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1. INTRODUCTION

In present paper, we derive some identities for quocient of two g¢-series, such as,

(—a;ab)oo(—b; ab)so(ab; ab)so
(—a?b;ab)oo(—ab?; ab)so(a?b?; ab) s

=(14a)(1+b)(1—abd)
and
(2¢; )o@ 2; @)oo — (a2G; @) oo(2; @) o

T4 00007 @)oo — A (026 Q)02 @)oo

2. THE QUOTIENT OF TWO ¢-SERIES
Lemma 2.1. For any complex numbers a,b, with 0<lal,|b| <1, then
(a;0)00 = (1 —a)(ab;b) oo, (2.1)

where (a;b)o denotes the g-Pochhammer symbol.
Proof. In previous paper [1, Theorem 5.3.ii] we prove that

(qm-’_k, ") 1 (2.2)

@0 1-4

Replace ¢* by a and ¢™ by b in (2.2)

(ab;b)os 1

m-mi (a;0)00 = (1 —a)(ab; b) e,
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which is the desired result. O

Theorem 2.2. For any complex numbers a,b, c,d with 0< |al, |b],|c],|d| <1,

:b)
AI:A = ((1,, s 2.
(1)~ &0 (23)
and
_ _ (ab;b)oo
B:=B(q):= (cd:d) (2.4)
then,
A 1-a
B-1=¢ (2.5)
A B (a+c—2)(a—c)
B A (I—al-0 (2:6)
A B 2—-(2-a)a—(2—-c)c
B T—a(i-0 (27)
and
A2—-B?  (a+c—2)(a—c) (2.8)
A2+ B2 2—(2—a)a—(2—c)c’ '
Proof. Replace a by ¢ and b by d in Lemma 2.1
(¢;d)oo=(1—c)(cd;d) 0. (2.9)
Divide the result of Lemma 2.1 by (2.9) and encounter
(@;0)00 [ 1—a\(ab;b)ss
(c;d)os \1—c )(cd;d)os’ (2.10)
From (2.3), (2.4) and (2.10), it follows that
A _1-a
B 1-¢
whence, we form the equations
A B_l1-a 1l-c_(1-a-(1-¢? (atc—2)(a—c)
B A l1-¢c 1-a (1-a)(1-¢)  (1—a)(1-c)
and
é_}_ﬁ_l—a_f_ l—-¢c (1-a)*+(1-0¢? 2—-(2-a)a—(2—-c)c
B A l1-¢c 1l-a (I1-a)(1—c¢) (I—a)(1—2¢)
Divide (2.6) by (2.7), and obtain (2.8). This completes the proof. O
Corollary 2.3. For any complex numbers a,b,c with 0< |al, |b],|c| <1, then
(@;b)oc _ (ab;b)o
= 2.11
(a;0)00  (a€CC)s0’ (2.11)
Proof. In (2.10), replace ¢ by a and d by ¢, and obtain (2.11). O
Corollary 2.4. For any complex numbers a,b,c with 0< |al, |b]|,|c| <1, then
(a;¢)oo 1—a\(ac;c)so
= . 2.12
(b; ¢) o 1-b ) (b ¢)eo (2.12)
Proof. In (2.11) replace ¢ by d
(@:0)c _ (@bi8)o0  (4,p), = (@D)ocladid)o (2.13)

(a;d)oo (ad;d)eo (a;d) oo



Substitute the right hand side of (2.13) in the right hand side of (2.10), and get

(a;b)00 ( 1 —a) (a;b)oo(ad; d)oo - (a;d)oe < 1— a>(ad; d)oo

1—c)(cd;id)oo(a;d)oe  (;d)oe \1—c ) (cd;d)oo

(¢;d)so
Replace ¢ by b and d by ¢ in both members of (2.14) and encounter (2.12).

