
A Note on Vertex Transitivity in Isomorphic Graphs  

1N. Murugesan,  2R. Anitha 
 

1Assistant Professor, Department of Mathematics, Government Arts College, 
Coimbatore – 641018, India 
2Assistant Professor, Department of Mathematics, Government Arts College, 
Coimbatore – 641018, India 
e-mail:1 nmurugesangac@gmail.com ,  2r.anithaganesh@gmail.com* 

 

ABSTRACT 

In the graph theory, two graphs are said to be isomorphic if there is a one-one, onto mapping 

defined between their set of vertices so as to preserving the adjacency between vertices. An 

isomorphism defined on a vertex set of a graph to itself is called automorphism of the given 

graph. Two vertices in a graph are said to be similar if there is an automorphism defined on its 

vertex set mapping one vertex to the other. In this paper, it has been discussed that every such 

automorphism defines an equivalence relation on the set of vertices and the number of 

equivalence classes is same as the number of rotations that the automorphism makes on the 

vertex set. The set of all automorphisms of a graph is a permutation group under the composition 

of permutations. This group is called automorphism group of the graph. A graph is said to be 

vertex transitive if its automorphism group acts transitively on its vertex set. The path degree 

sequence of a vertex in a graph is the list of lengths of paths having this particular vertex as 

initial vertex. The ordered set of all such sequences is called path degree sequence of the graph. 

It is conjectured that two graphs are isomorphic iff they have same path degree sequence. In this 

paper, it has been discussed that this conjecture holds good when both the graphs are vertex 

transitive. The notion of functional graph has been introduced in this paper. The functional 

graph of any two isomorphic graphs is a graph in which the vertex set is the union of vertex sets 

of isomorphic graphs and two vertices are connected by an edge iff they are connected in any 

one of the graph when they belong to the same graph or one vertex is the image of the other 

under the given isomorphism when they are in different set of vertices.  It has been proved that 

the functional graphs obtained from two isomorphic complete bipartite graphs are vertex 

transitive.  

Keywords : graph automorphism ; functional graph ; vertex transitive graph ; path degree 

sequence.  

 

1. INTRODUCTION 

A simple graph G is an ordered pair (𝑉(𝐺), 𝐸(𝐺)) consisting of a set 𝑉(𝐺) of vertices and a set  

𝐸(𝐺), disjoint from 𝑉(𝐺) of edges together with an incidence function 𝜓𝐺  that associates with 

each edge of 𝐺 to an unordered pair of distinct vertices of 𝐺. Two graphs 𝐺 and  𝐺′ are said to be 
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isomorphic if there are bijective mappings 𝜃 ∶ 𝑉(𝐺) →  𝑉(𝐺′)  and 𝜑 ∶ 𝐸(𝐺) → 𝐸(𝐺′) such that 

𝜓𝐺(𝑒) =  𝑢𝑣  iff  𝜓𝐺′(𝜑(𝑒)) =  𝜃(𝑢)𝜃(𝑣). In other words, if  𝐺  and 𝐺′ are isomorphic then 

there is a bijective map 𝑓 ∶ 𝑉(𝐺) → 𝑉(𝐺′) such that 𝑓(𝑢)𝑓(𝑣) is an edge whenever 𝑢𝑣  is an 

edge. Suppose, if f is an isomorphism defined from 𝑉(𝐺) to 𝑉(𝐺′) then the functional graph of 𝐺 

and 𝐺′ with respect to 𝑓 is a graph with vertex set 𝑉(𝐺) ∪ 𝑉(𝐺′) and edge set 𝐸(𝐺) ∪ 𝐸(𝐺′) ∪

𝐸(𝑓) where 𝐸(𝑓) = {𝑢𝑣 𝑓(𝑢)⁄ = 𝑣}. We denote it as 𝐺 ∙𝑓 𝐺′. 

It can be easily seen that the order of the functional graph is twice the order of the graph 𝐺 and 

its size is the sum of twice the size of 𝐺 and the order of 𝐺.An isomorphism from 𝑉(𝐺) to itself 

is called an automorphism defined on 𝐺. 

 

2. REVIEW OF LITERATURE 

The study of structural properties of the graphs is an important area of research in graph theory. 

