 1 2 30 2 2 1 2 2 6n n nng q n n g p n g q n p p− − −= − − + − − − + −  (15) 

For k n= , dropping 1np +  and 2np + , whose indices exceed the degree of ( )np x% , and 
using that 1np =  in the region 0x >% , (12) gives 

( )( ) ( ) ( )( )0 2 3 1 1 20 2 2 1 4n nq n ng n g q n p p− −= − + − − + −  (16) 

For 1k n= + , dropping 1 2 3, ,n n np p p+ + + , whose indices exceed the degree of ( )np x% , 
and using that 1np =  in the region 0x >% , (12) gives 

( )( )3 1 10 2 2 nng q n p −= − + −  (17) 

For 2k n= + , dropping 1 2 3 4, , ,n n n np p p p+ + + + , whose indices exceed the degree of 

( )np x% , and using that 1np =  in the region 0x >% , (12) gives 

( )0 2 2 2 0 0n n= + − − ⇒ = , 

i.e. it holds identically, which is expected, since for 2k n= +  we obtain the leading 
coefficient of the quotient polynomial, which we’ve incorporated into (12). 
Thus, (12) gives non-trivial equations for 

0,1,..., 1k n= +  

Then, we have 2n +  equations with 1n −  unknown coefficients of the polynomial 
( )np x%  – remember that 1np =  – and 2 unknown coefficients of the quotient 

polynomial, i.e. we have 2n +  equations with 1n +  unknowns. 
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The polynomial ( )np x%  must also satisfy the two continuity conditions (7) and (8). 

To write the form of ( )np x%  in the region 0x <% , we use that the symmetrized sextic 
oscillators are symmetric, i.e. they are potentials of even parity, and thus the ansatz 
eigenfunction (1) has definite parity [9]. 
Since the symmetrized exponential polynomial (2) is of even parity, the exponential 
factor ( )( )4exp g x%  in (1) is also of even parity, and thus the polynomial ( )np x%  has 
the same parity as the eigenfunction (1), i.e. it is of either even or odd parity. 

Examples 

n=0 

In the region 0x >% , ( )0 1p x =% , and thus ( ) ( )0 0 0p x p x′ ′′= =% % . 

Also, for 0,n =  (10) gives ( )2 0 0q = . 
Then, (11) becomes 

( ) ( )( )1 00 0 0q x q= − +%  

and thus 

( ) ( )0 10 0 0q q= =  

Then 

( )2 ;0 0q x =%  (18) 

as expected, since ( ) ( )2 1 ;0 0mq x− =%  [3]. 

As a constant, the polynomial ( )0 1p x =%  can be only of even parity, and this happens 
if (and only if) it is also 1 in the region 0x <% . 
Then, the first continuity condition, i.e. the condition (7), is satisfied, while the second 
continuity condition, i.e. the condition (8), is written as 

10 0 2g= +  

and thus 

1 0g =  

The exponential polynomial (2) then becomes 

( ) 34 23 2
4

1
4 3 2

g gg x x x x= − + +% % % %  (19) 

Then, the ansatz eigenfunction (1) takes the form 

 ( ) 34 23 2
0

1;2,0 exp
4 3 2

g gx A x x xψ  = − + + 
 

% % % %  (20) 

and since it has no (real) zeros, it describes the ground state of the symmetrized sextic 
oscillator we’ll calculate now. 
Using (19), we have, in the region 0x >% , 

( ) 3 2
4 3 2g x x g x g x′ = − + +% % % %  
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( ) 2
4 3 23 2g x x g x g′′ = − + +% % %  

Plugging the previous derivatives into (3) – for ( ) ( ), 2,0m n =  – and using (18), we 
obtain that, in the region 0x >% , 

( ) ( )23 2 2
3 2 3 2;2,0 3 2V x x g x g x x g x g E+ = − + + − + + + =% %% % % % % %

6 2 4 2 2 5 4 3 2
3 2 3 2 2 3 3 22 2 2 3 2x g x g x g x g x g g x x g x g E= + + − − + − + + + =%% % % % % % % %

( ) ( )6 5 2 4 3 2 2
3 3 2 2 3 2 3 22 2 2 3 2x g x g g x g g x g x g x g E= − + − + + − + + + %% % % % % %  

That is, in the region 0x >% , 

( ) ( ) ( )6 5 2 4 3 2 2
3 3 2 2 3 2 3 2;2,0 2 2 2 3 2V x x g x g g x g g x g x g x g E+ = − + − + + − + + +% %% % % % % % %  

Since the potential is symmetric, 

( ) ( ) ( )5 36 2 4 2 2
3 3 2 2 3 2 3 2;2,0 2 2 2 3 2  (21)V x x g x g g x g g x g x g x g E= − + − + + − + + +% %% % % % % % %

 

The potential is continuous at zero, and thus (21) is defined for every x% . 
To calculate the ground-state energy E% , we apply the condition ( )0;2,0 0V =% , which 
gives 

2E g= −%  (22) 

Then (21) is written as 

( ) ( ) ( )5 36 2 4 2 2
3 3 2 2 3 2 3;2,0 2 2 2 3 2V x x g x g g x g g x g x g x= − + − + + − +% % % % % % % %  (23) 

Thus, the ground state of the symmetrized sextic oscillator (23) is described by the 
wave function (20) and it has energy given by (22). 

Setting 

3
3 3

3
g a g a= − ⇒ = −  

2
2 2

2
g b g b= ⇒ =  

1g c= − , 
we have 0c = , and the potential (23), the ground-state wave function (20), and the 
ground-state energy (22) are respectively written as 

( ) ( ) ( )5 36 2 4 2 2;2,0 6 9 4 12 4 3 6V x x a x a b x ab x b x a x= + + − − + − −% % % % % % % %  

( ) 34 2
0

1;2,0 exp
4

x A x a x bxψ  = − − + 
 

% % % %  

2E b= −% , 
in agreement with Quesne [2]. 

n=1 
For 1n = , (12) becomes 
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( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2 1 1 0 2 3 1 1 22 1 2 1 1 2 2 1 1 2 3  (24)k k k k kk k p k g p q kg p k g q p k p+ + − −+ + = − + − + − − + + −
with 0,1, 2k = . 

Also, in the region 0x >% , ( )1 0p x x p= +% % . 
For 0k = , using that 1 1p =  and dropping the coefficients with negative or greater 
than 1 indices, (24) gives 

( )1 0 00 2 1g q p= − −  

in agreement with (13) for 1 1p =  and 2 0p =  ( 1n = ). 
For 1k = , (24) gives 

( )( ) ( )0 2 1 00 1 2 1q g q p= − + −  

in agreement with (14) for 1 1p = , 2 3 0p p= =  ( 1n = ). 
For 2k = , (24) gives 

( )( )3 1 00 2 1 2g q p= − + −  

in agreement with (17) for 1n = . 
Thus, we have the equations 

( )1 0 02 1 0g q p+ =  (25) 

( ) ( )0 2 1 01 2 1 0q g q p+ + =  (26) 

( )3 1 02 1 2 0g q p+ + =  (27) 

This is a non-linear, non-homogeneous system of three equations with the three 
unknowns ( ) ( )0 11 , 1q q , and 0p . 

The polynomial ( )1p x%  has definite parity, i.e. it is of either even or odd parity. 

i. If ( )1p x%  is of odd parity, it must vanish at zero*, and thus 0 0p = . 

The first continuity condition ensures that the polynomial ( )np x%  is continuous at 

zero, and thus we define ( ) ( )0 0n np p +≡ . 

Substituting 0 0p =  into (25), (26), and (27), we obtain, respectively, 

1 0g =  (28) 

( )0 21 2q g= −  (29) 

( )1 31 2q g= −  (30) 

The odd-parity polynomial ( )1p x x=% %  is continuous at zero, and thus it satisfies the 
first continuity condition. 
Using (28), the second continuity condition becomes 

( ) ( )1 10 0p p− +′ ′= , 
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which is also satisfied, since ( )1p x%  is analytic. 
Using (28), the exponential polynomial (2) is written as 

( ) 34 23 2
4

1
4 3 2

g gg x x x x= − + +% % % %  (31) 

and then the ansatz eigenfunction (1) is written as 

( ) 34 23 2
1

1;2,1 exp
4 3 2

g gx A x x x xψ  = − + + 
 

% % % % %  (32) 

The wave function (32) has one (real) zero, at zero, and thus it describes the first-
excited state of the symmetrized sextic oscillator we’ll calculate now. 
Using (31), we have, in the region 0x >% , 

( ) 3 2
4 3 2g x x g x g x′ = − + +% % % %  

( ) 2
4 3 23 2g x x g x g′′ = − + +% % %  

The quotient polynomial is given by (4), with 1n = , i.e. 

