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“Jesus answered and said unto him, What I do thou knowest not now; but thou shalt know hereafter.” - John 13:7.

ABsTRACT. We demonstrate some elementary identities for g¢-series involving the g¢-
Pochhammer symbol, as well as an identity involving the generating functions of the (m,
k)-capsids and (m, r1, r2)-capsids.
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1. INTRODUCTION

The g¢-series is a topic of Mathematics with several applications: Number Theory, Analysis, Combina-
torics, Physics, and Computer Algebra. In this paper, we explore some identities, relating them to the ¢-
Pochhammer symbol. For example, we have shown that

[ ¢ } _ (1-49 (g™ @)oo(d" ™ @)oo
nl, 1-¢)1-¢""") (0x(d5q) ’

a new version of the ¢g-binomial coefficient, as well as one know elementary identity

l _1—ql. -1
nl, 1-¢* [n—-1]

and a new version of the Cauchy binomial theorem

14

IT (t+vdb
k:l 1
1 yfgtern /2y (1-¢(g 9o yrgn(n /2 .
(¢%q) = (=g (1= ¢""") (¢ Dn—1(a5 @)e—n—1

In addition, we apply the Lemma 3.1 to the capsids theory of Garvan and Schlosser [8], and find an
identity for the (m,k)-capsids and (m,ry,72)-capsids generating functions

1—q™ o
Cm,k(q) = 1—7?]’9 . Cm,m,m(qky q kv Q)'

We end this article with the following elementary identities:

(a;b)oc(c;d)os _ (ab; b)oo(cd; d)oo

(@5€)0(c; floo  (a€;e)oo(cf; foo
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and

2. FroM ¢-BINOMIAL COEFFICIENT TO ¢-POCHHAMMER SYMBOL

Theorem 2.1. If n<{ and n,{ are positive integers, and 0<|q| <1, then

HE =

(@)@ D)

(¢ @)oo(q% @)oo

I

where [ f; } denotes the g-binomial coefficient and (a; q)oo denotes the q-Pochhammer Symbol.
q

Proof. In [1, p. 3], we prove that

(B CR))

Jj=1
In [2, p. 85], we encounter
. 1—q"
lim =v
g—17 1—4q

and [3], we find

Apply the left hand side of (2.2) and (2.3) into (2.1), and obtain

] = I (25 ) (5 )
{ (qfl) ,(q";q)oo(q‘*";q)oo}
(@ =1D(@"—q¢") (609" D

(@9 Q)oo}

(¢ @)oo(q% @)oo

= lim
q—1-

— lim [ (ql_l)qn
g—1-| (" —=1)g"(1—¢*~")

~ lim { (1-q¢)  (a%a)(d""™ q)oo}
=1 (1=q)(1-¢") (Dx(d5d |

By quantization process, we eliminate the limit formula in previous equation and get

[f} _ (1—¢" (0" 0)o0(0" "™ @)oo
nl, (I=¢)(1-¢"") (¢20(d5@c '

which is the desired result.

Example 2.2. Set /=4 and n =2 in previous Theorem

[4} _(-g¢Y (595

2], (1-4*% (¢90)(q" 9
(1-4¢ (¢%9%
(1-¢%)? (¢ 2oo(q* Doo
(1+¢) (5%
(1-¢%) (¢ 0)oo(q"; @)oo

(0% 4 o 2
TG D)5 D) == tat ).

=1+ +q+¢%)=

S(1+¢)(1+q+q%)

Theorem 2.3. If 0<y,q<1 and L€ N*, then

4
H (1+yd")

k=
1 n n(n
— 14 ylg /2 4 (1—q )oo Z gD /2 |
(¢ = (=g (1= ¢" ") (¢ Dn—1(a @)e—n—1

where (a; q)oo denotes the g-Pochhammer Symbol.



Proof. Multiply the equation of the Theorem 2.1 by y™¢™"**+1/2 and sum from 1 at £ — 1 with respect to
n, and encounter

-1 ) 1_q qn q) (qlfn. q)
R e e SR e (24)
q n=1

(1—gm)(1—q*)

On the other hand, we know that [4, p. 300]

(a3 @)oo (a3 @)oo
a; a = = (a a; = . 2.5
(@ 9) (aq®; q)oo (ag% q) (a;9)a 25)
Replacing ¢ by a and n — 1 by « in (2.5), find
(4 9o
m ) = _ 2.6
(@%9) (@ D1 (26)
Replacing ¢ by a and £—n —1 by « in (2.5), get
t—n (@3 @)oo
)= ] 2.7
(@9 (G @)e—n— @7
From (2.4), (2.6) and (2.7), it follows that
-1 _
] _(a= q yrg
n,n(n+1)/2 2.8
q . .
nz::l Y {n L nz (=g =q"")@ @)n-1(a Q)e-n-1 28)

