Not merely Memorization in Deep Networks:
Universal Fitting And Specific Generalization

Xiuyi Yang

Abstract—We reinterpret the training of convolutional neural
nets(CNNs) with universal classification theorem(UCT). This
theory implies any disjoint datasets can be classified by two or
more layers of CNNs based on ReLUs and rigid transformation
switch units(RTSUs) we propose here, this explains why CNNs
could memorize noise and real data. Subsequently, we present
another fresh new hypothesis that CNN is insensitive to some
variant from input training data example, this variant relates to
original training input by generating functions. This hypothesis
means CNNs can generalize well even for randomly generated
training data and illuminates the paradox Why CNNs fit real and
noise data and fail drastically when making predictions for noise
data. Our findings suggest the study about generalization theory
of CNNs should turn to generating functions instead of traditional
statistics machine learning theory based on assumption that the
training data and testing data are independent and identically
distributed(IID), and apparently IID assumption contradicts our
experiments in this paper.We experimentally verify these ideas
correspondingly.

Index Terms—generalization, RTSU, generating functions.

I. INTRODUCTION

With the dramatically growth in power of computer, data
generated by electronic devices and the invention of efficient
training techniques of several hidden layer neural nets[1],
deep learning has proven to be powerful for a wide range of
problems, including fields of computer vision, such as image
classification [2], [3] and object detection [4], [5], fields of nat-
ural language processing, for instance, speech recognition[6],
[7] and Speech Synthesis[8], [9], reinforcement learning
[10], [9], [11], even in predicting DNA-protein binding[12],
organic chemistry reactions[13],drug discovery[14], Fluid
Simulation[15].

Following the strong capability of deep networks, there
has been some theoretical work eager to find the source of
its powerful generalization ability. Some theoretical works
have focused on the loss surface of neural nets [16], [17],
[18]. Some other theoretical research have placed emphasis
on universal approximation power of neural networks, earlier
works [19] prove universal approximation for functions .
Lately, in[20] by counting the number of regions of linearity
to tells us how well the nets can approximate arbitrary curved
shapes. In contrast, [21] proposed a new measure, based on
Betti numbers, to show that the expressive power of deep nets
is superior to its shallow counterparts. [22] has shown that
threshold network may require an exponentially larger number
of hidden unit so it can capture the decision boundary of a
two-layer ReLLU network . Similarly, [23] specifically study
the topology of classification regions created by deep nets,
as well as their associated decision boundary.[24] propose

1) high training acc,

low validating acc

semantic

. noise
image

2) high training acc, 3) high training acc,

£

Figure 1. Inequality sign means inconsistent. 1) A typical feature when
CNNs overfitting on CIFARIO or random data. After explicit or implicit
regularization, 2) CNNs could generalize well on CIFAR10, 3) but only fit
random noise data with bad generalization, by [25].

high validating acc

low validating acc

a new measure based on an interrelated set of measures
of expressivity to the neural network expressivity, they find
that the complexity of the neural nets grows exponentially
with depth. However, all these theoretical justification still
can not convincingly bridge the gap between the empirical
success of neural nets and understanding of its excellent
generalization performance. why methods such as SVM and
logistic classification based on mature theory not work so well
as CNNs?

In supervised learning applications the traditional view of
generalization refers to the ability of the learned algorithm to
fit previously unseen instance and if the model is excessively
complex to memorize the training data, then it is overfitting.
A model that has been overfitted has poor predictive per-
formance, due to that it overreacts to noise fluctuations in
the training data. Yet it is not well-justified that CNNs often
achieve excellent generalization performance with excessively
complex model. [25] conducts experiments to show that CNNs
are rich enough to memorize the training data regardless of the
type of training data. They argue that all kinds of regulariza-
tion techniques in deep learning should not be counted that
important as in traditional machine learning . Then building
on this work, [26] proposes that CNNs always learn simple
pattern first then fits noise, they also note that data maybe
play a important role in memorization and generalization in
CNNs. Though there still has a pending issue that CNNs fit
random noise input datasets and pattern datasets equally, in
real semantic datasets it does a good job, the other it does
not, see Figure 1.