Intuitively the structural properties of two graphs remain same if their adjacency matrices with 

vertices ordered so that the matrices are identical. The notion of isomorphism is another way of 

identifying structurally equivalent graphs. The degree sequences play a vital role in studying 

structural properties of graphs. The distance degree sequence has been studied with a primary 

objective of knowing whether a graph is determined by this sequence or not. Randic [7] 

conjectured that a tree is determined by its distance degree sequence, and Slater [8] disproved 

this conjecture in the year 1982. Some recent structural properties on planar graphs have been 

studied in [10]. Some problems concerning distance and path degree sequence can be seen in [3]. 

Path degree sequence is another tool to describe the structural properties of graphs. It is 

interesting to know the nature of path degree sequence corresponding to two isomorphic graphs. 

Randic[7] conjectured that the isomorphic graphs have the same path degree sequences. Later it 

was proved that this conjecture holds good only for a class of graphs. Graph automorphisms help 

us to study mainly the enumeration properties of graphs and also to study the structural 

properties of graphs. There is relatively natural interaction between structure of graphs and their 

path degree sequences. The automorphism group which is an algebraic invariant of graph defines 

an important class of graphs known as vertex transitive graphs. The vertex transitive graphs are 

regular, but have special properties which are not shared by regular graphs[5]. 

Babai[2] and Thomassen[9] have obtained structure theorems for connected vertex-transitive 

graphs with prescribed Hadwiger number. In this attempt, the role of automorphism group of 

graphs has been studied to find the nature of path degree sequence of two vertex transitive 

graphs.     

3. GRAPH AUTOMORPHISMS 

3.1 Definition:  Two vertices 𝑢  and 𝑣  in a graph 𝐺  are said to be similar if there is an 

automorphism mapping 𝑢 to 𝑣 on 𝐺. 

 



3.2 Theorem 

The relation ~ defined on 𝑉(𝐺) of a graph 𝐺 , such that 𝑣1~𝑣2  if and only if 𝑣1  and 𝑣2  are 

similar is an equivalence relation. 

Proof 

It can be easily seen that the identity map defined on 𝑉(𝐺) is always an automorphism. Also if 𝑓 

is an automorphism  then 𝑓−1 is also an automorphism. Thus, these two properties give us that 

the relation ~ is reflexive and symmetric. Moreover if 𝑓 and 𝑔 are automorphisms, then 𝑓 ∙ 𝑔 is 

also an automorphism which provides us that 𝑣1~𝑣3 whenever 𝑣1~𝑣2  and 𝑣2~𝑣3. Thus ~  is an 

equivalence relation. 

2.3 Theorem 

Every automorphism 𝑓 on 𝑉(𝐺) defines an equivalence relation on  𝑉(𝐺), and the number of 

equivalence classes is same as the number of rotations that f  makes on V(G). 

Proof 

First,  we  claim  that e very  automorphism  decomposes the  vertex  set  into  disjoint  subsets 

and rotates the vertices of each disjoint subset within themselves cyclically. For this, let 𝑓  be an 

automorphism on 𝑉(𝐺) = {𝑣1 , 𝑣2, ⋯ 𝑣𝑛}. Let us assume that f moves 𝑣𝑖 to  𝑣𝑖+1, 𝑣𝑖+1 to  𝑣𝑖+2 , 

⋯ .  Since, there are only n vertices, there must be a vertex 𝑣𝑖+𝑟   , 1 ≤ 𝑖 + 𝑟 ≤ 𝑛 such that 

𝑣𝑖+𝑟 = 𝑣𝑖 . Thus some part of the effect of  𝑓  is equivalent to the cycle 𝑓′ = (𝑣𝑖  ,  𝑣𝑖+1 

,⋯ , 𝑣𝑖+𝑟−1). If  𝑖 + 𝑟 = 𝑛, then all vertices have been accounted for and we have 𝑓 = 𝑓′.     