Sum 1+ y%¢*“*+Y/2 in both members of (2.8) and encounter
4 (2.9)

4
Z n(n+1)/2[ 14 :|
- n, n(n+1)/2

n=0
_ 0 0(0+1)/2 (1 q ) . y4q
Syt ( $ )00 z:: (1= —¢""") @ Dn-1(a Qe—n-1

The Cauchy Binomial Theorem [5] assures us that

4
qu"("“ { } =11 +vd (2.10)

k=1
From (2.9) and (2.10), we obtain

4
IT (t+vdb

k=1
0—1 i
— 14 ylget/2 (1 )oo Z y q (n41)/2 |
n=1 (1—-q") "G Dn—-1(0 Q)e—n—1
which is the desired result. 0

3. SOME THEOREMS

Lemma 3.1. If 0<zorg<1 and z,q€ C, then

1 _ (2% 9)
l—2q (2¢;@)

where (a; @)oo denotes the g-Pochhammer Symbol.
Proof. In previous paper [6, p. 2], we proved that
(1_9)(b/q; 7)o :(1_9)(a/q; 7)o
q) (b;q)s 1) (a;9)
_ (a/ a4 @)oo(b; @)oo
1—% (a; @)oo (b/ €5 @)oo

(3.1)
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Replacing g2 by a and zq? by b in (3.1) and encounter

1=q _ (49 (205 Qoo , 1 (4:9)oo(24% @)ox
1-2¢ (%926 Do 1—2¢ (1—)(¢% @)oo(26; @)oo
L (2% q)oo
1—2q¢  (2¢; @)oo

which is the desired result. O

Theorem 3.2. If 0<|q| <1, g€ C, and n is a positive integer, then

¢ ) (@* a)n
lc1;[2 e A=) 0— (1= ¢) (1= ) (g% a)n
Proof. We define
(@)oo _ o (@50
hence 9(g):= (6% Qoo ’nlﬂoo (4% q)n’ (3.2)
= lim (1-¢)1-¢*)1-gH(1—¢%)
9(q) = nl_wo (1—q" ) (1— ¢ 3)(1— ¢" 9 (1— ¢* 1)’ (3.3)

On the other hand, replacing ¢ by ¢™ in Lemma 3.1, we encounter

1 (qun. qn)oo
= : . 3.4
T—2¢" (24" ¢ (34)

3 5

Setting 2= ¢2, 2= ¢3, 2= ¢* and z = ¢°, respectively, in (3.4) and multiplying each other, we get

1 _ ("2 Moo (021400 (6%" T 4™ o (67" 55 ™) oo (3.5)
(1—¢"*2)(1—g"*3)(1— g ) (1 —q"*5) (@™ 400 (4" % )00 (6" 4™) 00 (4" ™) o

From (3.2), (3.3) and (3.5), it follows that

e (% @)n

1] T N R ) G e

which is the desired result. |

Theorem 3.3. If 0<|q| <1, g€ C, and n is a positive integer, then

(@50 (34D
(5" (1= 4) (% ¢)n
Proof. We define
2, 2 2, 2
(4% ¢°) (% ¢°)n (3.6)

1= * — lim
U e T L P

hence,

(-,
9(q) _nl—n)o(l — ) (g D) (3.7)

On the other hand, replacing ¢ by ¢®" in Lemma 3.1, we encounter

1T (24" ¢

Setting z= ¢ in (3.8), we get

1 (@ ")
1— gt (¢ 2o (3:9)

From (3.6), (3.7) and (3.9), it follows that
(@ 5" (3¢%)n
(@5 ) (1= a) (% a®)n’

which is the desired result. |

4. SOME APPLICATIONS FOR OLD RESULTS



Theorem 4.1. If 0<|q|<1, g€ C, and n,£ are a positive integers, such that n </, then

L _1—ql' -1
n q_l—q" n—1]/

where [ f; } denotes the g-binomial coefficient.
q

Proof. We proved above that (see Theorem 2.1)

[ ¢ } _ (1-4" (@594 D
nl, 1=¢)1-¢"") (¢90(q5q)

In [7], we encounter the definition of ¢g-gamma function

T, (2) == 0" (¢ D)o

(1-9)"' (¢ @)oo
(6% @)oo '

:>(qw§Q)OO: i—vlq(m)

(4.1)

(4.2)

Substitute the right hand side of (4.2) into the right hand side of (4.1), replacing x by n, by £ —n and

by ¢, respectively, and find

[ ¢ } _(1=¢H(1-g' "1—g)' " I'y(0)

n (1-gm)(1-q¢""A-q' " Ty(mTy(l—n)
_(1-¢)1-g)' (1) [¢—1]q!
(I—gm)(1—g""A=-q) ¢ [n—1l—n—1]!
1-¢Y1-q)' " "A=q)' Tt —n]g!  [—1]!
1—q)A—¢""A—q) —n—1] [n—1[f—n]!
:(17q‘)(lfQ)l‘”(lfq)l‘“"(q;q)zfn(lfq)“‘"‘l[ -1 }