Corollary 2.5. For any complex numbers a,b,c with 0<|al, |b]|,|c| <1, then

o=~ (7 o

Proof. From (2.11), we find
(a;0)00 _ (a5b)o0

(ac; ) (ab;b)oo’

On the other hand, from (2.12), we get

(a5 ¢)oo _<1—a) (b; ¢)oc

(ac;c)oe \1=0)(bc;¢)oo’

(2.14)

(2.15)

(2.16)

(2.17)

Eliminate (a;¢)o0 / (a¢;¢)so in (2.16) and (2.17); rearranging their terms, we encounter (2.15). O

Remark 2.6. With the equations (2.10), (2.11), (2.12) and (2.15), we transpose the classical ¢-

series to (ab;b)so-series and wice-versa; so we just repeat them below:

(12t )leh)e

a;b)00  (ab;b)oso

(
(a;0)00 (ac;C)oo

3

and

Example 2.7. Set a=¢q,b=¢? c=¢> and d=¢* in Remark 2.6 and encounter

(q;qz)oo:< 1 )(q3;q2)oo
(%M \1+q+¢%) (0% qY s’

(4% _ (6% 6%
(0% (4% ¢%) o0’

(¢; ¢*)oo ( 1 )((ﬁgigm

(4% ¢%) 144 /(6% ¢%)so
and

(q;qQ)oo_( 1 )(qg;qz’)oo.

(6% 6% \1+4q) (0% ¢*)

3. OTHER IDENTITIES

Theorem 3.1. For any complex numbers a,b, c,d with 0< |a|, |b],|c]|,|d| <1, then

(a5 b)o _( 1 ) (abib)oo
(a;d)oo(c; d) oo 1—c /(ad;d)so(cd;d)oo
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Proof. In Lemma 2.1, we have the identity

b . _ (830)
(a,b)oo—(l_a)(ab, b)wil_a—m (32)
The formula in (3.2) is wonderful. On the left side, there is only the variable a; on the right side,
there are two variables: a, which we have already known, and b, which is a new variable. What can
we say about b7 The variable b is independent of a. This point is crucial! So, if b is independent
of a, we can change it to any other variable and this would not affect the left side of this identity.
That’s what we’ll do. Replace b by d in (3.1), and encounter

1—a:($;%1 (3.3)
Substitute the right hand side of (3.3) in the right hand side of (2.10)
(mmm:< 1 >(MQMW&MM ~ (@b :< 1 ) (ab;b)oo
(¢;d) oo 1—c /(ad;d)oo(cd;d)oe = (a5d)00(c;d)oo 1—c /(ad;d)oo(cd;d) oo’
which is the desired result. |

Corollary 3.2. For any complex numbers a,b,c,d with 0 <|al, |b],|c|,|d| <1, then

(a;6)c0 - 1 (ac; ¢)oo
ww%dhwm_<1—b)wm@mw¢@m' (3.4)

Proof. In Theorem 3.1, replace b by ¢ and ¢ by b. This completes the proof. 0

Corollary 3.3. For any complex numbers a,b,c with 0<|al, |b],|c| <1, then

(@:b)os (1 (ab;b)oe
(a;c)oo(b; C)oo _<1—b)(ac; C)Oo(bc; C)oo' (35)

Proof. In Corollary 3.2, replace b by ¢. Now, replace ¢ by b and d by ¢. This completes the proof. [J

Theorem 3.4. For any complex numbers a,b, c,d with 0< |al, |b],|c|,|d| <1, then

(a;0)0 (1 (ac; €)oo
(%d%n@ﬂﬂw__(l—b)(amd}wwqcﬁn' (3.6)

Proof. Substitute the right hand side of (3.3) into the right hand side of (2.12), and encounter
the desired result. O

Corollary 3.5. For any complex numbers a,b,c with 0<|al, |b],|c| <1, then

(G000 [ 1 (a¢; €)oo
wwhxadm_<1—b)w@mm@q@m- (3.7)

Proof. Replace d by b in Theorem 3.4. This completes the proof. 0
4. THE DISCRETE CASES

Theorem 4.1. For any complex numbers a,b, c,d with 0<lal,[bl,|c|,|d| <1, and m,n € N>, then

(a;0)n _ (1—a))(abib)o (cd™;d)oo 4.1
() g

T—c)(cd;d)os (ab™0)oo

(¢;d)m

Proof. In [2, p. 6, (1.1.7)], we have

v (a59)
(CL, q)n - (aqn7 q)oov (42)
for —oco < n < 0.