In this paper, We’re going to aim at settle the generalization
divergency of CNNs between benchmark data and made-up
data. Except this, we discover theorem presented [27], which
is named by us as UCT for ReLUs and orthogonal bidirectional



rectifier (orthogonal BReL Us) nets, could explain why CNNs

fits any kinds of data. For validating the validity of UCT

further, we presents a new kind of activation units that share

UCT as CNNs based on ReLUs and orthogonal BReLUs.
The rest of this paper are organised as follows:

(1) Section II mainly focus on training periods of CNNs, we
demonstrate that layers of CNN with units that satisfy
universal classification property can classify any multiple
disjoint sets ignoring its generalization ability. If no oth-
erwise specified, "classify" means classify training dataset
and ignore the performance of model on test dataset.

we present a new kind of units in subsection II.1, RTSUs
and prove this units to satisfy UCT. Experimentally verify
that wide residual network based on RTSUs can classify
any disjoint datasets in II-C, including random datasets
generated from Gaussian distribution, binary CIFARI10
datasets constructed from CIFARI10 and stardard bench-
mark CIFAR10/100. As a side effect, we show CNN based
on RTSUs is comparable with BReLUs and Concatenated
rectified Linear Units (CReLUs) [28] working on bench-
mark datasets CIFAR10/100.

The second mainly episode lay stress on generalization
of CNNs. We put forward a conjecture that Functions
represented by CNNs trained with optimization method
map input data and this data under some transformation
invariably. This conjecture could reasonably explain per-
formance diversity of CNNs on benchmark and made-up
datasets as in [25]. And then, experiments were conducted
to validate this hypothesis and resolve inconsistency in
Figure 1. (Section III).

Finally, Section IV concludes the paper with possible
problem and future works.

2

3)

II. UNIVERSAL CLASSIFICATION

[27] attributed the excellent empirical performance of recti-
fier neural networks to UCT that ReLU nets could transform
disjoint pattern datasets to linearly separable. Although we
don’t argue this theorem could explain the extremely good
generalization performance, instead, it could indeed provide
an illuminating insight into why DNNs could perfectly fit in
arbitrary disjoint finite training datasets.

A. Universal Classification Theorem

Theorem IL.1 (Universal Classification Theorem). Any two
disjoint subsets X1 and X5 in R™ can be transformed to be
linearly separable through a cascade of two ReLUs, which
require Li(La + 1) or less ReLUs if Xy and X» have a
disjoint convex hull decomposition with Ly subsets of X, and
Lo subsets of Xo [27].

As in [27], a cascade of two layers of orthogonal bidirec-
tional ReLUs possess similar theorem. In Section II-B, we will
present a new kind of units that have this property. Right now,
let’s focus on explaining experiments by [25] by this theory.

A finite training datasets always has a trivial disjoint convex
hull decomposition that each subset only includes a element
of datasets[27]. In practical, every training datasets is finite, so

this implies a cascade of two ReLUs can classify any two finite
datasets, whether semantic datasets as image or datasets by
sampling Gaussian or Uniform distribution. Replacing dataset
labels with random ones regard as modification of the disjoint
convex hull decomposition of training data and associated
linear classifier needed to transform datasets.

Another possible outcome is that, comparing with regular
datasets, random noise datasets with the same quantity and
dimension need more ReL.Us to transform it into being linearly
separable, in another words, requiring neural nets with more
parameters.

Next, we will present RTSU that satisfy UCT.