( ) ( ) ( ) ( )2
2 2 1 0;1 1 1 1q x q x q x q= + +% % %  

with ( )2 1 2q = , as (10) gives. 
Then, by means of (29) and (30), we end up to the quotient polynomial 

( ) 2
2 3 2;1 2 2 2q x x g x g= − −% % %  (33) 

Thus, plugging into (3) – for ( ) ( ), 2,1m n =  – the first and second derivatives of the 
exponential polynomial and the quotient polynomial (33) in the region 0x >% , we 
obtain 

( ) ( ) ( )23 2 2 2
3 2 3 2 3 2;2,1 3 2 2 2 2V x x g x g x x g x g x g x g E+ = − + + − + + − − − + =% %% % % % % % % %

6 2 4 2 2 5 4 3 2 2
3 2 3 2 2 3 3 2 3 22 2 2 3 2 2 2 2x g x g x g x g x g g x x g x g x g x g E= + + − − + − + + − + + + =%% % % % % % % % % %

( ) ( )6 5 2 4 3 2 2
3 3 2 2 3 2 3 22 2 2 5 4 3x g x g g x g g x g x g x g E= − + − + + − + + + %% % % % % %  

That is, in the region 0x >% , 

( ) ( ) ( )6 5 2 4 3 2 2
3 3 2 2 3 2 3 2;2,1 2 2 2 5 4 3V x x g x g g x g g x g x g x g E+ = − + − + + − + + +% %% % % % % % %  

Since the potential is symmetric, 

( ) ( ) ( )5 36 2 4 2 2
3 3 2 2 3 2 3 2;2,1 2 2 2 5 4 3  (34)V x x g x g g x g g x g x g x g E= − + − + + − + + +% %% % % % % % %

 

The potential is continuous at zero, and thus (34) is defined for every x% . 
Applying the condition ( )0;2,1 0V =% , we obtain the energy, which is 

23E g= −%  (35) 

and we end up to the symmetrized sextic oscillator 
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( ) ( ) ( )5 36 2 4 2 2
3 3 2 2 3 2 3;2,1 2 2 2 5 4V x x g x g g x g g x g x g x= − + − + + − +% % % % % % % %  (36) 

Thus, the first-excited state of the symmetrized sextic oscillator (36) is described by 
the wave function (32) and it has energy given by (35). 

Setting 
3

3 3
3
g a g a= − ⇒ = −  

2
2 2

2
g b g b= ⇒ =  

1g c= − , 
we have 0c = , and the potential (36), the first-excited-state wave function (32), 
and the energy (35) are respectively written as 

( ) ( ) ( )5 36 2 4 2 2;2,1 6 9 4 12 4 5 12V x x a x a b x ab x b x a x= + + − − + − −% % % % % % % %  

( ) 34 2
1

1;2,1 exp
4

x A x x a x bxψ  = − − + 
 

% % % % %  

6E b= −% , 
in agreement with Quesne [2]. 

ii. If ( )1p x%  is of even parity, then 

( )1 0p x x p= +% %  

The previous polynomial is continuous at zero, and thus it satisfies the first continuity 
condition. 
Also 

( )1 0 1p −′ = −  and ( )1 0 1p +′ = , 

and then the second continuity condition is written as 

1 0 1 01 1 2 1g p g p− = + ⇒ = −  

From the last equation, we derive that 1 0g ≠ , and then, solving for 0p , 

0
1

1p
g

= −  (37) 

Substituting (37) into (25), (26), and (27), we obtain, respectively, 

( )1 0
1

12 1 0g q
g

 
+ − = 

 
 

( ) ( )0 2 1
1

11 2 1 0q g q
g

 
+ + − = 

 
 

( )3 1
1

12 1 2 0g q
g

 
+ + − = 

 
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The first of the above three equations gives 

( ) 2
0 11 2q g=  (38) 

The third of the above three equations gives 

( )1 3
1

11 2q g
g

 
= − 

 
 (39) 

Then, substituting (38) and (39) into the second of the above three equations, we 
obtain 

2 2 3
1 2 3 1 2 2

1 1 1 1

1 1 12 2 2 0 0gg g g g g
g g g g

  
+ + − − = ⇒ + − + = ⇒  

  
4 2

1 2 1 3 11 0g g g g g⇒ + − + =  

Thus, the coefficient 1g  of the non-analytic linear term of the exponential polynomial 
must satisfy the quartic equation 

4 2
1 2 1 3 1 1 0g g g g g+ + − =  (40) 

Using (37), the even-parity polynomial ( )1p x%  is written as 

( )1
1

1p x x
g

= −% %  

and the ansatz eigenfunction (1) is then written as 

( ) 34 23 2
1 1

1

1 1;2,1 exp
4 3 2

g gx A x x x x g x
g

ψ
   = − − + + +   

  
% % % % % %  (41) 

with 1g  satisfying (40). 
For 1 0g < , the wave function (41) has no (real) zeros, and thus it describes the 
ground state of the symmetrized sextic oscillator we calculate below. 

For 1 0g > , the wave function (41) has two (real) zeros, at 
1

1x
g

=% , i.e. at 
1

1x
g

= ±% , 

and thus it describes the second-excited state of the symmetrized sextic oscillator we 
calculate below. 
Using (38), (39), and that ( )2 1 2q = , the quotient polynomial in this case is 

( ) 2 2
2 3 1

1

1; 2 2 2q x n x g x g
g

 
= + − + 

 
% % %  (42) 

The exponential polynomial is given by the general relation (2) with 1g  satisfying 
(40).  
Then, the first and second derivatives of the exponential polynomial in the region 

0x >%  are, respectively, 

( ) 3 2
4 3 2 1g x x g x g x g′ = − + + +% % % %  
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( ) 2
4 3 23 2g x x g x g′′ = − + +% % %  

Plugging into (3) – for ( ) ( ), 2,1m n =  – the first and second derivatives of the 
exponential polynomial and the quotient polynomial (42) in the region 0x >% , we 
obtain 

( ) ( )23 2 2 2 2
3 2 1 3 2 3 1

1

1;2,1 3 2 2 2 2V x x g x g x g x g x g x g x g E
g+

  
= − + + + − + + − + − + + =     

% %% % % % % % % %

6 2 4 2 2 2 5 4 3 3 2 2
3 2 1 3 2 1 2 3 1 3 1 2 3 22 2 2 2 2 2 3 2x g x g x g g x g x g x g g x g g x g g x x g x g= + + + − − − + + + − + + −% % % % % % % % % % %

( ) ( )2 2 6 5 2 4 3
3 1 3 3 2 2 3 1

1

12 2 2 2 2 2x g x g E x g x g g x g g g x
g

 
− − − − + = − + − + − + 

 
%% % % % % %

( )2 2 2
2 1 3 1 2 3 3 2 1

1

12 5 2g g g x g g g g x g g E
g

  
+ + − + + − − + − +     

%% %  

That is, in the region 0x >% , 

( ) ( ) ( ) ( )6 5 2 4 3 2 2
3 3 2 2 3 1 2 1 3;2,1 2 2 2 2 5V x x g x g g x g g g x g g g x+ = − + − + − + + − +% % % % % % %

2
1 2 3 2 1

1

12 2g g g x g g E
g

 
+ + − + − + 

 
%%  

Since the potential is symmetric, 

( ) ( ) ( ) ( )5 36 2 4 2 2
3 3 2 2 3 1 2 1 3;2,1 2 2 2 2 5V x x g x g g x g g g x g g g x= − + − + − + + − +% % % % % % %

2
1 2 3 2 1

1

12 2g g g x g g E
g

 
+ + − + − + 

 
%%  (43) 

The potential is continuous at zero, and thus (43) is defined for every x% . 
Applying the condition ( )0;2,1 0V =% , we obtain the energy, which is 

2
1 2E g g= −%  (44) 

and we end up to the symmetrized sextic oscillator 

( ) ( ) ( ) ( )5 36 2 4 2 2
3 3 2 2 3 1 2 1 3;2,1 2 2 2 2 5V x x g x g g x g g g x g g g x= − + − + − + + − +% % % % % % %

1 2 3
1

12 2g g g x
g

 
+ + − 

 
%  (45) 

Thus, for 1 0g < , the ground state of the symmetrized sextic oscillator (45) is 
described by the wave function (41), and its energy is given by (44), while for 1 0g > , 
the second-excited state of the symmetrized sextic oscillator (45) is described by the 
wave function (41), and its energy is again given by (44). 
In both cases, 1 0g <  and 1 0g > , 1g  satisfies the quartic equation (40). 

Setting 
3

3 3
3
g a g a= − ⇒ = −  
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2
2 2

2
g b g b= ⇒ =  

1g c= − , 
the quartic equation (40) becomes 

4 22 3 1 0c bc ac+ + − = , 
in agreement with Quesne [2], 
the potential (45) and the wave function (41) are respectively written as 

( ) ( ) ( ) ( )5 36 2 4 2 2 1;2,1 6 9 4 2 6 4 6 5 2 2 6V x x a x a b x ab c x b ac x bc a x
c

 = + + − + − + + + − + − − + = 
 

% % % % % % % %

( ) ( ) ( )5 36 2 4 2 2 26 9 4 12 2 4 6 5 12 4x a x a b x ab c x b ac x a bc x
c

 = + + − − − + + − − + − 
 

% % % % % %

( ) 34 2
1

1 1;2,1 exp
4

x A x x a x bx c x
c

ψ    = + − − + −   
   

% % % % % % , 

in agreement with Quesne [2], 
and the energy (44) is written as 

2 2E c b= −% , 
which is the same as that found by Quesne [2] if we take into account the quartic 
equation (40), which, as we saw, is written as 4 22 3 1 0c bc ac+ + − = . 
Indeed, since 0c ≠ , dividing both members of the previous equation by 2c  yields 

2 2 2
2 2 2

3 1 3 1 6 22 0 2 2 4a a ac b c b c b
c c c c c c

+ + − = ⇒ + = − + ⇒ − + = +  

Then, substituting into the expression of Quesne [2], i.e. 
2

2

6 26 aE b c
c c

= − − − +% , 

we obtain 
2 2E c b= −% . 

Summarizing the case 1n = , we observe that the parameter 1g , i.e. the coefficient of 
the non-analytic linear term of the exponential polynomial, determines the degree of 
excitation of the known eigenstate. 
If the parameter 1g  is negative, the known eigenstate is the ground state, if it is zero, 
the known eigenstate is the first-excited state, while if it is positive, the known 
eigenstate is the second-excited state. 
We also observe that, for 1n = , we find a wave function of natural, i.e. of odd, parity, 
which corresponds to 1g  being zero and it describes the first-excited state, and a wave 
function of unnatural, i.e. of even, parity, which corresponds to 1g  being non-zero and 
it describes the ground state, if 1g  is negative, or the second-excited state, if 1g  is 
positive. 
Both these features also appear in the case 1n =  of symmetrized quartic oscillators 
[5]. 