Replace ¢ by b in (4.2), and obtain

(a;0) 0

(a; b)n = M

= (a;0) 00 = (a5 0)n(ab™; b) so- (4.3)

Replace a by ¢, b by d and n by m, in (4.3), and get
(¢;d) oo = (¢;d)m(cd™; d) oo (4.4)

Substitute the right hand side of (4.3) and (4.4) in the left hand side of (2.10)

(m@ﬂaww%o_(l—a>mhmw @umn:(1—a>mmmw (cd™; d) oo

(c;d)m(cd™;d)ee \1—c )(cd;id)os ~ (c;d)m 1—c¢ /(cd;d)oo . (ab™b)oo

which is the desired result. O

Corollary 4.2. For any complex numbers a,b,c with 0 <|al, |b],|c| <1, and m,n € Nx, then

(a;b)n _ (abjb)oo (ac™;c)oo
(@;0)m (0 ¢)oo (ab™ D)oo (4.5)

Proof. Replace ¢ by a and d by ¢ in Theorem 4.1. This completes the proof. O

Corollary 4.3. For any complex numbers a,b,c with 0 <|al, |b],|c| <1, and m,n € N>(,then

(m@n<1—a)wa@m,®dﬁdm (4.6)

(b;c)m  \1-=0)(bc;c)oo (ac™c)oo

Proof. Replace b by ¢, ¢ by b and d by ¢ in Theorem 4.1. This completes the proof. O

Corollary 4.4. For any complex numbers a,b,c with 0 <|al, [b|,[c| <1, and m,n € N>, then

(a;0)n _ (1=a\(abb)oo (bC™;C)oo 47
( ) (4.7)

(b;c)m  \1—-0 ) (bc;c)oo . (ab™;b)oo

Proof. Replace ¢ by b and d by ¢ in Theorem 4.1. This completes the proof. O
5. OTHER DISCRETE CASES

Theorem 5.1. For any complex numbers a,b,c,d with 0<|al, |b|,|c|,|d| <1, and k,m,n € Nx,
then -

(a;b)n 1 (ab;b)oo (ad™; d)oo(cd®; d)oe
(a; d)m(c; d) _<1—c>(ad; d)so(cd; d) oo ' (ab™; b) oo . (5.1)

Proof. Replace b by d and n by m, in (4.2), and get
(a;d)oo = (a;d)m(ad™; d)oo (5.2)

Replace a by ¢, b by d and n by k, in (4.2), and obtain
(c;d) oo = (c; d)i(cd¥; d) o (5.3)

From (3.1), (4.2), (5.2) and (5.3), it follows that
(a;D)n(ad™; b)oo _ ( 1 ) (ab;b)oo
(a;d)m(ad™; d)oo(c; d)k(cdF; d) oo 1—c¢ /(ad;d)so(cd; d)oo
N (a;b)n :< 1 (ab;b)oo . (ad™;d)so(cd®; d) oo
(a;d)m(c; d)g 1—c /(ad;d)oo(cd; d)oo (ab™;b)o ’

which is the desired result. O
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Corollary 5.2. For any complex numbers a,b, c,d with 0 <la|,[bl,|c|,|d| <1, and k,m,n € N>,

then
(a;¢)n 1 (ac; €)oo . (ad™; d)oo(bd¥; d) oo (5.4)
(a;d)m(b;d)r \1—0b /) (ad;d)oo(bd; d)so (ac™ €)oo ’ '
Proof. In Theorem 5.1, replace b by ¢ and ¢ by b. This completes the proof. g

Corollary 5.3. For any complex numbers a,b,c with 0 <|al, |b],|c| <1, and k,m,n € N>, then

(a;b)n ( 1 ) (abib)os  (ac™;c)oo(be; )oo (5.5)

(@;0)m(bic)e \ 1=/ (ac;c)oo(be; )oo (ab™;b)oo
Proof. In Corollary 5.2, replace b by ¢. Now, replace ¢ by b and d by ¢. This completes the proof. [J

Theorem 5.4. For any complex numbers a,b, c,d with 0 <|al, |b],[c[,|d| <1, and k,m,n € N>,

then
(a;¢)n 1 (ac; €)oo . (@ad™; d)oo(bc”; €)oo
(a; d)m(b; €) _<1—b)(ad;d)oo(bc; €)oo (ac™ ¢)oo ’ (5.6)
Proof. Replace b by ¢ in (4.2)
(@5 €)oo = (a5 ¢)n(ac™; ) o. (5.7)