(1=g)(1=¢"A=-)" g )e—na(l=g) ™ | n—1

(1—%)(1—(1)1"(% Qe—n { (-1 L

(I=g)(1=¢" A=) Y @)e—n-a(l—q) ™ [ n—1

_1fq[[ -1 }
1—¢n | n—1 q’

and this complete the proof.
Corollary 4.2. If 0<|q| <1, ¢€C, and n,{ are positive integers, such that n <£, then

(6@ _1-q" (e
(@On 1-0" (¢ Dn-1

Proof. Using the definition of g-binomial coefficient [8], we obtain

-

and

From Theorem 4.1, (4.4) and (4.5), we conclude that

(a)e  _1-¢"  (¢9)e
(G DG De—n 1= (¢ Dn-1(¢ Q)e—n
_(G@e_1-q" ()
(GDn 1—¢" (¢ Qn-1’

which is the desired result.
Corollary 4.3. If 0<|q|<1, ¢€C, and n,{ are positive integers, such that n <£, then

(¢ Dn—1(q; Qe _ (¢°"54™)o0(q% ¢ oo

(@D @)e—1 (470" 0(0% ") o

Proof. By Lemma 3.1, for z— 1 and ¢— ¢*, we obtain

1 (¢* 4"

1-¢* (¢%¢Y’

(4.4)

(4.5)
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and, again, by Lemma 3.1, for z— 1 and ¢— ¢", we find

1 (¢* ")
_ _ 47
T—q" (¢% 0" (4.7)

From Corollary 4.2, (4.6) and (4.7), we conclude that

(6 D)n—1(q;0)e _ (¢°"54™)oo(q"% ¢ )

(@Dl De—1 (00" 00(0% ¢Y)
which is the desired result. |

)

5. APPLICATION FOR THE GENERATING FUNCTIONS OF (m, k)-CAPSIDS AND (m, 71, 72)-CAPSIDS

Theorem 5.1. We have

1— qm (q2m; qm)oo
C, k(q)= . ,
where Cy, (n) denotes the generating function of (m,k)-capsids and (a; q)so denotes the g-Pochhammer
symbol.

Proof. In [9, Proposition 1, p. 3], Frank Garvan and Michael Schlosser define the generating function of
(m, k)-capsids by

L (4™ 4™
Cm’k(q)'_(q’“;q’”)oo(qm*’“; 4o (5-1)

Replace g by ¢ and z by 1 in Lemma 3.1
1 _ ( qu; qm)oo (5.2)

I—q™ (™™o

Replace ¢ by ¢™ and z by ¢®~™ in Lemma 3.1

1—gk (¢%; ™) oo

k

Replace g by ¢™ and z by ¢—* in Lemma 3.1

1 (q2m7k; qm)oo
= . 5.4
1_qm—k (qm—k; qm)oo ( )

From (5.1) at (5.4), it follows that

1—qm (@°™; 4™)oo
C k\q) = . . )
which is the desired result. O
Theorem 5.2. We have
1—q™ kK
Cm,k(Q)_ 1_qk ’Cm,m,m(q » q 7Q)
or
1—q™ —k k
Cm,k(q): 'Cm,m,m(q s q 7Q)7

where C., (n) denotes the generatinf function of (m,k)-capsids and Cy, . (z,y,q) denotes the generatinf
function of (m,r1,72)-capsids.

Proof. In [9, p. 10, Proposition 2|, Frank Garvan and Michael Schlosser define the generating function of
(m,r1,72)-capsids by

r1+72. M
2450 oo (Y4 4™ )0

Conrra(@, Yy, @) = (



Let 71 =m,rs=m,x=q" and y=¢~* in (5.5) and encounter

2m.

("™ q™)oo
(@™ ™) oo (@™ % ™) oo

Comm(d®, ¢, q =

(*™5 ™) oo
(@™ %k g™) oo
or, setting r1=m,ro=m,r=¢ ¥ and y=q* in (5.5), we find
—k K (¢*™ q™) o —k -k
Cm,m,m(q s g7, Q) = (qm_’“; qm)oo(qm+k§ qm)oo = (qm 5 qm) Cm,m,m(q 5
(™4™

(@™ % q™)oe
Comparing (5.6) and (5.7), we conclude easily that

Conymm (@, 07%,¢) = Cop e om(a7F, 4%, q).