B. Rigid Transformation Switch Units
Definition I1.1. RTSUs are defined as

for x <0,
for x > 0;

o .fl ($)7
Ty = { F2(@), (1)
Denote f;(x) = Rk;(z) + s,i = 1,2 as a rigid transfor-
cosf —sinf

sinf  cosf
vector on a ray in R

mation, R = ] 1S an rotation matrix, s is shift

m and ko(z) — m :

for x <0,
for x > 0;

For similarity, we let kq(x) =
define

k(z) = { k1(z),

ks(z), 2
so, f(z) = Rk(z) + s.

We only prove convex separability to linear separability
under two disjoint sets, further statements depend on this one
applying similar tricks as in [27].

Firstly, we let R equal to identity matrix and s = 0, under
this condition, f(x) = k(x).

Lemma IL.2. If two convexly separable sets can be trans-
formed to be linearly separable through a layer of RTSU units,
then a cascade of two layers of RTSU nets could transform
any two or more disjoint sets into linearly separable sets.

Proof. 1t can easily be proved by the work [27] O

In order to prove the convexly separable of f(x), we start
from simpler k(x).

Theorem I1.3. let X) and X5 be two convexly separable sets
with a finite number of points in R", CH(X))NXy =0, Xy =
Ui, &4, with CH(X,) N CH(X]) = 0; let whx +b; be a
set of linear classifier of CH(X]) and CH (X)), such that for
any j € [La).

'w;frw—i—bj <0, for x € X,

ijzc—Fbj >0, for x € XQj

Denote

W =S [wl,wg, ...,’sz]

b2 [by,bo,...,bp,]"

)[k](x)] £ [k1(x), ko (), ... kp, (2)]7 kj(z) = k(w]z +
b;).
Y2l (=) me A}l =1,2

Thus, Z, and 25 are linearly separable.



Proof. it could be easily seen that CH(Z;) is a subset
of convex set {[0,al,a < 0} and ZJ is in the form of
{[b,c],b; > 0,¢; = 0}, a,b,c € RL2 For a < 0,
every entries in vector a is less than or equal to vector O.
According the definition of convex hull, we can easily prove
CH(U?Z%) N{[0,a],a < 0} = (), due to the fact that there
exists b; > 0.

O

Theorem I1.4. Let Xy and X5 be two convexly separable sets
with a finite number of points in R", CH(X1) N Xy = 0,
Xy = U2, X, with CH(X) N CH(X]) = 0; let wlz +1b
be a set of linear classifier of CH(X]) and CH(X,), such
that for any j € [Ls].

'ij:c—i—bj <0, forx € Xy

ija:—i—bj >0, for x € X2j

Denote

W 2 [wy, ws, ..., wr,]

b= [by,ba,...,br,]7

[fj(fﬂ)] £ [fl(x)a fQ(x)v ey fL2 (x)}Tv f](x) - f(ngm +
b;), f is RTSU.

Z 2 {z=[fi@)]:zecXx}l=12

Then, Z1 and Z, are linearly separable.

Proof. Let RTSUs with s = 0, points after RTSUs transfor-
mation could be represented as in R2%2,

Ji(z) R 0 ... 0 0] /[ki(o)
sz(x) 0 0 0 R k:LQ(.CC)

R is orthogonal transformation, k; is as Definition II-B. We
rewrite this as, f = Qk . Thus, @ is orthogonal transformation
in R?L2,

So,

Z; C Q{[0,a],a < 0}
Z9 C Q{[b,c],bj > O,Cj = 0}

Q{[0,a],a < 0} and Q{[b,c],b; > 0,¢; = 0} means Q
acts on every element in sets. We have already proved convex
sets {[0,a],a < 0} and {[b,c|,b; > 0,c; = 0} are linearly
separable, @ is orthogonal transformation in R?%2 thus Z;
and Z, are linearly separable.

The theorem still holds under s # 0, because shift does not
affect linear separability of two pattern sets.

O

Theorem ILS5. Any two disjoint sets can be transformed to be
linearly separable through a cascade of two RTSU layers.