Replace ¢ by d and n by m in (5.8)
(a;d) o0 = (a; d)m(ad™; d) so- (5.8)

Replace a by b and n by k in (5.8)
(b; €)oo = (b; €)1(bF; €) oo (5.9)

From (3.6), (5.8), (5.9) and (5.10), we conclude that

(@ ¢)n ( " €)oo ( 1 ) (a¢; )0
(a; d)m(ad™; d) oo (b; )k (bck; ¢) 1-b/(ad;d)ec(be; ) oo
(a;C)n ( 1 > (ac;e) (adm;d)oo(bck;c)oo
(a; d)m(b; )k ad;d) bc €)oo (ac™ ¢)oo ’

which is the desired result. O

=

Corollary 5.5. For any complex numbers a,b,c with 0 <|al, |b],|c| <1, and k,m,n € N>, then

(@;¢c)n (1 (acic)oo (ab™b)oo(bek;C)oo (5.10)
(a;0)m(b;c)e \1—=0 ) (ab;b)so(bc;c)oo (ac™ ¢)oo ’ ’
Proof. Replace d by b in Theorem 5.4. This completes the proof. 0

6. APPLICATION FOR THE CLASSICAL ¢-BINOMIAL THEOREM

Theorem 6.1. For any complez a, q,z, with 0<|al,|q|,|z| <1, then

Z "*1,(1 Joo n_ (4 @)o0(02; @)oo (6.1)
= (ag™; q) (@5 ¢)oo(2; @)oo
Proof. In [3], the ¢-binomial theorem assures us that

o0

3 (@D 0 (02 Doo 402 (6.2)

« (¢ q)n (23 @)oo




for |¢| <1 and |z| < 1.
Replace ¢ by b in (6.2)

Z (a; b )n n_ (?zz;;bl;?:o — dolas b 2). (6.3)

In Corollary 4.3, replace ¢ by b, m by n, multiply by z" and summing from 0 at infinity with
respect to n, we get

o~ (@b, 1—a )oo b"+1 b o n

From (6.3) and (6.4), it follows that

a1 ) 5 20

;‘Z (bt b Joo n_ ( —b ) (b2,b)oo(az,b)oo (65)
(ab™ b 1—a /) (ab;b)oo(2;b) oo
On the other hand, from Lemma 2.1, we conclude that
1—a= (S‘b;;bb))f’; (6.6)
Replace a by b in (6.6)
1-b= (6.7)
From (6.5), (6.6) and (6.7), it follows that
i (bt b n (ab5)oo (b b)oo (b b)oc (a2 b i (0" 15 0)oe n_ (bib)oo(az; D)
— (ab™;b (@;0)00(b2;b)0o(ab; b) oo — (ab™b)so (a;0)00(2; b) oo
Replace b by ¢ in previous equation and obtain the desired result. O
Corollary 6.2. For any complez a, q,z, with 0<|al,|b|,|q| <1, then
> ntl o) £ @)oo(@; oo
2 (U sl i e (68)
Proof. A slighty modified version of the g-binomial theorem is given by [2, p.6, (1.2.2)]
i (@/b; @)n o _ (3 @) (6.9)

= (G Pn (6; @)oo’
where |b] < 1.
In Corollary 4.3, replace b by ¢, ¢ by ¢, a by a/b, m by n, multiply by " and summing from

0 at infinity with respect to n, we get

o~ (@/bq)n (1— (a/b)) a/b q, oo g+

L = b". 6.10
HZ:‘;J (4 Dn 1—gq Z /bq q (6.10)

Substitute the right hand side of (6.9) into the left hand side of (6.10) and find
(a3 @)oo <1—(a/b)) a/b) q, oo
= bn
(b: @)oo 1—gq Z
(6.11)

— ("N . [ 1-¢ (a, q)oo(q ,q)oo
=2 ((a/b) g™ ,Q)oob _<1—(a/b)>(b; ?)oo((@/b) 45 ¢)oo

n=0
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Replace b by ¢ and a by ¢ in (6.6)

_ (69

1—
T D)
Replace b by ¢ and a by a/b in (6.6)

~ta/b) = /b Do
@)= /D 0

From (6.11), (6.12) and (6.13), it follows that

(" n = (0/0)05 0oel @ 0)oo(5 % @)
nz;; ((a/b) q q b _( /b 0)oo(a%; @)oo (b; @) oo((a/b) 45 q) o
n __ ( ) (a,q)oo
éE: /bq q i Y

which is the desired result.