On the other hand , if  𝑖 + 𝑟 < 𝑛, let 𝑣𝑗  be the vertex not contained in 𝑓′ and suppose that 𝑓 

moves 𝑣𝑗  to  𝑣𝑗+1, 𝑣𝑗+1 to  𝑣𝑗+2 and so on until we return to 𝑣𝑗 , as we must do after at most  𝑛 −

𝑟 steps. The image of 𝑣𝑗+1 and its successors are certainly different from the 𝑣𝑖′𝑠 or else two 

vertices, one  𝑣𝑗  and one 𝑣𝑖  would have the same image. We have therefore isolated another 

cycle 𝑓′′ = (𝑣𝑗  , 𝑣𝑗+1, ⋯ 𝑣𝑗+𝑠−1), for some 𝑠. If 𝑟 + 𝑠 = 𝑛, then the order in which 𝑓′ and 𝑓′′ are 

carried out is evidently irrelevant, as neither operation has an influence on the other.Hence  𝑓 =

𝑓′ ∙  𝑓′′ = 𝑓′′ ∙ 𝑓′. 

Suppose, if  𝑟 + 𝑠 < 𝑛 , then  the  process may be continued and more cycles can be extracted 

from 𝑓  until each of the 𝑛  objects has been drawn into one of the cycles. Thus we get a 

decomposition of 𝑓 as  𝑓 = (𝑣𝑖, 𝑣𝑖+1, ⋯ , 𝑣𝑖+𝑟−1) (𝑣𝑗  , 𝑣𝑗+1, ⋯ 𝑣𝑗+𝑠−1) ⋯ (𝑣𝑘 , 𝑣𝑘+1, ⋯ 𝑣𝑘+𝑡−1)  

such that 𝑟 + 𝑠 + ⋯ + 𝑡 = 𝑛. This product into mutually exclusive cycles is unique, since the 

order in which they occur is immaterial. Thus we have proved our claim. 

Next, we prove that 𝑓 defines an equivalence relation ~ on  𝑉(𝐺). From the representation given 

for 𝑓, we can write 𝑓(𝑣𝑖) = 𝑣𝑖+1, 𝑓(𝑣𝑖+1) = 𝑣𝑖+2, ⋯ , 𝑓(𝑣𝑖+𝑟−2) = 𝑣𝑖+𝑟−1  and 𝑓(𝑣𝑖+𝑟−1) = 𝑣𝑖 . 

The reflexivity of the relation ~  is taken care by the identity mapping defined on  𝑉(𝐺) , 

irrespective of  𝑓 defined on 𝑉(𝐺). Similarly from the inverse of 𝑓, we can prove the property of 



symmetry. Now we claim that the composition of 𝑓 repeating required number of times provides 

the transitive property. In particular, it is enough if we claim that 𝑣𝑖+𝑥 ~ 𝑣𝑖+𝑦  , 𝑣𝑖+𝑦 ~ 𝑣𝑖+𝑤 

imply 𝑣𝑖+𝑥 ~ 𝑣𝑖+𝑤 . Note that if 𝑓(𝑣𝑖) = 𝑣𝑖+1  and 𝑓(𝑣𝑖+1) = 𝑣𝑖+2 , then we can write it as 

𝑓2(𝑣𝑖) = 𝑓(𝑓(𝑣𝑖)) = 𝑓(𝑣𝑖+1) = 𝑣𝑖+2  i.e., 𝑓2  is the automorphism mapping 𝑣𝑖  to 𝑣𝑖+2  when 𝑓 

maps 𝑣𝑖  to 𝑣𝑖+1  and 𝑣𝑖+1  to 𝑣𝑖+2 . Hence if 𝑓𝑝(𝑣𝑖+𝑥) = 𝑣𝑖+𝑦  and 𝑓𝑞(𝑣𝑖+𝑦) = 𝑣𝑖+𝑤  then 

𝑓𝑝+𝑞(𝑣𝑖+𝑥) = 𝑣𝑖+𝑤. Therefore, it can be concluded that 𝑓 defines an equivalence relation on 

