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Abstract—In many applications involving epistemic uncertain-
ties usually modeled by belief functions, it is often necessary
to approximate general (non-Bayesian) basic belief assignments
(BBAs) to subjective probabilities (called Bayesian BBAs). This
necessity occurs if one needs to embed the fusion result in a sys-
tem based on the probabilistic framework and Bayesian inference
(e.g. tracking systems), or if one wants to use classical decision
theory to make a decision. There exists already several methods
(probabilistic transforms) to approximate any general BBA to a
Bayesian BBA. From a fusion standpoint, two approaches are
usually adopted: 1) one can approximate at first each BBA in
subjective probabilities and use Bayes fusion rule to get the final
Bayesian BBA, or 2) one can fuse all the BBAs with a fusion rule,
typically Dempster-Shafer’s, or PCR6 rules (which is very costly
in computations), and convert the combined BBA in a subjective
probability measure. The former method is the simplest method
but it generates a high loss of information included in original
BBAs, whereas the latter is intractable for high dimension
problems. This paper presents a new method to achieve this
task based on hierarchical decomposition (coarsening) of the
frame of discernment, which can be seen as an intermediary
approach between the two aforementioned methods. After the
presentation of this new method, we show through simulations
how its performs with respect to other methods.
Keywords: Information fusion, belief functions, DST, DSmT,
PCR6 rule, coarsening.

I. INTRODUCTION

The theory of belief functions, known as Dempster-Shafer
Theory (DST) has been developed by Shafer [1] in 1976
from Dempster’s works [2]. Belief functions allow to model
epistemic uncertainty and they have been already used in many
applications since the 1990’s [3], mainly those related to expert
systems, decision-making support and information fusion. To
palliate some limitations of DST, Dezert and Smarandache
have proposed an extended mathematical framework of belief
functions with new efficient quantitative and qualitative rules
of combinations, which is called DSmT (Dezert and Smaran-
dache Theory) in the literature [4], [5] with applications listed
in [6]. One of the major drawbacks of DST and DSmT is their
high computational complexities, as soon as the fusion space
(i.e. frame of discernment - FoD) and the number of sources
to combine are large1.

1DSmT is more complex than DST, and the Proportional Conflict Redistri-
bution rule #6 (PCR6 rule) becomes computationally intractable in the worst
case as soon as the cardinality of the Frame of Discernment (FoD) is greater
than six.

To reduce the computational cost of operations with belief
functions when the number of focal elements is very large,
several approaches have been proposed by different authors.
Basically, the existing approaches rely either on efficient
implementations of computations as proposed for instance in
[7], [8], or on approximation techniques of original Basic
Belief Assignment (BBA) to combine [9]–[12], or both. In
many applications involving epistemic uncertainties usually
modeled by belief functions, it is often necessary to approxi-
mate general (non-Bayesian) basic belief assignments (BBAs)
to subjective probabilities (called Bayesian BBAs). This neces-
sity occurs if one needs to embed the fusion result in a system
based on the probabilistic framework and Bayesian inference
(e.g. tracking systems), or if one wants to use classical decision
theory to make a decision. From a fusion standpoint, two
approaches are usually adopted: 1) one can approximate at
first each BBA in subjective probabilities and use Bayes fusion
rule to get the final Bayesian BBA, or 2) one can fuse all
the BBAs with a fusion rule, typically Dempster-Shafer’s, or
PCR6 rules (which is very costly in computations), and convert
the combined BBA in a subjective probability measure. The
former method is the simplest method but it generates a high
loss of information included in original BBAs, whereas the
latter direct method is intractable for high dimension problems.
This paper presents a new method to achieve this task based
on hierarchical decomposition (coarsening) of the frame of
discernment, which can be seen as an intermediary approach
between the two aforementioned methods.

This paper presents a new approach to fuse BBAs into a
Bayesian BBA in order to reduce computational burden and
keep the fusion tractable even for large dimension problems.
This method is based on a hierarchical decomposition (coars-
ening) framework which allows to keep as much as possible
information of original BBAs in preserving lower complexity.
The main contributions of this paper are:

1) the presentation of the FoD bintree decomposition on
which will be done the BBAs approximations;

2) the presentation of the fusion of approximate BBAs from
bintree representation.

This hierarchical structure allows to encompass bintree decom-
position and BBAs approximations on it to obtain the final
approximate fusionned Bayesian BBA.
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This paper is organized as follows. In section II, we recall
some basics of DST and DSmT that are relevant to the new
method presented in this paper. More details with examples
can easily be found in [1], [5]. We will also briefly recall
our preliminary works about hierarchical coarsening of FoD.
Section III presents the novel hierarchical flexible (adaptive)
coarsening method which can be regarded as the extension of
our previous works. Two simple examples are given in section
IV to illustrate the detailed calculation steps. Simulation
experiments are presented in section V to show the rationality
of this new approach. Finally, Sect.VI concludes the paper
with future works perspectives.