(6.12)

(6.13)

O

Note 6.3. We get another simpler proof of Corollary 6.2: replace z by b and a by a /b in Theorem

6.1.
7. APPLICATION FOR THE ¢-GAUSS SUMMATION

Theorem 7.1. For any complez a,b,c,q and t, with 0<|al,|bl,|cl,|ql,|t| <1, then
a b ( oo n+1
apr| ;q,t)
< c (q nz*; (aq™; q
Proof. In [2, p. 5, (1.1.1)], we define the Gauss’s ¢g-hypergeometric series by

a,b e (@50
2¢1< c ’q’t)'_z CRCTIA

n=0

oo(€¢q" @)oo 1
(b4™; @)oo

where |¢| <1 and |¢| < 1.
In Corollary 4.3, replace b by ¢, ¢ by ¢ and m by n

(@@)n_(1-a\(ag D (")
=

1-q) (%0 (a0 @)oo

In Corollary 4.3, replace ¢ by ¢, b by ¢, a by b and m by n

(b; @)n _ ( 1- b) (bg; @)oo (¢q™; @)

(@) \1—c)(cq; @)oo (b4 @)oo’

Multiply (7.3) by (7.4) and ¢™, sum from 0 at infinity with respect to n, and get

n=0
Replace b by ¢ in (6.6

(a; 9) o
1—q= 2o
(ag; @)oo
Replace a by b in (7.6)
b; )
1—pe B
(0¢; @)oo
Replace a by ¢ in (7.6)
l—c= (C; Q)OO .

(¢q; @)oo

)
— (a5 @)n(b; D o (1=0a)(1=b) (ag;9)oo(bg; @) " Qoo(cq™ Do
HZ:: @@ T D00 (4% a)o(cd: 9)oc Z aq",fJ) 00" oo
)

(7.1)

(7.5)

(7.6)



From (6.12), (7.2), (7.6), (7.7) and (7.8), it follows that

ab 0\ _ (45 4)oo (0% @)oo (b @)oo(cq; @)oo (ad; 0)oo(bG; @)oo (4" @)oo(cq™; @)oo 4n
2¢1( ¢ ’q’t)_ (005 D)oo (@ @)oo (0G5 @)oo (€3 D)oo(0% @)oo(cq; Doe =) (00" @)oo(bq™; @)oo t
;52%( a;b ;q,t)_ (a5 9)so(b ;q)oo,z (¢ @)oslea” { @)oo 4n

(45 9)o0(C; @)oo

which is the desired result. O

(g™ @)oo(bq™; @)oo

n=0

Corollary 7.2. For any complez a,b,c,q and t, with 0 <|al,|bl,|cl,|q],|t] <1, then

n+1

i : an q) (ﬁ)ni (q; q)oo(c/a; Q)oo(c/b; Q)OO ) (79)

(aq™; q (bg™; 4)o (459)00(b; @)oo/ (ad); @)oo

Proof. In [2, p. 10, (1.3.1)], we encounter the ¢-Gauss summation theorem, given in the form

2¢1< ab., i>_ i (a; )n(b; @)n (i)”: (¢/a;q)oo(c/b; @)oo (7.10)

c ' ab (¢ @)nlc; @)n \ab (¢; @) oo(c/(ab); @)oo’

n=0

where |¢/ab] < 1.
Replace t by ¢/ab in Theorem 7.1 and obtain

a,b c (a; @)oo(b; @)oo 7" @) oo(cq™; @)oo ( ¢ )"
% b; : — . A1
2¢1< c ab> (‘J' Z (agq™; q (g™ @)oo \ab (7.1
Substitute the right hand side of (7.10) into the left hand side of (7.11) and get the desired
result by rearranging the terms and canceling (¢; ¢)oo in numerator and denominator. 0

Corollary 7.3. (The Ramanujan’s version for g-Gauss Summation Theorem) For any
complex a,b,c and g, with 0 <|abe| <1 and be+£0, then

(4" @)s(ag™; @)oo be (¢; @)oo(ac; Q)oo(ab; q)oo
Z 1/b Y% oel(1/0) % o )" = T hoel1 /5 ) (abs @) (7.12)