The transition to analytic sextic oscillators in the cases n=0 and n=1 
In the cases 0n =  and 1n = , we’ll examine the transition of the symmetrized to 
analytic sextic oscillators. 



Quasi-Exact Solvability of Symmetrized Sextic Oscillators and Analyticity of the 
Related Quotient Polynomials 

  9 November 2017  17 

In the case 0n = , the parameter 1g  is always zero, and the exponential polynomial is 
then given by (19), i.e. 

( ) 34 23 2
4

1
4 3 2

g gg x x x x= − + +% % % %  

If 3g  is also zero, the exponential polynomial becomes analytic, and the respective 
symmetrized sextic oscillator, given by (23), then becomes 

( ) ( )6 4 2 2
2 2;2,0 2 3V x x g x g x= − + −% % % % %  

i.e. it becomes an analytic sextic oscillator. 
The ground-state wave function (20) then becomes 

( ) 4 22
0

1;2,0 exp
4 2

gx A x xψ  = − + 
 

% % % , 

while the energy (22) remains as it is, as it does not depend either on 1g  or on 3g . 
The previous potential, wave function, and energy are in agreement with the 
corresponding results in [4] for 2

4 1g = . 
For 0n = , the quotient polynomial is zero, and thus it is (trivially) analytic. 
In the case 1n = , with 1 0g = , setting 3 0g = , the exponential polynomial (31) 
becomes analytic, and the symmetrized sextic oscillator (36) becomes the analytic 
sextic oscillator 

( ) ( )6 4 2 2
2 2;2,1 2 5V x x g x g x= − + −% % % % % , 

in agreement with the corresponding result in [4] for 2
4 1g = . 

The wave function (32) becomes 

( ) 4 22
1

1;2,1 exp
4 2

gx A x x xψ  = − + 
 

% % % % , 

and it is the first-excited-state wave function of the previous analytic sextic oscillator, 
with energy given by (35), which remains as it is. 
Finally, the quotient polynomial (33) becomes the analytic quotient polynomial 

( ) 2
2 2;1 2 2q x x g= −% % , 

which the previous analytic sextic oscillator results from. 
Thus, in the case 1n = , the vanishing of both parameters 1g  and 3g  results in the 
vanishing of the non-analytic linear term ( )1 1q x%  of the quotient polynomial, i.e. if 

1 3 0g g= = , then ( )1 1 0q = . 
In the case 1n = , with 1 0g ≠ , the exponential polynomial has always a non-analytic 
linear term 1g x% , and the respective sextic oscillator (45) is always non-analytic, 

since its non-analytic terms 5
32g x− %  and ( ) 3

2 3 12 g g g x− %  cannot both become zero if 

1 0g ≠ . 
Thus, in the case 1n = , with 1 0g ≠ , we cannot take an analytic sextic oscillator. 
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Non-analytic sextic oscillators resulting from analytic quotient 
polynomials 

The quotient polynomial (42), which is the quotient polynomial of the case 1n = , 

with 1 0g ≠ ,  becomes analytic if its non-analytic linear term 3
1

12 g x
g

 
− 

 
%  vanishes, 

i.e. if 3
1

1g
g

= , and then we have a case of a non-analytic sextic oscillator resulting 

from an analytic quotient polynomial. 

For 3
1

1g
g

= , the quartic equation (40) becomes 4 2
1 2 1 0g g g+ = , and since 1 0g ≠ , we 

obtain 2
2 1g g= − , and we’ve expressed both 2g  and 3g  in terms of 1g . 

Using the previous expressions of 2g  and 3g , the sextic oscillator (45), the energy 
(44), and the eigenfunction (41) are respectively written as 

( ) ( )5 36 2 4 4 2 3
1 1 1 12

1 1 1

2 1 1;2,1 2 4 3 2V x x x g x g x g x g x
g g g

   
= − + + − + − + − +   

   
% % % % % % % %  (46) 

2
12E g=%  (47) 

( )
2

34 21
1 1

1 1

1 1 1;2,1 exp
4 3 2

gx A x x x x g x
g g

ψ
   

= − − + − +   
   

% % % % % %  (48) 

For 1 0g < , the wave function (48) describes the ground state of the non-analytic 
sextic oscillator (46), with energy given by (47), while for 1 0g > , the wave function 
(48) describes the second-excited state of the non-analytic sextic oscillator (46), with 
energy given by (47), which is always positive, whether it is the ground-state energy 
or the second-excited-state energy. 
The analytic quotient polynomial which the non-analytic sextic oscillator (46) results 

from is given by (42) for 3
1

1g
g

= , i.e. 

( ) 2 2
2 1; 2 2q x n x g= +% %  

We thus see that a non-analytic sextic oscillator can result from an analytic 
quotient polynomial. 

We also observe that, in both the oscillator (46) and the exponential polynomial of 
(48), the coefficients of the analytic terms are of even parity in 1g , while the 
coefficients of the non-analytic terms are of odd parity in 1g . Additionally, the energy 
(47) is of even parity in 1g . 

n=2 (for analytic quotient polynomials only) 
In the case 2n = , we’ll calculate the sextic oscillators resulting from analytic quotient 
polynomials. 
In the region 0x >% , ( ) 2

2 1 0p x x p x p= + +% % % . 
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Since we consider analytic quotient polynomials, ( )1 2 0q = , and then the recursion 
relation (12) becomes, for 2n = , 

( ) ( ) ( ) ( )( ) ( ) ( )2 1 1 0 2 3 1 22 1 2 1 2 2 2 1 2 4  (49)k k k k kk k p k g p q kg p k g p k p+ + − −+ + = − + − + − − + −
with 0,1, 2,3k =  

For 0k = , dropping 1p−  and 2p− , and using that 2 1p = , we obtain from (49) 

( )1 1 0 02 2 2g p q p= − −  

For 1k = , dropping 1p−  and 3p , and using that 2 1p = , we obtain from (49) 

( )( )1 0 2 10 4 2 2g q g p= − − +  

For 2k = , dropping 3p  and 4p , and using that 2 1p = , we obtain from (49) 

( )( )0 2 3 1 00 2 4 2 4q g g p p= − + − −  

For 3k = , dropping 3 4,p p , and 5p , and using that 2 1p = , we obtain from (49) 

3 10 4 2g p= − −  

Solving the last equation for 1p , we obtain 

1 32p g= −  (50) 

Substituting (50) into the other three equations, we obtain 

( )1 3 0 02 4 2g g q p= −  (51) 

( )( )1 3 0 20 4 2 2 2g g q g= − + +  (52) 

( )( ) 2
0 2 3 00 2 4 4 4q g g p= − + + −  (53) 

The equation (52) is written as 

( )( )3 0 2 12 2 2g q g g+ =  (54) 

i. If 3 0g = , then from (54), 1 0g = , and the exponential polynomial (2) becomes 
analytic. Then, since the quotient polynomial is also analytic, the sextic oscillator 

( ) ( ) ( ) ( )2
4 4 2;2,2 ;2V x g x g x q x E′ ′′= + − +% %% % % %  

is analytic too, as sum of analytic polynomials. 
Thus, we have the case of an analytic sextic oscillator resulting from an analytic 
quotient polynomial. 
For 1 3 0g g= = , (51) and (53) are respectively written as 

( )0 02 2q p= −  (55) 

( )( )0 2 00 2 4 4q g p= − + −  (56) 

From (55), we derive that both ( )0 2q  and 0p  are non-zero, and solving for 0p , we 
obtain 
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( )0
0

2
2

p
q

= −  (57) 

Substituting (57) into (56) we obtain 

( )( ) ( ) ( ) ( )0 2 0 2
0 0

2 80 2 4 4 0 2 4
2 2

q g q g
q q

 
= − + − − ⇒ = − − + ⇒  

 
( ) ( )2

0 2 02 4 2 8 0q g q⇒ − − + =  

Thus 

( ) ( )2
0 2 02 4 2 8 0q g q+ − =  (58) 

This is the quadratic equation that ( )0 2q  satisfies in the case 2n =  of the analytic 

sextic oscillator [4], for 2
4 1g = . 

Since 1 0g = , from the second continuity condition we obtain that the derivative of 

( )2p x%  is analytic at zero (and thus everywhere), i.e. ( ) ( )2 20 0p p− +′ ′= . 

Then, using (57) and that for 3 0g = , 1 0p = , as derived from (50), the polynomial 

( )2p x% , in the region 0x >% , is 

( ) ( )
2

2
0

2
2

p x x
q

= −% %  

Since ( )2p x%  has definite parity and it is analytic at zero, it can only be even, and then 

( ) ( )
2

2
0

2
2

p x x
q

= −% %  (59) 

for every x% , with ( )0 2q  satisfying (58). 
The even-parity polynomial (59) is the polynomial we obtain in the case 2n =  of the 
analytic sextic oscillator [4], for 2

4 1g = . 
Therefore, to summarize, if 3 0g = , then 1 0g =  and we end up to the analytic sextic 
oscillator [4], for 2

4 1g = . 
ii. If 3 0g ≠ , solving (54) for ( )0 2q , we obtain 

( ) 1
0 2

3

22 2gq g
g

= −  (60) 

Substituting (60) into (51) and (53), we obtain, respectively, 

1
1 3 2 0

3

22 4 2gg g g p
g

 
= − − 

 
 (61) 

21
2 3 0

3

20 2 4 4g g g p
g

 
= − + + − 

 
 (62) 

The equation (50) also holds for 3 0g ≠ . 
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The polynomial ( )2p x%  has definite parity, and thus we have the subcases 
iia. Natural (even) parity 

If ( )2p x%  is of even parity, then ( ) 2
2 1 0p x x p x p= + +% % % . 

