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Annotation
It is noted that the known solution for a spherical
electromagnetic wave in the far zone does not satisfy the law of
conservation of energy (it is retained only on the average), the
electric and magnetic intensities of the same name (in coordinate)
are in phase, only one of Maxwell's equations is satisfied. A
solution is offered that is free from these shortcomings.

1. Introduction
In [1], a cylindrical electromagnetic wave is considered. Below we
consider a spherical electromagnetic wave far from the vibrator - in the
so-called the far zone, where the longitudinal (radial-directed) electric and
magnetic intensities can be neglected. The main drawbacks of the known
solution (see Appendix 1) are that
1. the law of conservation of energy is fulfilled only on the average
(in time),
2. the magnetic and electrical components are in phase,
3. in the Maxwell equations system, in the known solution, only
one equation of eight is satisfied.
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Fig. 1.

2. Solution of the Maxwell’s equations

Fig. 1 shows the spherical coordinate system ( p,8,¢). Expressions
for the rotor and the divergence of vector E in these coordinates are
given in Table 1 [2]. The following notation is used:

E - electrical intensities,

H - magnetic intensities,

M - absolute magnetic permeability,

& - absolute dielectric constant.

The Maxwell’s equations in spherical coordinates in the absence of
charges and currents have the form given in Table. 2. Next, we will seek a

solution for E_ =0, H,=0 and in the form of the functions
E, H presented in Table 3, where the function g(ﬁ) and functions of
the species E(pp (p) are to be calculated. We assume that the intensities

E, H do not depend on the argument ¢. Under these conditions, we

transform Table 1 in Table 3a. Further we substitute functions from
Table 3 in Table 3a. Then we get Table 4.

Substituting the expressions for the rotors and divergences from
Table 4 into the Maxwell's equations (see Table 2), differentiating with
respect to time and reducing the common factors, we obtain a new form
of the Maxwell's equations - see Table 5.

Consider the Table 5. From line 2 it follows:
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where h(pp is some constant. Likewise, from lines 3, 5, 5 should be
correspondingly:
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It follows from (5) that
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The same formula follows from a comparison of (7) and (9).
It follows from (5, 13) that
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and it follows from (14, 4, 11, 12) that
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Similarly, it follows from (7, 13) that
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and it follows from (16, 6, 8, 12) that
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From a comparison of (15) and (17) it follows that
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Further we notice that lines 1, 4, 7 and 8 coincide, from which it
follows that the function g(@) is a solution of the differential equation
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We note that in the well-known solution g(H): sin(&’) - see Appendix 1.

It is easy to see that such a function does not satisfy equation (20).
Consequently,
in the known solution 4 Maxwell's equations with

expressions rot p(E), rot p(H ), div(E), div(H) are not

satisfied.

Thus, the solution of the Maxwell's equations for a spherical wave
in the far zone has the form of the intensities presented in Table 3, where

h h e _
H, :f, H,, = ;p E,="" E, = @1
o - 20), a(g(H))
X = c &l (see 13 (9) ee 20)

and the constants A hep, €y, €, satisfy conditions
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From Table. 3 it follows that
the same (with respect to the coordinates @ and @)
electric and magnetic intensities are shifted in phase by a
quarter of the period.

This corresponds to experimental electrical engineering. In Fig. 2 shows

the intensities vectors in a spherical coordinate system.
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3. Energy Flows

Also, as in [1], the flow density of electromagnetic energy - the Poynting
vector is

S=nExH 1)
where
n=cldr. )
In spherical coordinates ¢, 8, p the flow density of
electromagnetic energy has three components S 0 S,, S » directed along

the radius, along the circumference, along the axis, respectively. They are
determined by the formula
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From here and from Table 3 it follows that
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From (5, 8, 9) we obtain:

((hep 7 (sm(;(p + a)t))2 + }

S =n-g°@ )
& ( )_CP +(h(pp)z(cos(;(,o+a)t))2
Further from (9, 2.13, 2.18) it follows that
5 " 1 (hgp ) (sin(;(p + a)t))z +
@ﬁ) (10)
+(ghy, Jeos(zp+an) |

where q is a previously undefined constant. If we take
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We also note that the surface area of a sphere with a radius p is equal to
47p* . Then the flow of energy passing through a sphere with a radius p

is
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It follows from (12) that
in a spherical electromagnetic wave, the energy flux
passing through the spheres along the radius remains




constant with increasing radius and does not change with

time.

This strictly corresponds to the law of conservation of energy.

It follows from (12) that the energy flow density varies along the
meridian in accordance with the law gz(H), since function can not be a
constant - see equation (20). The same conclusion follows from the well-
known solution, where g(@): Sin(ﬁ).

Appendix 1
The known solution has the form [3]:
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It should be noted that these tensions are in phase, which
contradicts practical electrical engineering.

Let us consider how equations (1, 2) relate to Maxwell's system of
equations - see Table 2. The intensities (1, 2) enter only in equation (6)
from Table 2, which has the form
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We substitute (1, 2) into (5) and obtain:
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From a comparison of (3) and (7) it follows that the intensities (1, 2)

satisfy equation (4). The remaining 7 Maxwell equations are violated. In

the equations (2, 3, 5) from Table 2 one of the terms differs from zero,

and the other is equal to zero. The violation of equations (1, 4, 7, 8) from

Table. 2 is shown above in Section 2. So,
the known solution does not satisfy Maxwell's system

of equations.
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