From Theorem 5.1, (5.7) and (5.8), we obtain

— 1—q™ (@™ % q™o k ,—k
Cm,k(q)_ (1_qk)(1_qm,k) (q2m7k7qm)oo Cm,m,m(q »q 7q)
or
— 1—q™ (@™ " ¢ —k ok
Cm,k(q)_ (1_qk)(1_qm_k) (qu—k; qm)oo Cm,m,m(q » 4 7Q)'
k

Replace g by ¢™ and z by ¢~

L (@750 (@750
1— m—k m—k. ,m 2m—k. ,m - q :
q (@™ %™ (g 1™ oo

Now, from (5.9) at (5.11), we finally deduce that

in Lemma 3.1, we get

C _1—q™ .C k —k
m,k(q)— 1qu m,m,m(q s q 7Q)
or
1—q™ _
Cm,k(q): 1_((]]k 'Cm,m,’m(q k7qk7q)7

which are the desired results.

Theorem 5.3. If

and
Prmom (@5, 475, 0) = (@™ % ¢™) 0o (@™ F; ™) 005

then

(i)

1—q¢* 1

and Pm k(q) Pm,'m m(quqikﬂn

(ii)

(@™ g™ 1
(6% q™)oe 1—¢*

Proof. By Theorem 5.2, we obtain

Crn k(@) = ¢"Crn 1(@) + Crn i (0, 475, @) — 4" Cr i m (@, 475, q).

Hence, following Garvan and Schlosser, we define

Pri(@) = (4" 4™) oo (@™ % 4™ o
and define

Prrmo(@5 9, @) =(2 65 ™) 0o (Y 475 ¢™) 0o

Setting ry =m,ro=m,z=¢" and y=¢ % in (5.14), we have

Prom,m(@% 7%, @) = (@™ ™) oo (@™ 5 4™ o

= (QM7k§ qm)oocm,mym(qu

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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From (5.1), (5.6), (5.12), (5.13) and (5.15), we find

(@™ 0™)oo _ (4™ 4™)0 (@°™; 4™)oo (@™ 4™)oo
=q + - —q" - 5.16
Py k() Pr(@)  Pomm(d®, 075, ) P im,m(a%, 7%, q) (5.16)
Divide both members of (5.6) by (¢™; ¢™)eo
= + — —q™m ! — . 5.17
Pos@) Poni@ @50 P05 0) L @5 P50 0) (547
Replace g by ¢™ and z by 1 in Lemma 3.1
1 (q2m. qm)oo
= ) . 5.18
L—q™  (¢™ ¢ (5-18)
From (5.17) and (5.18), we get
1 q* 1 qr
= + — . 5.19
Pkl @ Poonl@) T A=) P @0 5o0) (1= ) P (52052 4) (519
Multiply both member of (5.19) by 1 — ¢ and rearranging
(1-¢™(1—q") 1—q™ 1-¢* 1
- = = . 5.20
Pesl@) Prro @050 Pro@) P05 0) (520
From (5.13), (5.14) and (5.20), it follows that
1—¢" 1 1—¢" 1
= = = . 5.21
Pri(@)  Prym,m(0%07%,0) 7 (% ¢™)oc(@™ 7% 0™)0e (@715 0™)oc (@™ ¢™) 0 (5-21)
Eliminate (¢™~*; ¢™)o in both members of (5.21) and encounter
(@™o _ 1
(54 1-4¢"
This completes the proof. O
Corollary 5.4. If
P (@) 7= (6% ™) oo (@™ " ™) o,
then
(i)
(1-g"N(1—qm") 1
P 1(q) (@™ q™) (@™ g™) o0
(iz)
1 _ q* " 1
Po(@)  Poa(@) (@755 ¢™)0o (0™ ¢™) oo
and
(iii)
1 gmk n 1
Prk(@)  Prk(@)  (6%50™)oo(@® % q™) o0
Proof. From Theorem 5.3.ii, we obtain
1—¢F 1
= . 5.22
(@ ¢ (™% ¢ (5:22)
and, replacing k by ¢, in (5.22), we have
1—¢* 1
= . 5.23
(@%5a™) (™15 0™ (523
Multiply (5.22) by (5.23), member by member, we find
1-g")(1—¢* 1
1-gh-q) _ : (5.24)

(@5 q™)oo(@% q™)oo (@55 ™) oo(@™ 5 ™) o0



Set £=m — k into (5.24)

(1-gH—gm*) _ 1
(@ ) oo (@ F 00 (@5 ™) oo (@ ™) oo (5.25)

From (5.13) and (5.25), we obtain

1-gHt—qm ") _ 1
P k(9) T @ ) oo (P ) o (5.26)

From Theorem 5.3.i and (5.15), we have

1—¢F 1
— . 5.27
P @) (@5 )6 ) (5.27)

From (5.26) and (5.27), we find

qmiqm—k B 1 1qu qm_k(lqu) 1
Poi(a) ("% 0™ oo(@®" % 0™)oe  Pmk(q) Pok(q) (@ q™)oo(q % ™) s
1
(@5 M) oo (™8 ™) o