The previous polynomial is continuous at zero, and thus the first continuity condition 
is satisfied. 
Also, ( )2 10p p−′ = −  and ( )2 10p p+′ = , and thus the second continuity condition is 
written as 

1 1 1 0 1 0 12p p g p g p p− = + ⇒ = −  

Substituting (50) into the last equation, we obtain 

1 0 32g p g=  

Since 3 0g ≠ , both 1g  and 0p  are also non-zero, and thus 

3
0

1

2gp
g

=  (63) 

Substituting (63) into (61), we obtain 

3 31 1
1 3 2 1 3 2

3 1 1 3

2 222 4 2 1 2g gg gg g g g g g
g g g g

   
= − − ⇒ = − − ⇒   

   
2 3 2 3

1 3 1 3
1 1

2 21 2 2 2 3 0g g g gg g g g
g g

⇒ = − + ⇒ + − = ⇒

2 2
2 3 1 3 1 2 3 1 3 12 2 3 0 2 2 3g g g g g g g g g g⇒ + − = ⇒ = − +  

Since 3 0g ≠ , solving the last equation for 2g  gives 

2
1 3 1

2
3

2 3
2

g g gg
g

− +
=  (64) 

Besides, substituting (63) into (62), we obtain 

2 23 31 1
2 3 2 3

3 1 3 1

20 2 4 8 2 4 0g gg gg g g g
g g g g

   
= − + + − ⇒ − + + − = ⇒   

   
2 23 31 1

2 3 2 3
3 1 3 1

2 4 0 4 2 0g gg gg g g g
g g g g

⇒ + − + = ⇒ + + − =  

Substituting (64) into the last equation, we obtain 

( )
2

2 2 2 2 33 1 3 11
3 1 3 1 1 3 1 1 3

3 1 3

2 3
4 2 0 2 8 2 3 4 0

2
g g g gg g g g g g g g g g

g g g
− +

+ + − = ⇒ + + − + − = ⇒

2 2 3 2 3 2 2 3 3
1 3 1 3 1 1 3 1 3 1 3 1 32 8 2 3 4 0 5 8 2 4 0g g g g g g g g g g g g g⇒ + − + − = ⇒ + − − =  

Thus, we end up to the following equation 
3 2 3 2

1 3 3 1 3 14 8 2 5 0g g g g g g− + − =  (65) 

Since 1 0g ≠ , the equation (65) is cubic in 3g , and thus it has at least one real root. 
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Also, since 2
15g−  is non-zero, all roots of (65) are non-zero, as they should, since 3g  

must be non-zero. 
Solving (65) for 3g , we express it in terms of 1g , and then substituting into (64), we 
express 2g  in terms of 1g  too. 
To summarize the subcase iia, the analytic quotient polynomial 

( ) ( ) ( )2
2 2 0; 2 2 2q x q x q= +% % , 

with ( )0 2q  given by (60) and ( )2 2q  given by (10) for 2n = , i.e. ( )2 2 4q = , 

corresponds to the even-parity polynomial ( ) 2
2 1 0p x x p x p= + +% % % , with 0p  given by 

(63) and 1p  given by (50), and the parameters 1 2 3, ,g g g  satisfying the equations (64) 
and (65), which have at least one real solution, with 1 3 0g g ≠ , giving 2g  and 3g  in 
terms of 1g . 
Since ( )2p x%  is of even parity, the respective ansatz eigenfunction (1) is also of even 
parity. 
Also, since 1 3 0g g ≠ , the exponential polynomial (2) is non-analytic, and thus the 
resulting sextic oscillator is also non-analytic, as seen from (3). 
Therefore, the previous analytic quotient polynomial corresponds to a non-analytic 
sextic oscillator with its closed-form eigenfunction being of natural, i.e. of even, 
parity. 

iib. Unnatural (odd) parity 
If the polynomial ( )2p x%  is of odd parity, then 

0 0p =  

and 

( )
2

1
2 2

1

,  0
,  0

x p x x
p x

x p x x
− + <

= 
+ >

% % %
%

% % %
 

with 1p  given by (50). 
Substituting 0 0p =  into (61) and (62), we obtain, respectively, 

1 32 4g g=  

21
2 3

3

20 2 4g g g
g

 
= − + + 

 
 

From the first equation, we derive that 1g  and 3g  are both non-zero, and then, solving 
for 3g , we obtain 

3
1

1
2

g
g

=  (66) 

Substituting (66) into the second of the previous two equations and solving for 2g , we 
obtain 
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( )2 2 2
1 2 1 2 2 12 2 2

1 1 1

1 1 10 4 2 4 2 0 2 4g g g g g g
g g g

= − + + ⇒ − − + = ⇒ = − +  

Thus 

2
2 1 2

1

12
2

g g
g

= − +  (67) 

The equations (66) and (67) give us 2g  and 3g  in terms of 1g . 

We see that ( ) ( )2 20 0 0p p− += = , and thus the first continuity condition is satisfied. 

Using the expression of ( )2p x% , we have 

( ) 1
2

1

2 ,  0
2 ,  0

x p x
p x

x p x
− + <′ =  + >

% %
%

% %
, 

and thus 

( ) ( )2 1 20 0p p p− +′ ′= =  

Then, the second continuity condition is written as 

1 1 12 0 0 0p p g= + ⇒ = , 

i.e. it is also satisfied. 
Using the expression of 3g , given by (66), (50) becomes 

1
1

1p
g

= −  

and then the odd-parity polynomial ( )2p x%  is 

( )

2

1
2

2

1

1 ,  0

1 ,  0

x x x
g

p x
x x x

g

− − <= 
 − >


% % %

%

% % %

, 

or, since ( )2p x%  is continuous at zero, 

( )

2

1
2

2

1

1 ,  0

1 ,  0

x x x
g

p x
x x x

g

− − ≤= 
 − ≥


% % %

%

% % %

 

Using the sign function, we write ( )2p x%  as 

( ) ( ) ( )2
2

1 1

1 1sgn sgnp x x x x x x x
g g

 
= − = − 

 
% % % % % % % , 

and since ( )sgn x x x=% % % , we end up to 
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( )2
1

1p x x x
g

 
= − 

 
% % %  (68) 

Besides, by means of (66) and (67), the exponential polynomial (2) is written as 

( ) 34 2 2
4 1 12

1 1

1 1 1
4 6 4

g x x x g x g x
g g

 
= − + + − + + 

 
% % % % %  (69) 

As in the respective 1n =  case, the coefficients of the two analytic terms of the 
exponential polynomial are of even parity in 1g , while the coefficients of the two non-
analytic terms are of odd parity in 1g . 
Using (68) and (69), the ansatz eigenfunction (1) is written as 

( ) 34 2 2
2 1 12

1 1 1

1 1 1 1;2, 2 exp
4 6 4

x A x x x x g x g x
g g g

ψ
    

= − − + + − + +         
% % % % % % %  (70) 

If 1 0g < , 
1

1 0x
g

− >% , and the wave function (70) has only one (real) zero, at zero, 

and thus it describes the first-excited state of the symmetrized sextic oscillator we 
calculate below. 

If 1 0g > , the equation 
1

1 0x
g

− =%  has two real roots, at 
1

1
g

± , and then the wave 

function (70) has three (real) zeros, and thus it describes the third-excited state of the 
symmetrized sextic oscillator we calculate below. 
Using (66) and (67), the constant term ( )0 2q  of the quotient polynomial, given by 
(60), is written as 

( ) 2 2 2 21
0 1 1 1 12 2 2

1 1 1

1

2 1 1 12 2 2 4 4 81 2
2

gq g g g g
g g g

g

 
= − − + = + − = − 

 
 

That is 

( ) 2
0 1 2

1

12 8q g
g

= −  (71) 

The leading coefficient ( )2 2q  of the quotient polynomial is the same for all 2n =  

cases and it is given by (10) for 2n = , i.e. ( )2 2 4q = . 

Thus, since ( )1 2 0q = , as we consider analytic quotient polynomials, the quotient 
polynomial in this case is 

( ) 2 2
2 1 2

1

1;2 4 8q x x g
g

= + −% %  (72) 

Using (69), the first and second derivatives of the exponential polynomial in the 
region 0x >%  is 

( ) 3 2 2
4 1 12

1 1

1 12
2 4

g x x x g x g
g g

 ′ = − + + − + + 
 

% % % %  
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( ) 2 2
4 1 2

1 1

1 13 2
4

g x x x g
g g

 ′′ = − + + − + 
 

% % %  

Plugging into (3) – for ( ) ( ), 2, 2m n =  – the first and second derivatives of the 
exponential polynomial and the quotient polynomial (72), we obtain that, in the region 