Proof. In [2, p. 12, (1.3.8)], we encounter the Ramanujan’s version for ¢-Gauss Summation
Theorem, given by

(ac; @)oo )oo 1/bqn1/0'q) abe)n 1/b,1/c abe :(ac;q)oo(ab;q)oo
(abe; q)oo ab q Z In(@; On ~(abe) :>2¢1( o 00 ) (abc; q)oo(a; @)oo
(7.13)

for labe| <1 and be#0.
In Theorem 7.1, replace a by 1/b, b by 1/¢, ¢ by a and ¢t by abc, simultaneously,

1/b,1/c (1/b; 1/c s 4" q)oo(aq™; @) n
2¢1< a ’q’abc> (q,g) . Z 1/b )((13c)qq";q)oo(abc)' (7.14)

Replace the right hand side of (7.13) into the left hand side of (7.14) and get the desired result
by rearranging the terms and canceling (a; ¢)o in numerator and denominator. O

8. APPLICATION FOR THE ROGERS-FINE IDENTITY

Theorem 8.1. We have

ﬁq qOO = (OéTq/ﬁa ﬁq q (Tq"+1;q)oo n_n n _n n
Z ("5 @)oc Z (@q™ Qocllaral B) 0% ) (I—arg™).  (8.1)

n=0 n=0
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Proof. In [2, p. 28, (1.7.1)], we encounter the Rogers-Fine identity given by

Z oqu/ﬂ, ) 677, n n 7"(1—0&7’(]2”). (82)

T Q)nJrl

In Corollary 4.3, replace a by «, b by 8, ¢ by g and m by n

(05 @) _ (1 —a > (44 @)oo (B4"5 @)oc (8.3)
(85 @)n B)(BG @)oo (g™ q)o
Again, in Corollary 4.3, replace a by atq/ 3, b by 7, ¢ by ¢ and m by n+1
(a7q/B: @)n _ ( 1- am/f)’) (a7q/B)a Do (1¢" 3 @)oo (8.4)
(75 Dnt1 l—-7 (T¢; @)oo ((atq/B) ¢ @)oo '

From (8.2), (8.3) and (8.4), it follows that

1—a\(ag; @) (89" @)oo _n
( ﬁ) B4; 9) Z_:O aq" Qoo

_(1—a)(1—wq/ﬂ>(aq, ) ((aTQ/ﬁ)q;q)oo,i( (Bq qzoo( T g)oo

677, annzfn(l _ O”_q2n)

1-3 l—7 (BG; )oo(T; @)oo g™ Q) (arq/B) 4" @)oo
- (6(] 7Q)00 n
=2 fagia
_ 1—M‘1/5)((MQ/5)% Do N~ _ (B D10 00 o nwrongy o 2m
< l—7 (7¢; 4)oo nz;; @ Dollara/ B ¢ (1=ame™).
(8.5)
On the other hand, replace a by arq/ 0 and b by ¢ in Lemma 2.1
N . _ __(atq/B; @)
(a1q/B;q)oc = (1 —aTq/B)((aTq/B) ¢ @)oo =1 —aTq/ (ora/ B g0’ (8.6)
Replace a by 7 and b by ¢ in Lemma 2.1
(T3 @)oo= (1= 7)(7q; q)mél—rzw- (8.7)

(T¢; @)oo
From (8.5), (8.6) and (8.7), we conclude that

_((ozTCJ/B;CJ)oo(Tq;q)oo((aTq/ﬂ)q;Q)oo),i (84" @)oo(T¢" 5 @)oo T pp—

(a7q/ B)q @)oo(T5 @) o745 @) o (@q™; Q)oo((@Tq/ B) 4™ @)oo
:>Z (Bg™; qoo o (274/ B @)oo i (84" Q)oo(1¢" 5 @)

(g™ ¢) oo (T3 @)oo (g™ @)oo((@Tq/ B) 4™ @)oo

which is the desired result. O

677, annzfn(l _ O”_q2n)7

9. APPLICATION FOR RAMANUJAN’S THETA FUNCTIONS

Theorem 9.1. For any complex a and b, with |ab| <1, then

f(a,b)
(14+a)(14+0)(1—abd)