Using the following identity, see Theorem 5.3.ii,

(" g 1

(@%q™) 0  1—q¥

in (5.28), we obtain
q" *1—-q") _ 1-g* 1-¢*

P ik(q) (6% 0™)oo(@™ 5 4™ oo (455 ™) oo (®™7F; ™) o
quk 1 1
= = k. ,m m—=k. ,m k. ,m 2m—k. ,m
Prx(@) (6% 0™) (a7 0™ (4% q™)oo(q 14™) oo
1 gmF 1

= + R
Prw(@) Pmr(@) (€% 0™)oo(@®™ 7 ¢™)

which are the desired results. O

Corollary 5.5. For any complex numbers a,b,c,d, e, f with 0<|al, |b|,|cl|,|d|, |e|,|f]| <1, then
(@;b)oc(¢;d)oo _ (ab;b)oo(cd; d)oo

(a;e)oo(c§ f)oo (ae;e)oo(cf; f)oo

Proof. Replace m by n and k by £ into (5.27), and obtain

1—¢* 1
- , 5.29
Poo(q) ("5 0)oe(d" % 0™ oo (5:29)

Multiply (5.27) by (5.29)

(1-gM1—-q") _ 1
P (@) Pre(q) (4™ 0™)0o(@™ 75 ) 004" T4 ¢7)00(¢" 7% ™) oo (5.30)
1 1 g+ gt — gttt :

P k()P e(d) (@5 0™)oe(@™ 5 0™ oo(@ 5 )00 (@5 000 Prk(@) Pre(q)”

From (5.13) and (5.30), after simplification, we have

1 B 1 _ qk+ qé _ qk+é (5 31)
(0% 4™)oo(@ q™)oc (™% 4™)0o(@" 50 0o (655 0™)oo(d% 000 '

Replace ¢* by a, ¢ by b, ¢* by c and ¢" by d in (5.31)

1 1 _a+tc—ac (5.32)

(@;0) (i d)e (absb)oo(cd;d)os  (a50)o0(c;d)oo
Replace b by e and d by f in (5.32)

1 1 _at+c—ac
(4;€) (6 oo (@€;€)aa(cf; oo (a5€)00(C; floo (5.33)
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Eliminate a +c¢—ac in (5.32) and (5.33)
(a;0)o0(¢;d)os _ (ab;b)oo(cd; d)oo

(a; 6)00(65 f)oo (ae;e)oo(cf§ .f)oo7
which is the desired result. O

Example 5.6. Set a=q,b=¢? c=¢% d=¢* e=¢° and f=¢% in previous Corollary, and get

(45 4%)oo (% 0Y)oo _ (4% 4%)o0(q"5 4")oo
(45 6°)0c(d% %) oc (4% 0°)o0(q” ¢%) oo

Example 5.7. The Corollary above also serves to find this type of equality

490 _ (99 6%)o(4°q% Yoo

Moo (426°%6°)oc(4?4" 4" o

0% ¢°)(99% 0¥ (49°; 4°) (40" 4*) e
)

(0% 4o

—~|—~

)
)

w(2%q" ¢ (4°47; 4)=0(99%; ¢°) 0
oo (22¢%; ¢%)0o(4%q%; %) oo

8

8
~|~ ]~ ] ="
B
L)

)oo(@% 4o (4"% q7)0(4% ¢°) o

00(@%5 400 (0% 4N oo (6% 4%)o0(4%; ¢4 0o
% qY) % 0%)oo(0°; %) oo (4% 4*) o (475 ¢ o
oo (4% @%)oo(d7; 4°)00(0% 47)00(01%; ¢7) oo

Theorem 5.8. For any complex number ¢, with 0<|q| <1, n,r,z € N*, r<n and z >0, then

-1
[ n } TT (@50 oo(@F 74 %) o
q

= E+1. @ E+tntl. oz )
r s (@ 0%) 0o (@Y 7)o

where [ : } denotes the g-binomial coefficient and (a; @)oo denotes the g-Pochhammer symbol.
q

Proof. In previous paper [6, p. 8], we prove that

r4+1. n—r+1.
{ n } _(q ,q)oo(qn+1 ; 4)o (5.34)
Tl (@3 @)oc(a" ™ @)oo
On the other hand, we know [10, p. 13, Entry 1(iii)] that
z—1
(a; Q)00 = || (ad"; ¢")oo- (5.35)
k=0
Replace a by ¢ in (5.35)
x—1
(¢ Doo= || (@ ¢%)co- (5.36)
k=0
Replace a by ¢"*! in (5.35)
x—1
(@5 o= ] (@ 4% oo (5.37)
k=0
Replace a by ¢" ™! in (5.35)
z—1
(@ Deo= ] ("7 ¢%) e (5.38)
k=0
Replace a by ¢"~"*1in (5.35)
z—1
(@ oo =[] (" ¢%) e (5.39)
k=0