0x >% , 

( )
2

3 2 2 2 2
1 1 12 2

1 1 1 1

1 1 1 1;2, 2 2 3 2
2 4 4

V x x x g x g x x g
g g g g+

    
= − + + − + + − + + − + −         

% % % % % % %

2
2 2 6 4 2 2 2 5 2 4

1 1 1 12 2 2 2
1 1 1 1 1

1 1 1 1 14 8 4 4
4 4 4

x g E x x g x g x g x
g g g g g

     
− + − + = + + − + + − − − + −     

     
%% % % % % %

3 3 2 3 2 2 2 2
1 1 1 1 13 2

1 1 1 1

1 1 1 12 2 4 3 2 4 8
4 4 4

g x g x x g x x x g x g
g g g g

     
− + − + + + − + − + + − + − − +     

     
% % % % % % %

6 5 2 4 3
1 1 12 2 2 3

1 1 1 1 1

1 1 1 1 14 2
4 4 4

E x x g x g g x
g g g g g

    
+ + = − + − − + + − + − +         

% % % % %

2
2 2 3 2 2 2

1 1 1 1 12 2 2
1 1 1 1 1

1 1 1 1 14 6 4 2 8
4 4 4

g x g x g g g E
g g g g g

        
 + − + − + − + + + + − + − + + =               

%% %

6 5 2 4 3 4 2
1 1 12 2 3 4

1 1 1 1 1

1 1 1 1 1 14 2 2 2 2 3
4 4 16 2

x x g x g x g x
g g g g g

      
= − + + − + − + + + − − +             

% % % % %

3 2 2 2
1 1 1 12 2

1 1 1 1

1 1 1 14 2 8
2

g x g g g E
g g g g

 
+ − + + + − + − + + = 

 
%%

6 5 2 4 3 4 2 3
1 1 1 12 3 4

1 1 1 1 1

1 3 1 1 24 2 2 2 2 4 4
4 4 8

x x g x g x g x g x
g g g g g

       
= − + − + − + + + − + − + −       

       
% % % % % %

2
1 2

1

39
2

g E
g

− + + %  

That is, in the region 0x >% , 

( ) 6 5 2 4 3 4 2
1 1 12 3 4

1 1 1 1

1 3 1 1;2, 2 4 2 2 2 2 4
4 4 8

V x x x g x g x g x
g g g g+

     
= − + − + − + + + − +     

     
% % % % % % %

3 2
1 1 2

1 1

2 34 9
2

g x g E
g g

 
+ − + − + + 

 
%%  

Since the potential is symmetric, 

( ) 5 36 2 4 4 2
1 1 12 3 4

1 1 1 1

1 3 1 1;2,2 4 2 2 2 2 4
4 4 8

V x x x g x g x g x
g g g g

     
= − + − + − + + + − +     

     
% % % % % % %

3 2
1 1 2

1 1

2 34 9
2

g x g E
g g

 
+ − + − + + 

 
%%  (73) 

The potential is continuous at zero, and thus (73) is defined for every x% . 
Applying the condition ( )0;2, 2 0V =% , we obtain the energy, which is 
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2
1 2

1

13 3
2

E g
g

 
= − 

 
%  (74) 

and we end up to the symmetrized sextic oscillator 

( ) 5 36 2 4 4 2
1 1 12 3 4

1 1 1 1

1 3 1 1;2,2 4 2 2 2 2 4
4 4 8

V x x x g x g x g x
g g g g

     
= − + − + − + + + − +     

     
% % % % % % %

3
1

1

24g x
g

 
+ − + 

 
%  (75) 

The coefficient 
1

1
g

−  of the non-analytic term 5x%  is non-zero, and thus the sextic 

oscillator (75) is non-analytic. 
The non-analytic sextic oscillator (75) has an eigenstate described by the closed-form 
wave function (70), with energy given by (74). 
If 1 0g < , the eigenstate is the first-excited state, while if 1 0g > , the eigenstate is the 
third-excited state. 
The energy (74) is of even parity in 1g , and thus it is the same in both cases, i.e. the 
energy of the first-excited state of the oscillator (75) with 1 0g <  is the same as the 
energy of the third-excited state of the oscillator (75) with 1 0g > . 
The wave function (70) is of odd parity and since it corresponds to even n  ( 2n = ), it 
is of unnatural (or opposite) parity. 
As in the respective 1n =  case, the coefficients of the analytic terms of the oscillator 
(75) are of even parity in 1g , while the coefficients of the non-analytic terms are of 
odd parity in 1g . 

Summary of the case n=2 with analytic quotient polynomial and 
comparison with the cases n=1 and n=0 

Summarizing the case 2n =  with analytic quotient polynomial, we have 
i. If 3 0g = , then 1g  is also zero, and we obtain the known analytic sextic oscillator 
[4], with 2

4 1g = . 
ii. If 3 0g ≠ , we have the subcase where the polynomial ( )2p x% , and thus the 
eigenfunction too, are of natural, i.e. of even, parity, and the subcase where the 
polynomial ( )2p x%  and the eigenfunction are of unnatural, i.e. of odd, parity. In both 
subcases, 1g  is non-zero and, also, the resulting sextic oscillators are non-analytic. 
In the natural-parity subcase, the parameter 3g  satisfies the cubic equation (65), 
which, as an odd-degree equation, has at least one real root, while in the unnatural-

parity subcase, the parameter 3g  is given by the relation 3
1

1
2

g
g

= . 

Paying our attention to non-analytic sextic oscillators resulting from analytic quotient 
polynomials in the case 2n = , we see that the closed-form eigenfunction can be of 
either natural, i.e. even, or unnatural, i.e. odd, parity, depending on whether the 

parameter 3g  satisfies the cubic equation (65) or the relation 3
1

1
2

g
g

= . 
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In the case 1n = , when a non-analytic sextic oscillator results from an analytic 
quotient polynomial, the closed-form eigenfunction is always of unnatural, i.e. of 

even, parity, and a similar relation holds, i.e. 3
1

1g
g

= . 

In the case 0n = , the quotient polynomial is zero, and thus it is (trivially) analytic, the 
resulting sextic oscillator is non-analytic when (and only when) 3 0g ≠ , as seen from 
(23), but the closed-form eigenfunction is always of natural, i.e. of even, parity. 

Unnatural-parity states in non-analytic sextic oscillators resulting from 
analytic quotient polynomials, for n=3 and n=4 

The previous relations are generalized to the cases 3n =  and 4n = , in the sense that 

for 3
1

1
3

g
g

=  ( 3n = ) and 3
1

1
4

g
g

=  ( 4n = ), we can find non-analytic sextic 

oscillators resulting from analytic quotient polynomials, with the closed-form 
eigenfunction being of unnatural parity, i.e. of even ( 3n = ) or odd ( 4n = ) parity. 

n=3 
We’ll search for unnatural (even) parity eigenfunctions of non-analytic sextic 

oscillators resulting from analytic quotient polynomials, when 3
1

1
3

g
g

= , with 1 0g ≠ . 

Since the polynomial ( )np x%  and the ansatz eigenfunction (1) have the same parity, 

the polynomial ( )3p x%  is of even parity, and thus it has the form 

( ) 3 2
3 2 1 0p x x p x p x p= + + +% % % %  (76) 

The polynomial (76) is continuous at zero, and thus the first continuity condition (7) 
is satisfied. 
Also, ( )3 10p p−′ = − , ( )3 10p p+′ = , and thus the second continuity condition (8) is 
written as 

1 1 1 02p p g p− = +  

and thus 

1 1 0p g p= −  (77) 

Using that ( )1 3 0q = , as we consider analytic quotient polynomials, and that 

3
1

1
3

g
g

= , the recursion relation (12) becomes, for 3n = , 

( ) ( ) ( ) ( )( ) ( ) ( )2 1 1 0 2 1 2
1

2 1
2 1 2 1 3 2 2 5  (78)

3k k k k k

k
k k p k g p q kg p p k p

g+ + − −

−
+ + = − + − + − + −

with 0,1, 2,3, 4k =  

For 0k = , dropping 1p−  and 2p− , and using (77), (78) gives 

( ) ( ) ( )( )2
2 1 1 0 0 0 1 0 02 2 3 2 3p g g p q p g q p= − − − = −  
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That is 

( )( )2
2 1 0 02 2 3p g q p= −  

For 1k = , dropping 1p− , using that 3 1p =  and (77), (78) gives 

( )( )( )1 2 0 2 1 06 4 3 2g p q g g p= − − + −  

and thus 

( )( )1 2 1 0 2 04 3 2 6g p g q g p− + + =  

For 2k = , dropping 4p , using that 3 1p =  and (77), (78) gives 

( )( ) ( ) ( )( )1 0 2 2 1 0 0 1 0 2 2 0 0
1

2 20 6 3 4 6 6 3 4 6
3 3

g q g p g p p g q g p p p
g

= − − + − − − = − − + + − =

( )( )1 0 2 2 0
166 3 4
3

g q g p p= − − + −  

That is 

( )( )1 0 2 2 0
166 3 4 0
3

g q g p p+ + + =  

For 3k = , dropping 4p  and 5p , using that 3 1p =  and (77), (78) gives 

( )( ) ( )0 2 2 1 0
1

40 3 6 4
3

q g p g p
g

= − + − − −  

and thus 

( )( )0 2 2 1 0
1

43 6 4 0
3

q g p g p
g

− + − + =  

For 4k = , dropping 4 5,p p , and 6p , and using that 3 1p = , (78) gives 

2
1

60 2
3

p
g

= − −  

and thus 

2
1

1p
g

= −  (79) 

We see that 2p  is of odd parity in 1g . 
Substituting (79) into the equations for 0,1, 2,3k = , we obtain 

( )( )2
1 0 0

1

2 2 3g q p
g

− = −  (80) 

( )( )1 0 2 03 2 2g q g p+ =  (81) 

( )0 2
1 0

1

3 4 166 0
3

q g
g p

g
+

− + =  (82) 
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( )( )0 2 1 02
1

43 6 4 0
3

q g g p
g

− + + + =  (83) 

We ended up to a non-linear, non-homogeneous system of 4 equations with 4 
unknowns, which are 1 2 0, ,g g p , and ( )0 3q . 
From (80) and (81), we see that 0 0p ≠ , otherwise both equations are impossible. 
Thus, from (80) we obtain 

( ) 2
0 1

1 0

23 2q g
g p

− =  (84) 

Also, from (81) we obtain, 1g  is also non-zero, 

( )0 2
1 0

23 2q g
g p

+ =  (85) 

Comparing (84) and (85), we obtain 

( ) ( )2
0 1 0 23 2 3 2q g q g− = +  

and thus 
2

2 1g g= −  (86) 

We see that 2g  is of even parity in 1g , while 3g  is of odd parity in 1g . 
Substituting (86) into (82) and (83), we obtain 

( ) 2
0 1

1 0
1

3 4 166 0
3

q g
g p

g
−

− + =  (87) 

( )( )2
0 1 1 02

1

43 6 4 0
3

q g g p
g

− − + + =  (88) 

