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Two recent articles use transcendence techniques to prove en and π are
irrational [1, 2]. In these articles the mean value theorem is used for e and
complex integration for π to give equivalents to Lemma 2 below. As Lemma
2 drops the necessity of separate real and complex cases, some slight gain of
simplicity and efficiency is achieved. In addition, the natural number powers
of π can now be proven irrational with the transcendence of this constant
an easy generalization. The missing proofs for lemmas in this article can be
found in the e companion to this article [3].

In what follows, x is complex number, all polynomials are integer poly-
nomials, and p is a prime.

Definition 1. Given a polynomial f(x), lowercase, the sum of all its deriva-
tives is designated with F (x), uppercase.

Definition 2. For non-negative integers n, let εn(x) denote the infinite series

x

n + 1
+

x2

(n + 1)(n + 2)
+ · · · +

xj

(n + 1)(n + 2) . . . (n + j)
+ . . . .

Lemma 1. If f(x) = cxn, then

F (0)ex = F (x) + ε, (1)

where ε has polynomial growth in n.

Lemma 2. If f(x) = c0 + c1x + · · · + cnxn, then

exF (0) = F (x) + ε, (2)

where ε has polynomial growth in the degree of f .
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Lemma 3. If the polynomial f(x) has a root of multiplicity p and drk is a

term of F (r) then p!|d.

Lemma 4. Let polynomial f(x) have root r = 0 of multiplicity p − 1 then,

for large enough p, p - F (0).

Lemma 5. If a and b are Gaussian integers with p > |a| + |b| then |a(p −
1)!| + |bp!| is a non-zero integer divisible by (p − 1)!.

Proof. Suppose, to obtain a contradiction, that |a(p− 1)!| + |bp!| = 0. Then
p||a| or p|(p − 1)!, a contradiction. Clearly, (p − 1)!|p!.

Theorem 1. π2 is irrational.

Proof. Suppose π2 = a/b, with a and b natural numbers, a > b. Let a2(z) =
z2 − (πi)2, then a2 has two roots: r1 = πi and r2 = −πi, one of which is
πi. 1© As one root is πi, we have

0 = (1 + er1)(1 + er2) = 1 + er1 + er2 + er1+r2 = 2 + er1 + er2. 2© (3)

Form a polynomial for roots 0 with multiplicity p − 1 and the non-zero
exponents in (3) with multiplicity p. Multiply it by a power of b that makes
it an integer polynomial:

f2(z) = b2p−1zp−1[(z − πi)(z + πi)]p = (bz)p−1(bz + a)p. 3© (4)

We then have, using (3) with (4),

0 = F (0)(1 + er1)(1 + er2) = 2F (0) + F (r1) + F (r2) + ε.

Using 4, for p > max{2, b}, p - 2F (0) and (p − 1)!|2F (0). Now, per Lemma
3, the coefficients of F (r1) and F (r2) will be of the form (p + j)!cj. We can
observe the sum of the powers of the non-zero roots involved in F (r1)+F (r2)
will be integers as well: odd powers cancel to zero and even powers are under
the rationality assumption of π2. For example,

(bπi)2n + (−bπi)2n = (bi)2n(a/b)n + (bi)2n(a/b)n = 2(i)2nanbn,

a power of i makes it real, in this case. 4©
Finally,

0 =
2F (0) + F (r1) + F (r2) + ε

(p − 1)!

gives a contradiction for large enough p.
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1© In general, an(z) = zn − (πi)n will have n roots, rj, one of which is πi.
2© In general, the exponents will consist of sums of rj roots taken one through
n at a time, with some adding to 0 and being absorbed in the A value.
3© In general, the fundamental theorem of symmetric functions insures that
the sum of roots polynomial will have coefficients that are integer polynomials
of the by assumption polynomial, an(z); that is the sum of the roots, as
they are symmetric, generate a polynomial with coefficients that are integer
polynomials of the coefficients of an(z). Consequently, as the only coefficient
of an(z) is a/b, a power of b will work. Making the power of b the maximum
exponent of z works for this purpose.
4© In general, Newton’s identities show that the sum of the powers of the roots
are symmetric functions and as such can be expressed as integer polynomials
of the coefficients of the polynomial they are roots of. So, the pattern is
coefficients of an(z) form the coefficients of fn(z) and thus the sums of the
powers of the roots of fn(z) are, in turn, integer polynomials of a/b, the only
coefficient in an(z).

The annotations of the square case of the irrationality of π shows the
general πn case. With a slight adjustment of this πn case, π is proven tran-
scendental.

Theorem 2. π is transcendental.

Proof. A number is transcendental if it doesn’t solve an integer polynomial.
Suppose πi solves an nth degree integer polynomial at(z) with roots rj, then
the roots in the proof of the irrationality of πn are replaced with these roots:
all the steps are the same and lead, as in the irrationality case, to a contra-
diction.
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