𝑉(𝐺). Finally, we see that the number of equivalence classes is the number of rotations that 𝑓 

makes on 𝑉(𝐺). Consider the decomposition of 𝑓 interms of cycles as assumed above. To prove 

our claim we prove the following 

i.     𝑣𝑖+𝑥 ~ 𝑣𝑖+𝑦 for all 𝑥, 𝑦 with 0 ≤ 𝑥, 𝑦 ≤ 𝑟 − 1 

ii.    𝑣𝑖+𝑤  ≁  𝑣𝑗+𝑧 for all 𝑤, 𝑧  with 0 ≤ 𝑤 ≤ 𝑟 − 1, 0 ≤ 𝑧 ≤ 𝑠 − 1 

Suppose, if there are 𝑝 intermediate vertices between 𝑣𝑖+𝑥 and 𝑣𝑖+𝑦 in the rotation corresponding 

to the cycle           (𝑣𝑖 , 𝑣𝑖+1 ,⋯ , 𝑣𝑖+𝑟−1) then 𝑓𝑝+1(𝑣𝑖+𝑥) = 𝑣𝑖+𝑦. Hence  𝑣𝑖+𝑥 ~ 𝑣𝑖+𝑦. Secondly, 

suppose if  𝑣𝑖+𝑤 ~ 𝑣𝑗+𝑧 , for some z, then 𝑣𝑖+𝑤 ~ 𝑣𝑗+𝑧 for all 𝑤 with 0 ≤ 𝑤 ≤ 𝑟 − 1 then 𝑣𝑗+𝑧 =

𝑣𝑖+𝑤 for some w. This is a contradiction as the cycles are mutually disjoint. This completes the 

proof of the theorem. 

3.4  Note 

The equivalence class corresponding to the automorphism 𝑓 and vertex 𝑣 is denoted as  𝐸𝑓(𝑣).  

Hence 𝑂(𝐺) =  ∑ |𝐸𝑓(𝑣)|𝑣 . 

3.5 Theorem 

If 𝐸(𝑣) is an equivalence class  of an equivalence relation defined on the vertex set of a graph 𝐺 

under  the relation similarity, then the corresponding  automorphism rotates the vertices  in 𝐸(𝑣) 

cyclically. Moreover if 𝑓 rotates the vertices in clockwise direction, then 𝑓−1 does the same in 

anticlockwise direction. 

Proof 

 Let G be a graph with 𝐸(𝑣) =  {𝑣1, 𝑣2, ⋯ , 𝑣𝑚}   for a 𝑣 ∈ 𝑉(𝐺) . Also let  |𝐸(𝐺)| = 𝑚  ; 

|𝑉(𝐺)| = 𝑛. Let 𝑣 =  𝑣1  and consider the set   𝐴 =  {𝑣1, 𝑓(𝑣1), ⋯ , 𝑓𝑚−1(𝑣1)}. Now we claim 

that  |𝐴| = 𝑚, i.e., the elements 𝑣1, 𝑓(𝑣1), 𝑓2(𝑣1), ⋯ 𝑓𝑚−1(𝑣1)  are all distinct, where 𝑓2(𝑣1) =

𝑓(𝑓(𝑣1)) ; 𝑓3(𝑣1) = 𝑓(𝑓(𝑓(𝑣1)))   etc., 

Suppose, let  𝑓𝑖(𝑣1) =  𝑓𝑗(𝑣1) , where 𝑖 ≠ 𝑗 and  1 < 𝑖, 𝑗 < 𝑚 − 1, and 𝑓𝑖−1(𝑣1) ≠  𝑓𝑗−1(𝑣1) .  

This would lead to conclude that two different elements 𝑓𝑖−1(𝑣1)  and 𝑓𝑗−1(𝑣1) have the same 

image  𝑓𝑖(𝑣1) =  𝑓𝑗(𝑣1) . This contradicts to the fact that 𝑓 is one-one.  Hence  |𝐴| = 𝑚 . Also  

𝑓𝑚(𝑣1) =  𝑣1 .  Hence 𝑓 should rotate vertices from 𝑣1 to 𝑓𝑚(𝑣1) in one direction, and hence 

the 𝑓−1 rotates in the opposite direction from 𝑓−1(𝑓𝑚(𝑣1)) to  𝑓−1(𝑣1) . Hence the theorem. 