Solving (87) for 0p  yields 

( ) ( )( )22
0 10 1 1

0 1 0
1 1

3 3 43 4 1816 6
3 16 16

q gq g gp g p
g g

−−
= − ⇒ = −  

Thus 

( )( )2
0 1 1

0
1

3 3 4 9
16 8

q g gp
g
−

= −  (89) 

Substituting (89) into (88) yields 

( )( ) ( )( )2
0 12 1

0 1 12
1 1

3 3 4 943 6 4 0
3 16 8

q g gq g g
g g

 −
 − − + + − = ⇒
 
 

( )
( )( )2 2

0 12 1
0 1 2

1

3 3 4 943 6 0
3 4 2

q g gq g
g

−
⇒ − + + + − = ⇒
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( ) ( ) 2
02 2 1

0 1 12
1

3 3 943 6 3 0
3 4 2

q gq g g
g

⇒ − + + + − − = ⇒

( ) ( )
2

0 21
0 12 2

1 1

3 3 4 160 3 6 0
4 2 3 3

q g q g
g g

⇒ − − + = ⇒ + − =  

Thus 

( ) 2
0 1 2

1

163 6
3

q g
g

= − +  (90) 

( )0 3q  is of even parity in 1g . 
Substituting (90) into (89) yields 

2 2 2 2
1 12 1 12

1 1 1 1
0

1 1

16 163 6 4 18 12
3 9 9

16 8 16 8

g g g g
g g g gp
g g

 
− + − − + − 

 = − = − =

1 1 1 1
13 3 3

1 1 1

30 9 15 91 1 1 3
16 8 8 8

g g g g g
g g g

= − + − = − − = −  

That is 

0 13
1

1 3p g
g

= −  (91) 

0p  is of odd parity in 1g . 
Substituting (91) into (77) yields 

2
1 1 2

1

13p g
g

= −  (92) 

1p  is of even parity in 1g . 
Through the equations (86),(90),(91),(92), and (79), we’ve expressed 

( )2 0 0 1, 3 , ,g q p p , and 2p  in terms of 1g , and we have yet to use one of (80) or (81), to 
find 1g . 
Thus, substituting (86),(90), and (91) into (81), we obtain 

2 2 2 2 2
1 1 1 1 1 1 12 3 2 2

1 1 1 1

16 1 16 16 2 3 2 6 2 3 2
3 3

g g g g g g g
g g g g

     
− + − − = ⇒ − + − − = ⇒     

     
4 4 4 4

1 1 1 14 4 4
1 1 1

16 16 86 18 16 2 6 2 24 26 0 12 13 0
3 3 3

g g g g
g g g

⇒ − + + − − + = ⇒ − + = ⇒ − + =

 

Thus 
8 4

1 136 39 8 0g g− + =  

Setting 4
1 0g y= ≥ , the previous equation becomes 

236 39 8 0y y− + =  
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The discriminant of the trinomial in the left-hand side of the last equation is 

( )239 36*32 1521 1152 369 0− − = − = >  

Thus 

1,2
39 369 39 19.21 0.81,  0.27

72 72
y ± ±

= ; ;  

Both roots are positive, and thus accepted, and then we have 
4 2 4

1 1,2 1 1,2 1 1,2g y g y g y= ⇒ = ⇒ = ±  

Therefore, we obtain four accepted values of 1g , two positive values, which are 
4

1,2y , and the opposite values 4
1,2y− , with 1,2 0.81,  0.27y ;  

Besides, using (79),(91), and (92), the polynomial ( )3p x%  is written as 

( ) 3 2 2 2 2
3 1 1 1 12 3 2 3

1 1 1 1 1 1

1 1 1 1 1 13 3 3 3p x x x g x g x x g x g
g g g g g g

       
= − + − + − = − + − − − =       

       
% % % % % % %

2 2 2 2 2
1 1 12 2 2

1 1 1 1 1 1 1

1 1 1 1 1 1 13 3 3x x g x g x x g x
g g g g g g g

          
= − + − − − = − + − − =          

          
% % % % % %

2 2
1 2

1 1

1 13x g x
g g

  
= + − −  

  
% %  

That is 

( )
4

2 1
3 2

1 1

3 1 1gp x x x
g g

  −
= + −  

  
% % %  (93) 

Since 4
1 1,2 0.81,  0.27g y= ; , the expression 4

13 1g −  is positive for 1y  and negative 
for 2y . 

Besides, using that 3
1

1
3

g
g

=  and (86), the exponential polynomial (2) is written as 

( )
2

34 21
4 1

1

1 1
4 9 2

gg x x x x g x
g

= − + − +% % % % %  (94) 

As in the respective 1n =  and 2n =  cases, the coefficients of the analytic terms of the 
exponential polynomial are of even parity in 1g , while the coefficients of its non-
analytic terms are of odd parity in 1g . 
By means of (93) and (94), the ansatz eigenfunction (1) is written as 

( )
4 2

32 4 21 1
3 12

1 1 1

3 1 1 1 1;2,3 exp
4 9 2

g gx A x x x x x g x
g g g

ψ
    −

= + − − + − +    
     

% % % % % % %  (95) 

The (real) zeros of the wave function (95) are the (real) zeros of the polynomial 
( )3p x% . 

Then, we have 
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i. 4
1 1g y=  

Since 4
1 1g y= , 4

13 1 0g − > , and thus 
4

2 1
2

1

3 1 0gx
g

−
+ >% . 

Also, since 1 0g > , the equation 
1

1 0x
g

− =%  has two roots, at 
1

1x
g

= ±% . 

In this case, the polynomial ( )3p x%  has two zeros, at 
1

1
g

± , and then the wave function 

(95) is the second-excited-state wave function of the oscillator we calculate below. 
ii. 4

1 1g y= −  

Since 4
1 1g y= , 4

13 1 0g − > , and thus 
4

2 1
2

1

3 1 0gx
g

−
+ >% . 

Also, since 1 0g < , 
1

1 0x
g

− >% . 

In this case, the polynomial ( )3p x%  has no zeros, and then the wave function (95) is 
the ground-state wave function of the oscillator we calculate below. 
iii. 4

1 2g y=  

Since 4
1 2g y= , 4

13 1 0g − < , and thus the equation 
4

2 1
2

1

3 1 0gx
g

−
+ =%  has two roots, at 

{

1

4 4
1 1

01 1

1 3 1 3
g

g g
g g>

− −
± = ± . 

Also, since 1 0g > , the equation 
1

1 0x
g

− =%  has also two roots, at 
1

1x
g

= ±% , which are 

different from 
4

1

1

1 3g
g

−
± . 

In this case, the polynomial ( )3p x%  has four zeros, and then the wave function (95) is 
the fourth-excited-state wave function of the oscillator we calculate below. 
iv. 4

1 2g y= −  

Since 4
1 2g y= , 4

13 1 0g − < , and thus the equation 
4

2 1
2

1

3 1 0gx
g

−
+ =%  has two roots, at 

{

1

4 4 4
1 1 1

01 1 1

1 3 1 3 1 3
g

g g g
g g g<

− − −
± = ± =

−
∓ . 

Also, since 1 0g < , 
1

1 0x
g

− >% . 

In this case, the polynomial ( )3p x%  has two zeros, and then the wave function (95) is 
the second-excited-state wave function of the oscillator we calculate below. 
Let us now calculate the symmetrized sextic oscillator. 
For 3n = , ( )2 3 6q = , as derived from (10), and then, using also (90) and that 

( )1 3 0q = , the quotient polynomial in this case is 
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( ) 2 2
2 1 2

1

16;3 6 6
3

q x x g
g

= − +% %  (96) 

Besides, using (94), we have, in the region 0x >% , 

( ) 3 2 2
4 1 1

1

1
3

g x x x g x g
g

′ = − + − +% % % %  

( ) 2 2
4 1

1

23
3

g x x x g
g

′′ = − + −% % %  

Plugging into (3) – for ( ) ( ), 2,3m n =  – the previous derivatives and the quotient 
polynomial (96), we obtain that, in the region 0x >% , 

( )
2

3 2 2 2 2 2 2
1 1 1 1 2

1 1 1

1 2 16;2,3 3 6 6
3 3 3

V x x x g x g x x g x g E
g g g+

   
= − + − + − + − − − + + =   

   
% %% % % % % % %

6 4 4 2 2 5 2 4 3 3 2 31
1 1 1 1 12

1 1

21 2 22 2 2
9 3 3 3

gx x g x g x g x g x x x g x
g g

= + + + − + − − + − −% % % % % % % % %

2 2 2 2
1 1 2

1 1

2 163 6 6
3 3

x x g x g E
g g

− + − − + − + =%% % %

6 5 2 4 3 4 2 3 21
1 1 1 12 2

1 1 1 1

82 1 2 1 162 9 2 6
3 9 3 3 3 3

gx x g x x g x g x g E
g g g g

    = − + + − + + − + − + − +    
    

%% % % % % %

 

That is, in the region 0x >% , 

( ) 6 5 2 4 3 4 2 3 21
1 1 1 12 2

1 1 1 1

82 1 25 1 16;2,3 2 2 6
3 9 3 3 3 3

gV x x x g x x g x g x g E
g g g g+

    = − + + − + − + − + − +    
    

% %% % % % % % %

 

Since the potential is symmetric, 

( ) 5 36 2 4 4 2 31
1 1 12

1 1 1

82 1 25 1;2,3 2 2
3 9 3 3 3

gV x x x g x x g x g x
g g g

    = − + + − + − + − +    
    

% % % % % % % %

2
1 2

1

166
3

g E
g

+ − + %  (97) 

The potential is continuous at zero, and thus (97) is defined for every x% . 
Applying the condition ( )0;2,3 0V =% , we obtain the energy, which is 

2
12

1

82 3
3

E g
g

 
= − 

 
%  (98) 

and we end up to the non-analytic (symmetrized) sextic oscillator 

( ) 5 36 2 4 4 2 31
1 1 12

1 1 1

82 1 25 1;2,3 2 2  (99)
3 9 3 3 3

gV x x x g x x g x g x
g g g

    = − + + − + − + −    
    

% % % % % % % %

with 4
1 1,2g y= ± , 1,2 0.81,  0.27y ;  
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As in the respective 1n =  and 2n =  cases, the coefficients of the analytic terms of the 
oscillator are of even parity in 1g , while the coefficients of its non-analytic terms are 
of odd parity in 1g . 

n=4 
We’ll search for unnatural (odd) parity eigenfunctions of non-analytic sextic 

oscillators resulting from analytic quotient polynomials, when 3
1

1
4

g
g

= , with 1 0g ≠ . 