From (5.34), (5.36) at (5.39), we conclude that
xr—1
[ n } -11 (@7 ") oo (@ T 7 4%) o0
e i (@ e)e(@ T )

which is the desired result. |
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Example 5.9. Set n=5, r=2 and £ =3 in Theorem 5.8

2
[ } H )" 6% o _ (0% 6% (0" 6P (0% 0% (6% 60
’““ )oo(*T5 %) e (6P (6% 6%)0(d756%) 00 (6% @)oo

(g% ¢%)%(d% )% _|5
TG ) (0% P (q,q>oo(q;q3>oo‘{2L

(q Q) (q Q) _ 2 2 3 4
(q;q3)oo(q,q)oo(q,q)oo(q;q?’)oo_(lJrqlequrq+q+q>‘

Example 5.10. Set n=2, r=1 and £ =5 in Theorem 5.8

4 72 ¢%)2
R
% (P (¢ ) (%6% (5 P)%
(45 6°)00(@% @°) oo (4% 6°)oo(q; ¢P) e (% q) (q oo (05 0%)00(0% %) oe (0% 0%)oo(dT ¢%) oo

(¢ 4°)o _ (d" %)
TGP (1+ Q)(qﬁ; q5)oo‘0k!

Example 5.11. Set n=5, r=2 and =5 in Theorem 5.8

(
4 k=0 °°(
(6% @®)so(q% %) (0% d%) (a5 @) (d° 4 ) ( 14°)oc ( ) (4%6%) 5 (47 6°)oo(q% ¢°) oo
(45 4°) oo (45 q5)<><i1 (5q2; q55)oo(5q7; oo (0% %) oo(q® ,q %) oo (q ,q )9 (% iq )1°8 (5q5; 7°) oo (4% ¢°) o
A5 0)e(5 )00 _ () 4 2y(14 g4 g2 4 g2 4 ) L D)o 0 )

(6% 4°) (475 4°) oo
6. EXPANSION FOR SOME BILATERAL LAMBERT SERIES

In this section, we demonstrate how the theory previously developed can be used for the expansion of
some bilateral Lambert series.

Theorem 6.1. For |q| <1, we have

_ (6% 9D)50(¢% q)oo(d"; 473
Z 1—q7"“ (4 47)3%(q% q )oo

2
n=-—oo R

Proof. Define the bilateral Lambert series

n

L(q):= Z % (6.1)

n=-—oo

On the other hand, we know the Ramanujan’s notable 13; summation [11, p. 118, (4.4.6)]

(b; On (25 @)oo(b/ (a2); @)oo (b; @)oo(q/ @5 @)oo

for any complex numbers a,b, z with |z| <1 and |b/a| < 1.
Replace k£ by Tn+1 and m by 7 in Theorem 5.3.ii

Tn+8.

i (asbs g, 2)i = i (@ @)n n _ (025 Q)oo(q/(a2); Q)oo(a; D)oo (b/ i @) (6.2)

n=-—o00

1 (@™"% 4
T— gt (g g7y (6.3)

We know the identity [11, p. 118, (4.4.5)], for all integers n,

o) = @@ o v (39)c
(a5 @)n: (g™ q)m:}( 4" @)oo @ (6.4)

Replace ¢ by ¢” and a by ¢® in (6.4)

(g™, q7)w:M. (6.5)
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AND (m,r1,r2)-CAPSIDS

Replace ¢ by ¢7 and a by ¢? in (6.4)

Tn41. 7 _(Q§q7)oo
(@4 ) oo =25

From (6.1), (6.3), (6.5) and (6.6), it follows that
o~ (@0 (654D o~ (69)n
L(q) = n— m,
@= 2 @5’ (60 n;oo (0% a7

n=-—oo

Replace ¢ by ¢, a by g, b by ¢® and z by ¢ in (6.2)

(¢%q")n (450" 0(4% 470 (4% 4T 0 (4% ¢ oo

n=-—oo

e % 47 q) = i (6000 (4% 4D)oo(@% 4 oo(q"; )oo(q75 7)o

From (6.7) and (6.8), we find

L(q) = {45 Dol q7gm(q7; q)%

(¢;47)2:(¢% q7)2% ’

which is the desired result.

Theorem 6.2. For |q| <1, we have

n=-—oo

Proof. Define the bilateral Lambert series

On the other hand, we know the Ramanujan’s notable 13; summation [11, p. 118, (4.4.6)]

o ayie S (@D (a250)00(q/ a2 @)oo(a3 Q)oe(b/ a3 @)ox
G D D o B e o (Y e e (o ey v

for any complex numbers a,b, z with |z| <1 and |b/a| < 1.
Replace k£ by Tn+2 and m by 7 in Theorem 5.3.ii

1 (@™ 4N
L—g™ 2 ("2 ¢7)o0”

n=-—o0

We know the identity [11, p. 118, (4.4.5)], for all integers n,

(@5 q)oo
(a;Q)n

(a;¢)0 n
a; Q)= = (aq™; @)oo =
(@ Q)= gy = (@47 9)
Replace ¢ by ¢” and a by ¢° in (6.12)

(@9 ¢ ) oo = (g% q7)oo.