3.6 Theorem 

Let 𝐺 be a graph with  |𝑉(𝐺)| = 𝑛.  Let 𝐺′ be the graph obtained from  𝐺, by adding exactly one 

pendent vertex at each vertex of 𝐺. Then |𝐴𝑢𝑡(𝐺′)| = (𝑛!)2 

Proof 

Let 𝑉(𝐺) =  {𝑢1, 𝑢2, ⋯ , 𝑢𝑛}  and  (𝐺′) =  𝑉(𝐺)  ∪  {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} .  Note that 𝐺′  has no vertex 

of degree one other than the vertices of 𝑣1, 𝑣2, ⋯ , 𝑣𝑛. Also note that 𝑢′𝑠  should be mapped only 

with 𝑢′𝑠 and the mappings between 𝑣′𝑠  fix the mappings between 𝑣′𝑠. The 𝑢′𝑠  can be mapped 

in 𝑛! ways and 𝑣′𝑠 can be mapped in 𝑛! ways. Hence  |𝐴𝑢𝑡(𝐺′)| = (𝑛!)2. 

 

3.7 Theorem 

Let G be a graph and   be an equivalence relation on V(G) with respect to similar vertices. If  

there exists an automorphism  𝑓 such that |{𝐸𝑓(𝑢)/𝑢 ∈ 𝑉(𝐺)}| = 𝑛 then G is regular. 

Proof 

It is necessary that 𝑢  𝑣  iff   deg(𝑢) =  deg (𝑣). Hence if |{𝐸𝑓(𝑢)}| = 𝑛,  𝑢  𝑣  for all 𝑣 ∈

𝑉(𝐺), then deg(𝑢) =  deg (𝑣) for all 𝑣 ∈ 𝑉(𝐺). Hence G is regular. 

The above theorem can also be restated as follows. 

3.8 Theorem 

Let G be a graph with  |𝑉(𝐺)| = 𝑛. If there exists an automorphism 𝑓 of cycle 𝑛 on  𝑉(𝐺), then 

G is regular. 

3.9 Definitions 

In a graph 𝐺  the distance degree sequence (dds) of a vertex 𝑣𝑖  is the sequence 

(𝑑𝑖0
, 𝑑𝑖1

, 𝑑𝑖2
, ⋯ , 𝑑𝑖𝑗

, ⋯ ) where  𝑑𝑖𝑗
 denotes the number of vertices at distance 𝑗 from  𝑣𝑖 . The 

ordered set of all such sequences arranged in lexicographic order is called the distance degree 

sequence (DDS) of 𝐺 . Similarly, the path degree sequence (pds) of 𝑣𝑖  is the sequence 

(𝑝𝑖0
, 𝑝𝑖1

, 𝑝𝑖2
, ⋯ , 𝑝𝑖𝑗

, ⋯ ) where  𝑝𝑖𝑗
 denotes the number of paths in 𝐺 of length 𝑗 having 𝑣𝑖 as the 

initial vertex. The ordered set of all such sequences arranged in lexicographic order is called the 

path degree sequence (PDS) of 𝐺. For any graph   𝑑𝑖𝑗
 ≤  𝑝𝑖𝑗

. It is conjectured that ‘Two graphs 

𝐺1 and 𝐺2 are isomorphic if and only if 𝑃𝐷𝑆(𝐺1) =  𝑃𝐷𝑆(𝐺2)’ [4]. The following theorem says 

that this conjecture holds good when 𝐺1 and 𝐺2 are vertex transitive graphs. 

3.10 Theorem 

Two vertex transitive graphs 𝐺′ and 𝐺′′ are isomorphic iff  𝑃𝐷𝑆(𝐺′) = 𝑃𝐷𝑆(𝐺′′). 



In general this theorem is not true for arbitrary graphs. The following is a pair of non-isomorphic 

trees with same PDS 

                                         

 

Slater[8] conjectured that the above pair of non-isomorphic graphs is the smallest pair of such 

graphs. But Gargano and Quintas [6] proved that Slater’s conjecture hold good only for a pair of 

graphs which have no independent cycles. They constructed a pair of such graphs on 14 vertices, 

each graph having exactly one independent cycle. 