= (—a?b;ab)s(—ab®ab)(a?b? ab)so (9.1)
(_;{b“a‘zg’io“(’(_;bb2a2)b°)°;‘zs;zg)Z"b)oo = (1+a)(1+b)(1—ab). (9.2)
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Proof. Replace a by ¢ and b by ¢d in (7.2)
(¢;ed)so=(1—c)(c?d; cd) o (9.3)

Replace a by d and b by cd in (7.2)
(d; cd) oo = (1 —d)(cd?; cd) oo (9.4)

Replace a by c¢d and b by cd in (7.2)
(cd;ed)oo = (1—cd)(c?d? cd)oo- (9.5)

Replace ¢ by —a and d by —b in (9.2), (9.3) and (9.4)

(—a;ab)oo = (1+a)(—a?b;ab)w, (9.6)

(—=b;ab)oo = (1 +b)(—ab? ab) s (9.7)
and

(abjab)s = (1 —ab)(a®b* ab)oo. (9.8)

Multiply (9.5) by (9.6) and (9.7)
(—a;ab)oo(—b;ab)oo(ab; ab)oo = (1 +a)(1+b)(1 —ab)(—a?b;ab)s(—ab? ab)(a® b*ab)oo.  (9.9)

On the other hand, we know that [2, p. 17, (1.4.8)]

f(a,b):= Z a(FD/2pn (=172 — (_g: 4b) oo (—b; ab)so(ab; ab) . (9.10)

n=—oo

From (9.8) and (9.9), it follows that

fla,b)=(1+a)(1+b)(1—ab)(—a?b;ab)s(—ab® ab)s(a?b? ab)so

f(avb) (27, 2. 2712,
$(1+a)(1—|—b)(1—ab)_( a®b; ab)oo(—ab®; ab)s(a®b? ab)s
or
(—a;ab)oo(—b;ab)sc(ab;ab)os _
(—a2b;ab)o(—ab?ab)oo(a2b?ab) o (1+a)(1+b)(1 —ab),
which are the desired results. O

10. THE BACK TO THE DISCRETE CASE

Lemma 10.1. We have

(@ Dn+1(a9" Qoo _ 1 _ . n
o ) =1—aq™ (10.1)

Proof. We well-know identity [4, p. 300, (12.1.3)]

- (a3g)x
whence we obtain
(a5 9)oo
Q)= ———— 10.
(@) (aq""'¢; ) (10:3)

In Lemma 2.1, replace a by ag” ! and b by ¢

nl "o =(aq"1 ¢ @) =

(aq" " q)oc= (1~ ag"~")(ag it )3 (10.4)
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From (10.3) and (10.4), it follows that

oy (1=aq" N (a5 9w
(@5 4)n = (aq" % ¢)oo

Replace n by n+ 1 in (10.5), and rearrange the terms of the above equation. This completes
the proof. O

Theorem 10.2. We have

(a2q; @) Z(az;q)oo: (a2; Q)0 az(an; Qoo
(2¢; @)oo * (23 @)oo (25 9) oo (2¢; Qoo (10.5)

Proof. Replace a by bin (10.1)

(b; @)n+1(bG"; q) oo
b 0 —bq™. (10.6)

Divide (10.1) by (10.6) and rearrange the terms

(@ Dnt1 (G Dn+1 (3 Doo] (04" @)oo (04" @) 0
(b Ont1 b(b; D1 (b q)oo{(aq"; Do (aq™ ) | ] (107)
Replace b by ¢ in (10.7)

(@ Ont1 (@G Dnt1 o (6 Do (" FThDee  (¢"TH @)oo 0

@Dt G T~ (4 q)oo[ (aq™; q) o (@q™ @)oo ] (108)

Multiply (10.8) by 2™ and summing from 0 at infinity with respect to n, we encounter