Replace ¢ by ¢” and a by ¢2 in (6.12)

2. 7
iz, g7y (@54
(@™ 4¢") (.
From (6.9), (6.11), (6.13) and (6.14), it follows that
(%4000 n_ (4% 4 o0

_ (0%
LOMDY (@2 7)o _(qQ;q7)oonZ Cr

n=-—oo

Replace ¢ by ¢7, a by ¢%, b by ¢° and z by ¢ in (6.10)

© 2. 7 3. .7 a7 . 472
W@ dh )= Y (%40 _n . q,qgooq,qg?oq,qg)fo

n=-—oo

From (6.15) and (6.16), we find

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)
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which is the desired result. O

Remark 6.3. In [12, p. 59, (3.3.12)], we encounter the following formula, for |¢| < |z| < 1 and any number y,

oo

(zy; oo(a/ (2Y); Doo(@3 0)3 ) T

(%3 0) oo (q/ %3 @)oo (Y3 D) oo(0/ Y5 @)oo 1—yq™

n

(6.17)

n=-—o0

If we replace ¢ by q7, y by g and z by ¢, then, (6.17) reduces to the formula in Theorem 6.1; therewithal,
if we replace ¢ by ¢, y by ¢? and = by g, then, (6.17) reduces to the formula in Theorem 6.2.

7. MORE ELEMENTARY IDENTITIES

Theorem 7.1. For any complex numbers a,b,c,d with 0<|al,|b|,|c|,|d| <1 and |d|>|c| and |b|>|a|, then

(@;b)oc(cd; d)oo _ (a;b/a)oc(d;d/C)oc

(;d)oo(ab;b)oo  (b3b/a)oo(c;d/ €)oo

Proof. We consider the identity, see Theorem 5.3.ii,

m+k. ,m . 1 m ™ ™
(q(qk;c;rz)oi :1qu:>(qk;q Joo = (1= ") (g™ ¢"™) o (7.1)

Let m—m —k in (7.1) and encounter

(g : * = 7= (@50 o= (14" (g™ 4™ ") e (7.2)

Eliminate 1 — ¢* in (7.1) and (7.2)

k. m—k m—+k. ,m
(@557 (4™ 4™ Moo (73)

Replace k by £ and m by n in (7.3)

L. n—=~ n+£. n
(45 4")o = (g ’q(qn);jﬁl);q oo, (7.4)
Divide (7.3) by (7.4) and find
k. ,m k. ,m—k m-+k. ,m n. n—~
(4" 4™ o0 _ (%™ *)oo(@™ " ¢™)0(q" 4" ) oo (7.5)

(65900 (@™ 0™ Mool ) 0o(¢5 4" oo
Replace ¢* by a, ¢™ by b, ¢° by ¢ and ¢" by d in (7.5)
(a;0)00 _ (a;b/a)oo(ab; b)oc(d; d/c)oo - (a;0)0(cd; d)o (a3

(ad)oc  (bib/a)oo(cd;d)c(c;d/C)oc ~ (c;d)oc(abib)os (b5
which is the desired result. |

Example 7.2. Set k=1 and m=3 in (7.3)

Theorem 7.3. For any complex numbers a,b,c,d, e, f with 0<|al,|b],|c|,|d|,|el,|f| <1 and |d| > |c| and
|b] > |a|, then

(ase)oo(cfs floo _ (asb/a)oo(dsd/c)oo

(¢ Nloc(ae;se)os  (b50/a)oo(c;d/C)oo”

Proof. In Corollary 5.5, replace f by d and d by f and encounter
(a50)oo(c; floo _ (absb)oo(cfs floo _, (a1b)oc _ (a5€)oc(abib)oc(cf; foo (7.6)

(@;€)oo(cid)oe  (a€i€)oo(cdid)oc ~ (d)oc (€5 foo(cd; d)oo(ae; €)oo
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Substitute the right hand side of (7.6) in the left hand side of the Theorem 7.1 and find
(@;€)oo(cf; floo _ (a;b/a)oo(d;d/C)oc

(c; floc(aese)os  (b3b/a)so(cid/C)oo’
which is the desired result. O

Example 7.4. Set a=q,b=¢? c=¢q% d=q¢* e=¢" and f=¢% in previous Theorem, and get

(¢;4°) (4% ¢%) oo _ (45 @)oc(g*; @)oo

(4% 6°)0(@% @%) 00 (4% @)oo(9% @)oo’

Theorem 7.5. For any complex numbers a,b,c with 0<|al, |b],|c| <1, then

1—ab— (a;¢)s0 n (b;¢)s0 (a;¢)o0(b; €)oo

(ac;0)oo  (bC;0)0  (aC;¢)oo(be; €)oo

Proof. In Theorem 5.3.ii, replace ¢* by a and ¢™ by c, finding

(acic)oe _ 1 g (@50)