Proof of the above theorem 

Let 𝐺′ and 𝐺′′ be  vertex transitive graphs and 𝑓: 𝑉(𝐺′) → 𝑉(𝐺′′) be an isomorphism. Let 𝑥 and 

𝑦 are any two vertices in 𝐺′. Let 𝑃 be the smallest path connecting  𝑥 and 𝑦 and 𝑛 be the distance 

between  𝑥  and  𝑦 . i.e., let 𝑃  be the path containing the vertices  𝑥, 𝑣1, 𝑣2, ⋯ 𝑣𝑛−1, 𝑦 . Now 

consider the vertices 𝑓(𝑥), 𝑓(𝑣1 ), ⋯ , 𝑓(𝑣𝑛−1), 𝑓(𝑦) . By the definition of isomorphism, the 

adjacency between the vertices is preserved and therefore the sequence   𝑓(𝑥), 𝑓(𝑣1 ),

⋯ , 𝑓(𝑣𝑛−1), 𝑓(𝑦) forms a path 𝑓(𝑃) from 𝑓(𝑥) to 𝑓(𝑦). We claim that the length of 𝑓(𝑃) is also 

𝑛. Suppose, let the length of 𝑓(𝑃) be 𝑑, and 𝑑 < 𝑛. Also let 𝑓(𝑃) is formed by the vertices 

𝑓(𝑥), 𝑢1, 𝑢2, ⋯ , 𝑢𝑑−1, 𝑓(𝑦) in 𝐺′′. Since 𝑓 is onto, there are vertices   𝑤1, 𝑤2, ⋯ , 𝑤𝑑−1 in 𝐺′ such 

that 𝑓(𝑤𝑖) = 𝑢𝑖 , 𝑖 = 1,2, ⋯ 𝑑 − 1. Thus  𝑥, 𝑤1, 𝑤2, ⋯ , 𝑤𝑛−1, 𝑦  define a path of length 𝑛 in 𝐺′ 

which contradicts our assumption that P is the smallest path connecting 𝑥  and 𝑦 . Thus 

𝑓(𝑥), 𝑓(𝑣1 ), ⋯ , 𝑓(𝑣𝑑−1), 𝑓(𝑦)  is also the smallest path connecting 𝑓(𝑥)  and 𝑓(𝑦) . Hence 

𝑃𝐷𝑆(𝐺′) = 𝑃𝐷𝑆(𝐺′′). 

Conversely assume  that 𝐺′  and 𝐺′′ are vertex transitive graphs and                   

𝑃𝐷𝑆(𝐺′) = 𝑃𝐷𝑆(𝐺′′) = {𝐴, 𝐵, 𝐶, 𝐷, ⋯ } where 𝐴, 𝐵, 𝐶, 𝐷, ⋯ are the path sequences of vertices. 

Let 𝑓 ∶  𝐺′ → 𝐺′′ be defined such that  

i. 𝑓(𝑢) = 𝑣, if 𝑢 and 𝑣 have same path degree sequence 

ii. For any two vertices 𝑢 and 𝑣 in 𝐺′,  𝑓(𝑢) =  𝑥 ; 𝑓(𝑣) = 𝑦  iff  

(a) 𝑑(𝑢, 𝑣) =  𝑑(𝑥, 𝑦) 

          (b) 𝑢 and 𝑣 are in same equivalence class in 𝐺′ iff 𝑥 and 𝑦 are in   same equivalence  class    

               in 𝐺′′ 

From the above conditions, it can be seen that 𝑓  is one- to –one and onto and the vertices 

adjacent to 𝑢 are mapped to the vertices adjacent to 𝑥. Hence 𝑓 is an isomorphism. 



4. FUNCTIONAL GRAPHS AND AUTOMORPHISMS 

4.1 Lemma 

The functional graph obtained from the complete graph 𝑘𝑛  with respect to an automorphism 

defined on it is an (𝑛 − 1) -semiregular graph. In general, it is an (𝑛, 2, 𝑛 − 1) - graph. 