Proof. From lemma I1.2 and theorem II.4, this theorem holds.
O

Concatenated rectified Linear Units (CReLUs) [28] and
Bidirectional rectifier (BReLUs) [27] both are defined as

10=| o | = lrawen]

CIFAR100 CIFAR100

e train_acc
test_acc

o train_acc
test_acc

o 00 %0
ion angle

rotati " rotation angle
(a) training curve (b) validating curve

Figure 2. verify RTSUs could classify standard benchmark

It is easy to see these units belong to RTSUs, and thus
similar universal classification theorem works for these units.

C. Experiments

This section will cover experimental verification of universal
classification power of CNNs based on RTSUs. Due to RTSUs
are a new kind of units, we will firstly show its performance
in benchmark datasets CIFAR10/100 in a standard way. We
will cover testing on random noise datasets and nonstandard
CIFARI10 later.

1) RTSU could classify benchmark datasets: We use wide
residual network (WRN) W-16-1 with RTSU to compare with
BReLU\ CReLU counterparts. The dataset was preprocessed
with featurewise zero center and featurewise standard nor-
malization to conduce to optimize and was augmented with
random flip left or right and padding 4 pixel around so that we
can crop to keep the image size still 32 x 32. Use Momentum
for optimization. The mini-batch size was 64. The momentum
term learning rate was fixed to 0.9. The initial learning rate
was set to 0.1 and decreased by a factor of 10 after 60 epochs
iterations.

In order to cover rotation and shift as thoroughly as possible,
for RTSU, we set rotation angle evenly increased by 22.5
degree and added a uniform distributed angle between 1 and
—1 degree and then shifted x-axis and y-axis uniform random
between —1.5 and 1.5 for numerical stability.

Result is illustrated in Figure 2. That shows nets based
on RTSUs could classify benchmark datasets as BReLU\
CReLU with the orthodox way. This is the first step towards
demonstrating universal classification power of nets based on
RTSUs and we will move on.

2) RTSU Could Classify Any Datasets: This section, we
will show the validity of that RTSU nets could classify any
data sets including non semantic pattern dataset or visually
identical category with different label, "classify" here means
that training data accuracy close to absolutely correct. We want
to demonstrate the dilemma created by that traditional statistics
machine theory encourage heavy reliance on training samples
and testing samples coming from the same distribution, but
obviously, these experiments below, all samples came from
same distribution actually or assume it as in statistics machine
learning theory. This predicament as well as work by [25]
trigger our idea about neural nets generalization ability and
its discussion are deferred to the next section ??.

We conduct two sets of experiments exploiting W-16-1
as backbone, first one correspond to random data generated



training curve of random noise training curve of random noise

accuracy
accuracy

—— WRN_16_1_100000
04 —— WRN_16_1_20000 04
—— WRN_16_1_40000
02 —— WRN_16_1_60000 02
—— WRN_16_1_80000

—— WRN_16_1_100000
~—— WRN_16_1_20000
—— WRN_16_1_40000
—— WRN_16_1_60000
—— WRN_16_1_80000

3 20000 40000 0000 so000 3 20000 40000 60000 8od0o
steps steps

(a) training curve (b) testing curve

Figure 3. verify classification of Gaussian

training curve of binary CIFAR10 testing curve of binary CIFAR10

054 AW A A A A A

accuracy
accuracy

—— WRN_16_1_CIFAR10 —— WRN_16_1_CIFAR10

0 10000 20000 30000 40000 50000 60300 70000 80600 0 10000 20000 30000 40000 50000 60000 70000 80000
steps steps