] n+1 7 n+1 n n
—q
Z (fL Q)n+1 nz_:o

q, n+1

( ; ) n=0 ( 2 ; 2) n=0 ( 2 ’2) ‘|

i (@ Dnt1 0 _ qi (a; @)n+1 g = (a; q)oo[ (¢ D)c(a2; @)oo (45 9)oc(a2¢5 9) o0

= (¢ Dnsa — (4 Dn+1 (@ Dol (a3 0)o0(25@)oe (a5 @)oo(2G; @)oo
oo o0
=3 (@ Pn+1 0 _ Z (a; @nt1 gt = (@2 @)oc _ (a2¢; @)oo
= (¢ @)nt (4 @n+1 (25 @)oo (2¢; @)oo
@li (@ @)nt1 n+1__z (a; q nAL ol gntl (@2 ¢) _ (a2¢; @)oo
Zn:O (q; Q)n-l-l q; n+1 (Z; Q)oo (ZCI; Q)oo
@li (@ @n _‘Z (a3 q nongn = (0210 (0265 Qoo
2= (g; (7)o (3¢ @)oo
(o]
&3 (a; Q)nzn B (a Q)n g — ez (0245 9)o
e = (@D % Q)oo (2¢; @)oo
oo (o9}
<:>1_|_Z (CL; Q)nzn_ 1+ (aaq)n ann :Z(a’zaQ)OO az(aZQ;Q)
= (G Dn (5 @)n % @)oo (2¢; q)

(10.10)
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From (6.2) and (10.10), we easily conclude that

Z Ea qu ongn = 0% Do (02 Q)00 | (025 D)oo (10.11)

(25 @)oo (2 @)oo (2¢: @)oo

On the other hand, replace z by zq in (6.2)

(a; q nngn (a2¢; @)oo
Z e (10.12)

From (10.11) and (10.12), it follows that

(@2¢; @)oo _ (a2 Q)00 (a219)0 | . (02¢; D)0

(2¢; )0 (2;@) (2 @)oo (245 @)oo
026D | (0200 _ (0% 00 , (0265 ¢)o0
(245 4) (z10)o0  (210)0 (243 @)oo
which is the desired result. O

Example 10.3. Replace ¢ by ¢°, a by ¢~ ! and z by ¢* in (10.11)

(0% @)oo | 405 0o _ (0%07)0 , _
(4% ¢°) o (6% ) (6% %) (4% ¢°) oo

Corollary 10.4. For any complex a,q and z, with 0 <|az| <1, then

(a2q; Q)oo(2Q)0e  1—2
(2¢; O)oo(a2; @)oo 1—az (10.13)

Proof. Rearrange the terms of (10.5), as follows

(@24; Q)0 . (024 9)0 _ (0290 (225 )

(2¢; @)oo ((zq; q)o)o (Z;Q)oo( )(Z; 7)o
@2 oo (a2 0)e0
= ) (2¢; @)oo (1-2) (25 @)oo

(02¢; Q)oc(2Q)oc _ 1—2
(2¢; @)o(a2;@)os 1 —az’

which is the desired result. O

Example 10.5. Replace ¢ by ¢7, a by ¢~ and z by ¢° in (10.13)

(1'% 9)(¢% ¢)0e  1—¢

(0% 4N 0o(d% 400 1

Corollary 10.6. We have

_ (26 (a2 ¢)00 — (@245 ¢)o(2; @) oo
T (20 D)oo(0%5 @)oo — 0 (0265 Q)21 D)oo (10.14)

Proof. Solve (10.13) for z and then delete the common denominator. This completes the proof. [

Example 10.7. Replace ¢ by ¢°, a by ¢~ and z by ¢* in (10.14)

o= (%5 0o 4700 = (4% 47)oo(gs )
(4% @°)o(@% %) oo — 471 (6% 6°) oo (4%; ¢°) oo

Corollary 10.8. For any complex a, q and z, with 0 <|az| <1, then

Z 1/“q" gon— 172 (10.15)

= (zq; q 1—az
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Proof. In (7.10), replace a by 1/a, b by ¢q and ¢ by zq

o0

Z 1/ )n(@ Dy n _ (0265 Q)OO(Z;Q)OO<:>Z (1/@; @)n o n_ (026 @)oo(25 @)oo (10.16)
= (4 D265 )n (2¢; Q)o@ Q)oe = (24: @) (265 @)so(a 23 4) oo

Substitute the left hand side of (10.16) into the left hand side of (10.13). This completes the
proof. O

11. CONCLUSION

In this paper, we complete the theory of (ab;b). and made some applications in the elementary
identities in classical g¢-series theory; including, we evaluate the g¢-binomial theorem, g¢-Gauss
summation, Rogers-Fine identity and Ramanujan’s Theta function, besides other things.
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