(@50 —1_a:>1 a= (e o) (7.7)
Replace a by b in (7.7)

(bc7 C)°° 1 _ (b,C)oo

oM RS (T 9

Multiply (7.7) by (7.8) and encounter

(@3 ¢)oo(b; €)oo (a; ¢)oo(b; €)oo

l—a—b+ab= 1-— 1-b—(1—ab)= . 7.9
a—bta (ac;c)oo(be; c)oc,:> at (1=ab) (ac;¢)oo(be; €)oo (7.9)
From (7.7), (7.8) and (7.9), it follows that
;€)oo b; €)oo (a;¢)o0(b; €)oo
1— — (a,c) ( ) _ ) )
ab (ac; ) + (bc;0)oo (aC;C)oo(be; €)oo’
which is the desired result. (]
Example 7.6. Set a= q,b=¢? and c= ¢ in previous Theorem, and get
|- (46%)0 | (6%50%)oc  (4:67)o(q?5 ¢°)oc
(@5 0%)0e (0% 6% (0% 6%) (3% ¢F) o
Example 7.7. Set a= q,b=¢? and c= ¢* in previous Theorem, and get
|- (45090, (42300 _ (4:4D)o(e?; Yoo
(@Yo (@50 (0% 0)c(3% ¢*) oo
Example 7.8. Eliminate 1 — ¢ in the Examples 7.6 and 7.7, and get
(46%)o0(0°16%) o0 (230o0(a%3 00 _ (23000 (414" | (0°10%)oc  (450")o0
(0% 0)c(0% %) (0% 0)o(0% 0 (656%) (%0 (% 0% (6% qY)
Theorem 7.9. For any complex numbers a,b with 0 <lal,|b| <1, then
(abib)oo(ab’ibh)oe _ (ab%b%)oc(ab®sb)ee _ (abib)oe _ (ab%b%)oo _ (ab%0))oo | (ab% 0%
(ab?;0)oo(ab®:bY) e  (ab%02)oo(abb; 030 (ab%b)e  (abk0?) o (abb;b3)s  (ab®;b%)oe”
Proof. We know the elementary identities
1-¢"=(1-2¢") - ¢"(1-2q") (7.10)
and
1-¢*=(1-2¢")—¢*(1-2q"). (7.11)

Replace ¢* by ¢ in (7.10)
1— q2v:(1_mq4v) _q2v(1_xq2’v)_ (712)
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Replace ¢ by a, 1 —xq* by A, 1—2¢** by B, 1 —2¢® by C and 1 —2¢*” by D in (7.11) and (7.12),
and encounter the system of equations

1-a?2=C—-0a%A
{ 1—-a?=D —a?B (7.13)

Eliminate a in (7.13) and obtain
A-B=(1-B)C—(1—-A)D. (7.14)
Replace A by 1 —xq”, Bby 1 —x¢?", C by 1 —x¢3 and D by 1 —x¢*’ in (7.14)
(1-2¢")—(1-2¢”)=1-(1-2¢")]1-2¢") - [1-(1-2¢")] (1 -2¢"). (7.15)
Replace z=a and ¢” =5 in (7.15)
(I—ab)—(1—ab?)=[1—(1—ab?)](1—ab®)—[1—(1—ab)] (1 —ab?). (7.16)

In Lemma 3.1, replace z by a and ¢ by b, and find
(ab;b)es

1-— ab:m (7.17)
From (7.16) and (7.17), we conclude that
(abjb)os  (ab* b 1 (ab* ) oo | (ab® %) oo 1— (ab;b)oo | (abb?)eo (7.18)
(ab%b)oe  (ab%b?)o (ab% b2) o | (abP; %) 0 (ab?b)oo | (ab®;b%)s '
Multiply both members of (7.18) by (ab?; b)uo(ab?; b?)(ab®; b?) oo (ab®; b*) o, and encounter
(ab;b)oo(ab®bY)oo  (ab?0)o(ab?b®)oe _ (abjb)oo  (ab*b%)o  (ab®b%)s n (ab% b
(ab?%b)o(ab®; b)) e (ab®502)o0(ab®0%) o0 (ab%D)s  (ab502)oe  (abS50%)o = (abS;dh)oy’
which is the desired result. ]

8. CONCLUSION

In this article, we developement the theory of (ab;b)s and made some applications in the elementary
identities in classical g-series theory; including, we evaluate some bilateral Lambert series and we show a
new identity for the generating functions of (m, k)-capsids and (m, r1,72)-capsids.

We hope that, in the future, with more research, we will be able to apply this theory in the g¢-
hypergeometric series; or, at least, for the g-binomial theorem. For now, that’s all.
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