(a) training curve (b) testing curve

Figure 4. verify classification of binary CIFAR10

by standard Gaussian distribution and divide the data into
two subsets equally, then mark it with binary labels, we
carry out five tests by increasing training data number from
20000 to 100000 by 20000, meanwhile, generating test data
number in the same way, fixing its number as 5000, setting
learning rate as 0.1 changelessly, no data augmentation or
preprocessing. The other experiment employ which we name
it as binary CIFAF10, by halving each category in CIFAR10
dataset and stamp them with O or 1 labels similarly as in
first experiment. But in order to facilitate the optimization of
network, we standardize the data by featurewise centering and
normalization and configure learning rate as 0.03. Both sets of
experiments have vanishing weight decay, finish training until
100 epochs with batch size 64, apply with RTSU with rotation
angle uniform between 0 and 360 degree, random shift x axis
(-1.5, 1.5), random shift y axis (-1.5, 1.5) as in II-C1.
Results are presented in 3, 4. These two experiments demon-
strate that RTSU based neural nets could classify any datasets
as ReLU based nets, though test accuracy is no better than
random guess and suggest that we need to seek out another
maybe novel theory to interpret this phenomenon of huge
discrepancy between training and test accuracy, which ortho-
dox machine learning theory blames it on overfitting, though,
this theory is inconsistent with previous experimental results
by [25], the model owning the same capacity/parameters can
fit semantic clustering data like CIFAR10 or random noise
even with different kinds of regularization techniques. These
techniques uses to be thought as relief or cure of overfitting.

III. SPECIFIC GENERALIZATION

The previous section focused on the universal classification
power of DNNs and the validity of UCT is verified by our
experiments. However, UCT is insufficient for explanation
discrepancy of generalization behaviors of DNNs action on

different kinds of datasets. So, in this section we aims at
illustration on what are being actually learned by DNNs
after training? We do not presents any theoretical stuff to
prove some bounds or visualization technique to weights or
activation of DNNs as most previous work but adopt a novel
hypothesis. This hypothesis let us resolve the contradiction
as in 1 explained by a overfitting regularization paradigm
prevalence in traditional statistics machine learning theory.

We presents several definitions. Decision domain(DD) cre-
ated by functions for a DNN function f after successful
training on a training set (X', ) is define by

Definition IIL1. DD(X, g) = Ux 4 {g(z) | f(z) = f(g()) =
y, (z,y) € (X,Y), g is a function }

For a specific class label y = k, A} means all training
samples with label k, we define

Definition IIL.2. DD(Xy,9) = Ux, q{9(z) | flz) =
flg(x)) =k, (x,k) € (X,)), g is a function }

Similarly, for a certain training samples (z,y) € (X,)),
we define

Definition IIL3. DD(z,g) = Uy{g(z) | f(z) = f(g(x)) =y,
(z,y) € (X,)), g is a function }

We name function g as generating function, and denote
all such functions g as set G, After the neural network were
trained, the set G is changeless. Broadly, the scope of function
g is subtle and intricate, decide What kind of test sample
can be generalized? The identity function is a trivial element
of G, we want more than that, but not too more. In this
paper, We're not attempting to figure out all of elements of
g, instead, we will authenticate that the elements of G consist
of more than trivial identity function. We make a hypothesis
that test samples in benchmark datasets such as CIFAR10/100,
Imagenet live in this space DD(X'), the success of DNNs in
these benchmark could be explained with this hypothesis. [25]
conducted several experiments with the modifications of the
labels and input images, these experiments share the analogous
behavior as we did in Section II. We attribute the extreme
disparity between training accuracy and test accuracy to that
test samples in these experiments are beyond of the space
DD(X) of trained networks.

We will chase down some typical functions g. Inspiration
from DNNs trained on real semantic image should perfor-
mance well in affine transformation, Gaussian smooth, flip
left right, rotation, adding small norm noise of images, we will
adopt these as experimental functions. Besides these functions,
we will adopt random shuffle training image as function g.
From these functions and different types of training samples,
test samples are constructed, then the performance of DNN
are verified on these test examples.