Proof 

Let 𝑓  be  an  automorphism  defined  from  𝑘𝑛  to 𝑘𝑛  with different  vertex labelings  

𝑢1, 𝑢2, ⋯ , 𝑢𝑛  and 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 . Let 𝑓(𝑢𝑖) = 𝑣𝑖 . Then it can be seen that 𝑁(𝑢𝑖) =

 {𝑢1, 𝑢2, ⋯ , 𝑢𝑖−1, 𝑢𝑖+1, ⋯ , 𝑢𝑛, 𝑣𝑖}.  Hence 𝑘𝑛   ∙𝑓  𝑘𝑛  is 𝑛 -regular and the vertices which are at 

distance 2 from  𝑢𝑖 are 𝑣1, 𝑣2, ⋯ , 𝑣𝑖−1, 𝑣𝑖+1, ⋯ , 𝑣𝑛.  

Hence 𝑘𝑛   ∙𝑓  𝑘𝑛 is an (𝑛, 2, 𝑛 − 1) – graph 

4.2 Theorem 

Let 𝐺′ and 𝐺′′ are complete bipartite graphs and 𝑓 ∶ 𝐺′ → 𝐺′′ is an isomorphism. Then 

𝐺′ ∙𝑓 𝐺′′ is vertex transitive. 

Proof 

 Assume that 𝐺′ and 𝐺′′ are complete bipartite graphs, 𝑓 ∶ 𝐺′ → 𝐺′′ is an isomorphism. Let 𝑓𝑢𝑣
′  is 

the automorphism on 𝐺′ mapping 𝑢 to 𝑣, then 𝑓𝑢𝑣
′  itself defines an equivalence relation on 𝑉(𝐺′) 

and the number of  equivalence classes is the number of rotations that  𝑓𝑢𝑣
′  makes on 𝑉(𝐺′). 

Hence 𝑓𝑢𝑣
′     can be written as a product of disjoint cycles uniquely. Suppose, if 𝑓𝑢𝑣

′  makes 𝑚 

rotations  on  𝑉(𝐺′) , then we have  

𝑓𝑢𝑣
′ = (𝑢11 , 𝑢12, ⋯ , 𝑢1𝑚1

) (𝑢21, 𝑢22, ⋯ , 𝑢2𝑚2
) ⋯ (𝑢𝑚1, 𝑢𝑚2, ⋯ , 𝑢𝑚𝑚𝑟

)  

      =  𝐶1𝐶2 ⋯ 𝐶𝑚 

where 𝐶𝑖 =  (𝑢𝑖1, 𝑢𝑖2, ⋯ , 𝑢𝑖𝑟𝑖
) 

Since 𝑓  is an isomorphism from 𝐺′  to 𝐺′′ , 𝑓𝑓(𝑢)𝑓(𝑣)
′′  mapping 𝑓(𝑢)  to 𝑓(𝑣)  in 𝐺′′  is an 

isomorphism in 𝐺′′ and it can be written as  

𝑓𝑓(𝑢)𝑓(𝑣)
′′ =  𝐶1

′𝐶2
′ ⋯ 𝐶𝑚

′  

where 𝐶′𝑖 =  𝑓(𝑐𝑖) = (𝑓(𝑢𝑖1), 𝑓(𝑢𝑖2), ⋯ , 𝑓(𝑢𝑖𝑟𝑖
)) 

Also let 𝑉(𝐺′) =  𝐴 ∪ 𝐵  and |𝑉(𝐺′)| = 𝑛  and 𝑣(𝐺′′) = 𝐶 ∪ 𝐷 . Also let A= {𝑢1, 𝑢2, ⋯ , 𝑢𝑛}  ; 

B= {𝑣1, 𝑣2, ⋯ , 𝑣𝑛} ; C= {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} ; D= {𝑦1, 𝑦2, ⋯ , 𝑦𝑛} 

Note that any automorphism mapping the vertex 𝑢 ∈ 𝐴 to the vertex v ∈ 𝐵 can be written as the 

product of  
𝑛

2
 cycles of length 2 and the automorphism mapping two vertices from 𝐴 to 𝐴 (or 𝐵 to 



𝐵) can be written as the product cycles that vary from one to 𝑛. Among these automorphisms, 

consider the automorphism that rotates all the vertices of 𝐴  cyclically to themselves  i.e., 

consider the automorphism    𝑓′𝑢𝑖𝑢𝑗
= 𝐶1𝐶2  ,   where 𝐶1 = (𝑢1, 𝑢2, ⋯ , 𝑢𝑛) ,                              

𝐶2 = (𝑣1, 𝑣2, ⋯ , 𝑣𝑛) Then 𝑓′′𝑓(𝑢𝑖)𝑓(𝑢𝑗) =  𝐶′1𝐶′2  where      𝐶′1 = (𝑓(𝑢1), 𝑓(𝑢2), ⋯ , 𝑓(𝑢𝑛)) and 

𝐶′2 =  (𝑓(𝑣1), 𝑓(𝑣2), ⋯ , 𝑓(𝑣𝑛)). 