Since the eigenfunction is of odd parity, the polynomial ( )4p x%  is also of odd parity, 
and then it has the form 

( )
4 3 2

3 2 1
4 4 3 2

3 2 1

,  0
,  0

x p x p x p x x
p x

x p x p x p x x
 + + + >

= 
− + − + <

% % % % %
%

% % % % %
, 

which satisfies the first continuity condition, as ( ) ( )4 40 0 0p p− += = . 

Since the polynomial ( )4p x%  is continuous at zero, we could include zero in its 
domain. 
The first derivative of ( )4p x%  is 

( )
3 2

3 2 1
4 3 2

3 2 1

4 3 2 ,  0
4 3 2 ,  0
x p x p x p x

p x
x p x p x p x

 + + + >′ = 
− + − + <

% % % %
%

% % % %
, 

and thus 

( ) ( )4 1 40 0p p p− +′ ′= = , 

i.e. the first derivative of ( )4p x%  is also continuous at zero, and thus we could also 

include zero in the domain of ( )4p x′ % . 
The second continuity condition is then written as 

1 1 12 0 0 0p p g= + ⇒ = , 

i.e. it holds. 
Using that ( )1 4 0q = , as we consider analytic quotient polynomials, and that 

3
1

1
4

g
g

= , the recursion relation (12) becomes, for 4n = , 

( ) ( ) ( ) ( )( ) ( ) ( )2 1 1 0 2 1 2
1

1
2 1 2 1 4 2 2 6  (100)

2k k k k k

k
k k p k g p q kg p p k p

g+ + − −

−
+ + = − + − + − + −

with 0,1, 2,3, 4,5k =  

We note that the recursion relation holds in the region 0x >% . 
For 0k = , dropping 1p−  and 2p− , and using that 0 0p = , (100) gives 

2 1 12 2p g p= −  

and thus 
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2 1 1p g p= −  (101) 

For 1k = , dropping 1p−  and using that 0 0p = , (100) gives 

( )( )3 1 2 0 2 16 4 4 2p g p q g p= − − +  

For 2k = , using that 4 1p =  and 0 0p = , (100) gives 

( )( )1 3 0 2 2 1
1

112 6 4 4
2

g p q g p p
g

= − − + −  

For 3k = , dropping 5p  and using that 4 1p = , (100) gives 

( )( )1 0 2 3 2 1
1

10 8 4 6 6g q g p p p
g

= − − + − −  

For 4k = , dropping 5p  and 6p , and using that 4 1p = , (100) gives 

( )( )0 2 3 2
1

30 4 8 4
2

q g p p
g

= − + − −  

For 5k = , dropping 5 6,p p , and 7p , and using that 4 1p = , (100) gives 

3
1

20 2 p
g

= − −  

and thus 

3
1

1p
g

= −  (102) 

We see that 3p  is of odd parity in 1g . 
Substituting (101) and (102) into the equations for 1, 2,3,4k = , we obtain 

( ) ( )( ) ( )( )2
1 1 1 0 2 1 1 2 0 1

1

6 4 4 2 4 2 4g g p q g p g g q p
g

− = − − − + = − −  

and thus 

( )( )2
1 2 0 1

1

64 2 4g g q p
g

− − = −  (103) 

And 

( )( )( ) ( )( )1 0 2 1 1 1 1 0 2 1
1 1 1

1 1 112 6 4 4 6 4 4
2 2

g q g g p p g q g p
g g g

   
= − − − + − − = + + − =   

   

( )1 0 2 12
1

16 4 4
2

g q g p
g

 
= + + − 

 
 

and thus 

( )1 0 2 12
1

14 4 6
2

g q g p
g

 
+ − = 

 
 (104) 
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And 

( )( ) ( ) ( )0 2
1 0 2 1 1 1 1 1 1

1 1 1

4 61 10 8 4 6 6 8 6
q g

g q g g p p g p p
g g g

+ 
= − − + − − − − = − + + − 

 
 

and thus 

( )0 2
1 1

1

4 6
8 5 0

q g
g p

g
+

− + − =  (105) 

And 

( )( ) ( ) ( )( )0 2 1 1 0 2 1 12
1 1 1

3 1 30 4 8 4 4 8 4
2 2

q g g p q g g p
g g g

 
= − + − − − − = − + + + 

 
 

and thus 

( )( )0 2 1 12
1

34 8 4 0
2

q g g p
g

− + + + =  (106) 

As in the case 3n = , we end up to a non-linear, non-homogeneous system of 4 
equations with 4 unknowns, which now are 1 2 1, ,g g p , and ( )0 4q . 
From (103) and (104), we see that 1 0p ≠ , otherwise both equations are impossible. 
Thus, from (103) we obtain 

( ) 2
0 1 2

1 1

64 4 2q g g
g p

− + =  (107) 

Also, from (104) we obtain, 1g  is also non-zero, 

( )0 2 2
1 1 1

1 64 4
2

q g
g g p

+ − =  (108) 

Comparing (107) and (108), we obtain 

( ) ( )2 2
0 1 2 0 2 1 22 2

1 1

1 14 4 2 4 4 4 2
2 2

q g g q g g g
g g

− + = + − ⇒ − + =  

Thus 

2
2 1 2

1

12
4

g g
g

= − +  (109) 

As in the case 3n = , 2g  is of even parity in 1g , while 3g  is of odd parity in 1g . 
Substituting (109) into (105), we obtain 

( ) ( )
2

0 1 2
01

1 1 1 1 13
1 1 1

14 6 2
44 68 5 0 8 12 5 0

4

q g
qg

g p g g p
g g g

 
+ − + 

 − + − = ⇒ − + − + − = ⇒

( )0
1 13

1 1

4 320 5 0
2

q
g p

g g
⇒ − + − =  

Solving the last equation for 1p , we obtain 
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( )0
1 1 3

1 1

4 34
5 10

q
p g

g g
= − +  (110) 

Substituting (109) and (110) into (106), we obtain 

( ) ( )02
0 1 1 12 2 3

1 1 1 1

41 3 34 8 2 4 4 0
4 2 5 10

q
q g g g

g g g g
    

− + − + + + − + = ⇒         

( ) ( )02 2
0 1 12 2 2

1 1 1

4 42 3 64 16 16 0
2 5 5

q
q g g

g g g
⇒ − + − + + − + = ⇒

( ) ( ) ( )0 0
02 2 2

1 1 1

4 420 15 12 7 70 0 4 0
5 10 5 10 2

q q
q

g g g
− + +

⇒ − + = ⇒ − + = ⇒ − + =  

Thus 

( )0 2
1

74
2

q
g

=  (111) 

( )0 4q  is of even parity in 1g . 
Substituting (111) into (110), we obtain 

2
1

1 1 1 13 3 3 3
1 1 1 1 1

7
2 3 7 3 14 4 4
5 10 10 10
gp g g g
g g g g g

= − + = − + = − +  

Thus 

1 1 3
1

14p g
g

= − +  (112) 

1p  is of odd parity in 1g . 
Substituting (112) into (101), we obtain 

2
2 1 2

1

14p g
g

= −  (113) 

2p  is of even parity in 1g . 
Through the equations (109),(111),(112),(113), and (102), we’ve expressed 

( )2 0 1 2, 4 , ,g q p p , and 3p  in terms of 1g . 
As in the case 3n = , all parameters have definite parity in 1g , i.e. they are of either 
even or odd parity in 1g . 
Similarly to the case 3n = , to calculate 1g , we substitute the previous expressions 
into one of the equations (103) or (104). 
Thus, substituting (109),(111), and (112) into (103) yields 

2 2
1 1 12 2 3

1 1 1 1

1 7 1 64 2 2 4
4 2

g g g
g g g g

    
− − + − − + = − ⇒         

2 2
1 1 12 2 3

1 1 1 1

1 7 1 64 4 4
2 2

g g g
g g g g

   
⇒ + − − − + = − ⇒  

   
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2 2
1 1 1 12 3 2 3

1 1 1 1 1 1

4 1 6 2 1 38 4 4 4g g g g
g g g g g g

     
⇒ − − + = − ⇒ − − + = − ⇒     

     
3 3 8 4

1 1 1 15 5
1 1 1 1 1 1

4 8 2 3 15 216 16 0 16 15 2 0g g g g
g g g g g g

⇒ − + + − = − ⇒ − + − = ⇒ − + − =  

Thus, 1g  satisfies the equation 
8 4

1 116 15 2 0g g− + =  

Setting 4
1 0g y= ≥ , the previous equation becomes 

216 15 2 0y y− + =  

The discriminant of the trinomial in the left-hand side of the last equation is 

( )215 16*8 225 128 97− − = − =  

Thus 

1,2
15 97 15 9.85 0.78,  0.16

32 32
y ± ±

= ; ;  

Both roots are positive, and thus accepted, and then we have 
4 2 4

1 1,2 1 1,2 1 1,2g y g y g y= ⇒ = ⇒ = ±  

Therefore, we obtain four accepted values of 1g , two positive values, which are 
4