A. Experiments

We adopt W-16-1 as previously, all the input image size is
32x32x 3. To verify the performance of different type of input
training data, some of them use similar settings as in [25]:
partially corrupted labels, random labels, random shuffled



() (b) (©)

Figure 5. For convenience, red solid points represent training bird image.
Black solid points which can be ignored mean images was enclosed by
decision domain created by generating functions, this domain is represented
by circle. Solid diamond points means bird was labeled by other category
such as cat. Hollow points mean test bird image. (a) Standard classification
on benchmark, correctly labeled, so test bird image could goes into either of
decision domain; (b) Random label test images, test bird image may stay in
decision domain of training bird image wrongly labeled as other category; (c)
Test image created by generating function, so it can be classify correctly.

pixels, Gaussian, but note that we only use them as training
example and for partially corrupted labels, the label of each
image is independently corrupted by a uniform distribution
with parameter 0.3 as typical. For shuffled pixels situation, we
think it is simpler than random shuffled pixels because it is
the same permutation is applied to all the training images and
random shuffled pixels employ random permutation for each
image, so we dismiss it. Other than these, we will experiment
on binary CIFAR10 and will see miraculous DNNs could
distinguish bird and bird, automobile and automobile.

Test data generated from training data above by transforma-
tions as follows:

o Affine transformation: we let the shape of output
image of affine transformation equals to input image,
scale the data by matrix diag((1 + Gaussian(0,0.3),1 +
Gaussian(0,0.3))), then rotate uniformly and apply
affine_transorm function in Scipy python package on each
channel and combine them together.

o Flip left right: mirror every training data.

« Rotation: although rotation is a special case of affine
transformation, we experiment on it in order to increase
credibility of our hypothesis.

« Gaussian smoothing: we use gaussian_filter function in
Scipy package, with standard deviation (0.5,0.5,0) for
Gaussian kernel.

« Random shuffle: for each image in the input, a different
random permutation of range(3072) is applied to it.

¢ Adding noise: add a random uniform(-0.02, 0.02) noise
to each image.

« Composite function: in order to validate not all functions
could perform well, we construct this function. This func-
tion is a composite function of random order of Gaussian
smoothing, Random shuffle, Affine transformation, and
add a uniform(-0.01, 0.01) noise.

Other settings is the same as experiments in subsection
II-C2.

Except composite function experiments, all the Figures as
6, 7, 8, 9, 10, 11 exhibit that test examples construct from
these functions could generalize well. Composite function

training curve of binary CIFAR10 testing curve of binary CIFAR10

accuracy

accuracy

_trans. 04
posite_function

leftright — dfar_binary_ ight
— cifar_binary_noise_adding 02 — difar_binary_noise_adding
04 —— difar_binary_random_shuffle —— difar_binary_random_shufle
— difar_binary_smoothing — difar_binary_smoothing

— difar_binary_affine_trans.
—— cifar_binary_composite_function

O 10000 20000 30300 40000 50000 60500 70000 80500
steps

(a) training curve

0 10000 20000 30000 40000 50000 60000 70000 80000

steps
(b) validating curve

Figure 6. verify the generating functions of binary CIFAR10

training curve of Gaussian noise testing curve of Gaussian noise

— gaussian_affine_trans.
—— gaussian_fiip_leftright
— gaussian_noise_adding

— gaussian_affine_trans
—— gaussian_composite_function 04
— gaussian_fiip_leftright
— gaussian_noise_adding

accuracy
accuracy

— gaussian_random shuffle

— gaussian_rotation

— gaussian_smoothing

—— gaussian_random_shuffle 02 gaussiansy_composite_function

— gaussian_rotation
gaussian_smoothing

O 10000 20000 30000 40000 50000 60500 70000 80500
steps

(a) training curve

0 10000 20000 30000 40000 50000 60000 70000 80000

steps
(b) validating curve

Figure 7. verify the generating functions of Gaussian

experiments validate that not all functions could work well as
a test example generating function. These results imply that:

(1) First and most important, CNNs based on stochastic
optimization method could mystically learn generating
function rather than data distribution. At, the same time,
different CNNs trained on different data have the same
generating functions. And the past, Statistician and statis-
tics machine learning researcher concentrate on How to
drive models learns data distribution.