Now we define the automorphism 𝑔 on 𝐺′ ∙𝑓 𝐺′′ as follows 

i. The automorphism that maps within cycles is given by     ℎ𝑢𝑣(𝑤) =

{
𝑓′

𝑢𝑣
(𝑤)  , 𝑖𝑓 𝑤 ∈ 𝑉(𝐺′)

𝑓′′𝑓(𝑢)𝑓(𝑣)  , 𝑖𝑓   𝑤 ∈ 𝑉(𝐺′′)
  

ii.    The automorphism that maps 𝑢 ∈ 𝐴 to 𝑣 ∈ 𝐵 is given by ℎ𝑢𝑣(𝑤) = 𝑤′ if  𝑤 ∈ 𝑉(𝐺′) and  

𝑑(𝑢, 𝑤) in             

     𝐶1 is the same as 𝑑(𝑣, 𝑤′)  in  𝐶2. Here, 𝑑(𝑢, 𝑤) in 𝐶1 is the number of times 𝑓𝑢𝑣  is to be 

operated so  that  to get 𝑤  in the image of 𝑢 . Similarly for every 𝑤 ∈ 𝐶 ,                  

ℎ𝑓(𝑢)𝑓(𝑣)(𝑤) =  𝑓′′
𝑓(𝑢)𝑓(𝑣)(𝑤) is the required automorphism. 

iii. The automorphism mapping a vertex 𝑢 ∈ 𝐴 to 𝑣 ∈ 𝐶 is given by  ℎ𝑢𝑣(𝑤) =  𝑓′′
𝑓(𝑢)𝑓(𝑣) 

(𝑤) ,

𝑖𝑓   𝑤 ∈ 𝑉(𝐺′) .                                                       

iv. The automorphism mapping a vertex 𝑢 ∈ 𝐴 to 𝑣 ∈ 𝐶 is given by ℎ𝑢𝑣(𝑤) = 𝑤′  if 𝑤 ∈ 𝐶1 and 

𝑑(𝑢, 𝑤) in 𝐶1 is the same as 𝑑(𝑣, 𝑤′) in 𝐶′2.  

Suppose, if 𝑤 ∈ 𝐶2 then ℎ𝑢𝑣(𝑤) =  𝑤′ if 𝑓𝑢𝑣
′𝑛

(𝑤) =  𝑓𝑓(𝑢)𝑓(𝑣)
′′𝑛

(𝑤′′)  

Now the mappings ℎ and ℎ−1 give the required automorphisms mapping any two pair vertices in 

𝐺′ ∙𝑓 𝐺′′.  Hence 𝐺′ ∙𝑓 𝐺′′ is vertex transitive. 

5. CONCLUSION 

The study of degree sequences and structured properties of certain classes of graphs is not new. 

In general, the sequence derived from any means in graph posses many structural properties. 

There are lot of works carried out to characterize graphs based on distance related sequences. 

Path degree sequence of a graph has its application in describing atomic environments and in 

various classification schemes for molecules. In this attempt the graph automorphisms and their 

role in obtaining the necessary and sufficient conditions for a certain class of graphs containing 

the same path degree sequence has been discussed. The construction of desired structures is an 

interesting problem in graph theory. The construction of a graph from a permutation group has 

been widely studied. Many of the sporadic simple graphs have been constructed as groups of 

automorphisms of particular graphs. In some cases the group and the graph are more closely 

related. In this attempt, the more structured class of graphs has been constructed from isomorphic 

graphs. In particular it has been discussed that the equivalence class obtained from the 



equivalence relation on similar vertices have played a major role in some of the graph-theoretic 

concepts. This study can also be extended to construct more class of distance degree regular 

graphs. 
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