1,2y , and their opposite values, which are 4
1,2y− , with 1,2 0.78,  0.16y ;  

Besides, using the sign function, we write the polynomial ( )4p x%  as 

( ) ( ) ( )4 3 2
4 3 2 1sgn sgnp x x x p x x p x p x= + + +% % % % % % %  

Substituting the expressions of 1 2,p p , and 3p , from (112),(113), and (102), ( )4p x%  is 
written as 

( ) ( ) ( )4 3 2 2
4 1 12 3

1 1 1

1 1 1sgn sgn 4 4p x x x x x g x g x
g g g

   
= − + − + − + =   

   
% % % % % % %

( ) ( )3 2 2
1 12 3

1 1 1

1 1 1sgn sgn 4 4x x x x g x g x
g g g

     
= − + − − − =     

     
% % % % % %

( ) ( )3 2 2 2
1 12 2

1 1 1 1

1 1 1 1sgn sgn 4 4x x x x g x g x
g g g g

     
= − + − − − =     

     
% % % % % %

( ) ( )3 2
1 2

1 1 1

1 1 1sgn 4 sgnx x x g x x x
g g g

     
= − + − − =     

     
% % % % % %

( ) ( )3 2 2 2
1 12 2

1 1 1 1

1 1 1 14 sgn 4 sgnx g x x x x x g x x
g g g g

       
= + − − = + − − =               

% % % % % % % %

( )
4

2 1
2

1 1

4 1 1sgngx x x x
g g

   −
= + −  

   
% % % %  
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Using that ( )sgn x x x=% % % , we end up to 

( )
4

2 1
4 2

1 1

4 1 1gp x x x x
g g

  −
= + −  

  
% % % %  (114) 

Observe the similarity of ( )4p x%  to ( )3p x% , which is given by (93), i.e. 

( )
4

2 1
3 2

1 1

3 1 1gp x x x
g g

  −
= + −  

  
% % %  

Since 4
1 1,2 0.78,  0.16g y= ; , the expression 4

14 1g −  is positive for 1y  and negative 
for 2y . 

Besides, using (109) and that 3
1

1
4

g
g

= , the exponential polynomial (2) is written as 

( )
2

1 2
34 21

4 1
1

12
41 1

4 12 2

g
gg x x x x g x

g

− +
= − + + + =% % % % %

34 2 2
1 12

1 1

1 1 1
4 12 8

x x g x g x
g g

 
= − + + − + + 

 
% % % %  

That is 

( ) 34 2 2
4 1 12

1 1

1 1 1
4 12 8

g x x x g x g x
g g

 
= − + + − + + 

 
% % % % %  (115) 

Again, the coefficients of the analytic terms of the exponential polynomial are of even 
parity in 1g , while the coefficients of its non-analytic terms are of odd parity in 1g . 
Using (114) and (115), the ansatz eigenfunction (1) is written as 

( )
4

32 4 2 21
4 1 12 2

1 1 1 1

4 1 1 1 1 1;2, 4 exp  (116)
4 12 8

gx A x x x x x g x g x
g g g g

ψ
     −

= + − − + + − + +           
% % % % % % % %

 
The (real) zeros of the wave function (116) are the (real) zeros of the polynomial 

( )4p x% . 
Then, we have 
i. 4

1 1g y=  

Since 4
1 1g y= , 4

14 1 0g − > , and thus 
4

2 1
2

1

4 1 0gx
g

−
+ >% . 

Also, since 1 0g > , the equation 
1

1 0x
g

− =%  has two roots, at 
1

1x
g

= ±% . 
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In this case, the polynomial ( )4p x%  has three zeros, at 
1

1
g

±  and at zero, and then the 

wave function (116) is the third-excited-state wave function of the oscillator we 
calculate below. 
ii. 4

1 1g y= −  

Since 4
1 1g y= , 4

14 1 0g − > , and thus 
4

2 1
2

1

4 1 0gx
g

−
+ >% . 

Also, since 1 0g < , 
1

1 0x
g

− >% . 

In this case, the polynomial ( )4p x%  has one zero, at zero, and then the wave function 
(116) is the first-excited-state wave function of the oscillator we calculate below. 
iii. 4

1 2g y=  

Since 4
1 2g y= , 4

14 1 0g − < , and thus the equation 
4

2 1
2

1

4 1 0gx
g

−
+ =%  has two roots, at 

{

1

4 4
1 1

01 1

1 4 1 4
g

g g
g g>

− −
± = ± . 

Also, since 1 0g > , the equation 
1

1 0x
g

− =%  has two roots, at 
1

1x
g

= ±% , which are 

different from 
4

1

1

1 4g
g

−
± . 

In this case, the polynomial ( )4p x%  has five zeros, and then the wave function (116) is 
the fifth-excited-state wave function of the oscillator we calculate below. 
iv. 4

1 2g y= −  

Since 4
1 2g y= , 4

14 1 0g − < , and thus the equation 
4

2 1
2

1

4 1 0gx
g

−
+ =%  has two roots, at 

{

1

4 4 4
1 1 1

01 1 1

1 4 1 4 1 4
g

g g g
g g g<

− − −
± = ± =

−
∓ . 

Also, since 1 0g < , 
1

1 0x
g

− >% . 

In this case, the polynomial ( )4p x%  has three zeros, and then the wave function (116) 
is the third-excited-state wave function of the oscillator we calculate below. 
Let us now calculate the symmetrized sextic oscillator. 
For 4n = , ( )2 4 8q = , as derived from (10), and then, using also (111) and that 

( )1 4 0q = , the quotient polynomial in this case is 

( ) 2
2 2

1

7;4 8
2

q x x
g

= +% %  (117) 

Using (115), we have, in the region 0x >% , 
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( ) 3 2 2
4 1 12

1 1

1 12
4 8

g x x x g x g
g g

 ′ = − + + − + + 
 

% % % %  

( ) 2 2
4 1 2

1 1

1 13 2
2 8

g x x x g
g g

 ′′ = − + + − + 
 

% % %  

Plugging into (3) – for ( ) ( ), 2, 4m n =  – the previous derivatives and the quotient 
polynomial (117), we obtain that, in the region 0x >% , 

( )
2

3 2 2 2 2
1 1 12 2

1 1 1 1

1 1 1 1;2, 4 2 3 2
4 8 2 8

V x x x g x g x x g
g g g g+

    
= − + + − + + − + + − + −         

% % % % % % %

2
2 6 4 2 2 2 5 2 4 3

1 1 1 12 2 2 2
1 1 1 1 1

7 1 1 1 18 4 4 2
2 16 8 2 8

x E x x g x g x g x g x
g g g g g

     
− + + = + + − + + − − − + − +     

     
%% % % % % % %

3 2 3 2 2 2
1 1 13 2 2

1 1 1 1 1

1 1 1 1 1 74 3 2 8
8 2 8 2 8 2

g x x g x x x g x E
g g g g g

     
+ − + + + − + − + + − + − − + =     

     
%% % % % % %

6 5 2 4 3
1 1 12 2 3

1 1 1 1

1 1 1 14 2
2 16 8 8

x x g x g g x
g g g g

    
= − + − − + + − − + +         

% % % %

2
2 2 3 2 2

1 1 1 12 2 2
1 1 1 1 1

1 1 1 1 1 74 3 8 4 2
8 2 8 2 8 2

g x g x g g E
g g g g g

        
 + − + + − − + − + + + + − + − + =               

%% %

6 5 2 4 3 4 2
1 1 12 2 3 4

1 1 1 1 1

1 1 1 1 1 14 3 4 1 11
2 16 2 8 16 2

x x g x g x g x
g g g g g

     
= − + + − + − + + + − + − +     

     
% % % % %

3 2
1 1 2 2

1 1 1 1

1 1 1 74
2 2 4 2

g x g E
g g g g

 
+ − + + − + − + = 

 
%%

6 5 2 4 3 4 2 3
1 1 1 12 3 4

1 1 1 1 1

1 7 1 1 23 14 3 4 4
2 16 8 16 2

x x g x g x g x g x
g g g g g

       
= − + − + − + + + − + − + −       

       
% % % % % %

2
1 2

1

13
4

g E
g

− − + %  

That is, in the region 0x >% , 

( ) 6 5 2 4 3 4 2
1 1 12 3 4

1 1 1 1

1 7 1 1 23;2, 4 4 3 4
2 16 8 16 2

V x x x g x g x g x
g g g g+

     
= − + − + − + + + − +     

     
% % % % % % %

3 2
1 1 2

1 1

1 134
4

g x g E
g g

 
+ − + − − + 

 
%%  

Since the potential is symmetric, 

( ) 5 36 2 4 4 2
1 1 12 3 4

1 1 1 1

1 7 1 1 23;2,4 4 3 4
2 16 8 16 2

V x x x g x g x g x
g g g g

     
= − + − + − + + + − +     

     
% % % % % % %

3 2
1 1 2

1 1

1 134
4

g x g E
g g

 
+ − + − − + 

 
%%  (118) 
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The potential is continuous at zero, and thus (118) is defined for every x% . 
Applying the condition ( )0;2, 4 0V =% , we obtain the energy, which is 

2
1 2

1

13
4

E g
g

= +%  (119) 

and we end up to the non-analytic (symmetrized) sextic oscillator 

( ) 5 36 2 4 4 2
1 1 12 3 4

1 1 1 1

1 7 1 1 23;2,4 4 3 4
2 16 8 16 2

V x x x g x g x g x
g g g g

     
= − + − + − + + + − +     

     
% % % % % % %

3
1

1

14g x
g

 
+ − + 

 
%  (120) 

with 4
1 1,2g y= ± , 1,2 0.78,  0.16y ;  

Again, the coefficients of the analytic terms of the oscillator are of even parity in 1g , 
while the coefficients of its non-analytic terms are of odd parity in 1g . 
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