(2) After learn the generating function, we will harvest a space
generating by its generating functions, this space is that we
define as decision domain previously. For a single training
example z, whether a training data is random noise input
or real semantic image, all the points in the space DD(z, g)
share the same label as x. For a category with label k,
points in the space DD(X},¢g) share the same label k.
Similarly, it can be conclude that test examples in the
space DD(X, g) could be recognized as its marked label.
In another words, after CNNs was trained on a image,
it can recognize affine transformation of it, smoothing of
it, noise corruption of it, etc, that is why there have "not
merely memorization" in title.

(3) Tt is noteworthy that the same input data but different label
strategy as standard label, random label, test data created
from input by generating functions inheriting input label.
Our hypothesis could explain this paradox that CNNs
have different performances with different label strategy,
as Figure III.

(4) From the definition of DD(X, g), we conclude that the
more training data, more likely the space DD(X, g) is big-
ger, the better generalization performance of CNNs, so we
can anticipate the performance on vision tasks increases
based on volume of training data as [29] observed.



training curve of rsp testing curve of rsp

accuracy
accuracy

— difar_rsp_affine_trans
—— difar_rsp_composite._function
— difar_rsp_flip_leftright
— difar_rsp_noise_adding

— difar_rsp_affine_trans
—— ifar_rsp_composite_function
—— difar_rsp_flip_leftright
—— difar_rsp_noise_adding
00 —— difar_rsp_random_shuffle
— dfar_rsp_rotation
cifar_rsp_smoothing

0 10000 20000 30000 40000 50000 60600 70000 80500 0 10000 20000 30000 40300 50000 60600 70600 0000
steps steps

(a) training curve (b) testing curve

. verify the generating functions of random (shuffled) pixels

training curve of rl testing curve of i

e

accuracy
accuracy

— cifar_r_affine_trans

00 — dfar_rl_affine_trans
cifar_l_composite_function e
ht

|_composite_function

10000 20000 30000 40000 50000 G000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000
steps steps

(a) training curve (b) validating curve

verify the generating functions of random labels

training curve of sp testing curve of sp

accuracy

accuracy

0 10000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000

(a) training curve (b) testing curve

Figure 10. verify the generating functions of shuffle pixels

training curve of pcl testing curve of pel

— cifar_pcl_affine_trans

—— dfar_pcl_composite._function

— cifar_pcl_flip_leftright

— cifar_pcl_noise_adding
m_sh

— cifar_pcl_affine_trans
—— cifar_pcl_composite_function

accuracy
accuracy

N
0 10000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000

(a) training curve (b) validating curve

Figure 11. verify the generating functions of partially corrupted labels

IV. DISCUSSION AND FUTURE WORK

In the first half of this paper, we use universal classification
theorem introduced by [27] to presents new unit-RTSUs, this
let us retrospectively justify rationality and correctness of
universal classification theorem. Also, we conducts experi-
ments on networks based on RTSUs to verify its universal
classification power on different kinds of training data sets
including benchmark dataset such CIFAR10 and made-up
random noise dataset. Although this provides great clarity of
internal mechanism of CNNs training, there is still a gap in
understanding the generalization of CNNs. So, we presents

another part of works of this paper to comprehend generaliza-
tion in CNNs. We demonstrate our hypothesis which CNNs
learn decision domain related to generating functions other
than input data distribution, through a series of experiments.
All these experiments can not be explained by traditional
statistics machine learning theory and are clearly explained
by this hypothesis. In statistics machine learning theory, a lot
of theories is based on training data and test data sampled
from the same distribution, this hypothesis contradict with
experiments by ours and [25]. At the same time, our work
is consistent with works by [26], that memorization and
generalization in CNNs depend on data.

The remaining issue is: does all the decision domain can
be created by generating functions? Which kind of conditions
are generating functions satisfied with? How CNNs trained
with SGD-variants to produce such generating functions?
Why generating functions stay fixed disregarding the training
data? Further work is needed to investigate the property of
generating functions of CNNGs.

REFERENCES

[1]1 G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527-1554,
2006.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” pp. 1097-1105, 2012.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” arXiv
preprint arXiv:1709.01507, 2017.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580-587.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 779—
788.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82-97, 2012.

Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks
for end-to-end speech recognition,” in Acoustics, Speech and Signal
Processing (ICASSP), 2017 IEEE International Conference on. 1EEE,
2017, pp. 4845-4849.

N. Perraudin, P. Balazs, and P. L. Sondergaard, “A fast griffin-lim
algorithm,” in Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2013 IEEE Workshop on. 1EEE, 2013, pp. 1-4.

[9]1 S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky,
Y. Kang, X. Li, J. Miller, J. Raiman, S. Sengupta et al., “Deep voice:
Real-time neural text-to-speech,” arXiv preprint arXiv:1702.07825,
2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

H. Zeng, M. D. Edwards, G. Liu, and D. K. Gifford, “Convolutional
neural network architectures for predicting dna—protein binding,” Bioin-
formatics, vol. 32, no. 12, pp. 1121-i127, 2016.

J. N. Wei, D. Duvenaud, and A. Aspuru-Guzik, “Neural networks for the
prediction of organic chemistry reactions,” ACS central science, vol. 2,
no. 10, pp. 725-732, 2016.

I. Wallach, M. Dzamba, and A. Heifets, “Atomnet: a deep convolutional
neural network for bioactivity prediction in structure-based drug discov-
ery,” arXiv preprint arXiv:1510.02855, 2015.

[2

—

[3

[t

[4

=

[6

=

[7

—

[8

—_

(10]

(11]

[12]

[13]

[14]



[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating
eulerian fluid simulation with convolutional networks,” arXiv preprint
arXiv:1607.03597, 2016.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surfaces of multilayer networks,” in Artificial Intelligence and
Statistics, 2015, pp. 192-204.

K. Kawaguchi, “Deep learning without poor local minima,” in Advances
in Neural Information Processing Systems, 2016, pp. 586-594.

Q. Nguyen and M. Hein, “The loss surface of deep and wide neural
networks,” arXiv preprint arXiv:1704.08045, 2017.

K. Hornik, M. B. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359-366, 1989.

R. Pascanu, G. Montufar, and Y. Bengio, “On the number of response re-
gions of deep feed forward networks with piece-wise linear activations,”
arXiv preprint arXiv:1312.6098, 2013.

M. Bianchini and F. Scarselli, “On the complexity of neural network
classifiers: A comparison between shallow and deep architectures,” [EEE
transactions on neural networks and learning systems, vol. 25, no. 8,
pp. 1553-1565, 2014.

X. Pan and V. Srikumar, “Expressiveness of rectifier networks,” in
International Conference on Machine Learning, 2016, pp. 2427-2435.
A. Fawzi, S.-M. Moosavi-Dezfooli, P. Frossard, and S. Soatto,
“Classification regions of deep neural networks,” arXiv preprint
arXiv:1705.09552, 2017.

M. Raghu, B. Poole, J. M. Kleinberg, S. Ganguli, and J. Sohldickstein,
“On the expressive power of deep neural networks,” international
conference on machine learning, pp. 2847-2854, 2016.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” arXiv preprint
arXiv:1611.03530, 2016.

D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal,
T. Maharaj, A. Fischer, A. Courville, Y. Bengio et al., “A closer look
at memorization in deep networks,” arXiv preprint arXiv:1706.05394,
2017.

S. An, F. Boussaid, and M. Bennamoun, “How can deep rectifier
networks achieve linear separability and preserve distances,” pp. 514—
523, 2015.

W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understanding and
improving convolutional neural networks via concatenated rectified
linear units,” pp. 2217-2225, 2016.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unrea-
sonable effectiveness of data in deep learning era,” arXiv preprint
arXiv:1707.02968, 2017.