II. MATHEMATICAL BACKGROUND

This section provides a brief reminder of basics of DST and
DSmT, and of original hierarchical coarsening method which
are necessary for the presentation and the understanding of
the more general flexible coarsening approximate method of
section III.

A. Basics of DST and DSmT

In DST framework, the frame of discernment2 Θ ≜
{𝜃1, . . . , 𝜃𝑛} (𝑛 ≥ 2) is a set of exhaustive and exclusive
elements (hypotheses) which represent the possible solutions
of the problem under consideration and thus Shafer’s model
assumes 𝜃𝑖 ∩ 𝜃𝑗 = ∅ for 𝑖 ∕= 𝑗 in {1, . . . , 𝑛}. A basic
belief assignment (BBA) 𝑚(⋅) is defined by the mapping:
2Θ 	→ [0, 1], verifying 𝑚(∅) = 0 and

∑
𝐴∈2Θ 𝑚(𝐴) = 1. In

DSmT, one can abandon Shafer’s model (if Shafer’s model
doesn’t fit with the problem) and refute the principle of
the third excluded middle3. Instead of defining the BBAs
on the power set 2Θ ≜ (Θ,∪) of the FoD, the BBAs
are defined on the so-called hyper-power set (or Dedekind’s
lattice) denoted 𝐷Θ ≜ (Θ,∪,∩) whose cardinalities follows
Dedekind’s numbers sequence, see [5], Vol.1 for details and
examples. A (generalized) BBA, called a mass function, 𝑚(⋅)
is defined by the mapping: 𝐷Θ 	→ [0, 1], verifying 𝑚(∅) = 0
and

∑
𝐴∈𝐷Θ 𝑚(𝐴) = 1. DSmT framework encompasses DST

framework because 2Θ ⊂ 𝐷Θ. In DSmT we can take into ac-
count also a set of integrity constraints on the FoD (if known),
by specifying all the pairs of elements which are really
disjoint. Stated otherwise, Shafer’s model is a specific DSm
model where all elements are known to be disjoint. 𝐴 ∈ 𝐷Θ is
called a focal element of 𝑚(.) if 𝑚(𝐴) > 0. A BBA is called
a Bayesian BBA if all of its focal elements are singletons
and Shafer’s model is assumed, otherwise it is called non-
Bayesian [1]. A full ignorance source is represented by the
vacuous BBA 𝑚𝑣(Θ) = 1. The belief (or credibility) and
plausibility functions are respectively defined by 𝐵𝑒𝑙(𝑋) ≜∑

𝑌 ∈𝐷Θ∣𝑌⊆𝑋 𝑚(𝑌 ) and 𝑃𝑙(𝑋) ≜
∑

𝑌 ∈𝐷Θ∣𝑌 ∩𝑋 ∕=∅𝑚(𝑌 ).
𝐵𝐼(𝑋) ≜ [𝐵𝑒𝑙(𝑋), 𝑃 𝑙(𝑋)] is called the belief interval of
𝑋 . Its length 𝑈(𝑋) ≜ 𝑃𝑙(𝑋)−𝐵𝑒𝑙(𝑋) measures the degree
of uncertainty of 𝑋 .

2We use the symbol ≜ to mean equals by definition.
3The third excluded middle principle assumes the existence of the comple-

ment for any elements/propositions belonging to the power set 2Θ.

In 1976, Shafer did propose Dempster’s rule4 to combine
BBAs in DST framework. DS rule is defined by 𝑚𝐷𝑆(∅) = 0
and ∀𝐴 ∈ 2Θ ∖ {∅},

𝑚𝐷𝑆(𝐴) =

∑
𝐵,𝐶∈2Θ∣𝐵∩𝐶=𝐴𝑚1(𝐵)𝑚2(𝐶)

1−∑𝐵,𝐶∈2Θ∣𝐵∩𝐶=∅𝑚1(𝐵)𝑚2(𝐶)
(1)

DS rule formula is commutative and associative and can be
easily extended to the fusion of 𝑆 > 2 BBAs. Unfortunately,
DS rule has been highly disputed during the last decades
by many authors because of its counter-intuitive behavior in
high or even low conflict situations, and that is why many
rules of combination have been proposed in the literature to
combine BBAs [13]. To palliate DS rule drawbacks, the very
interesting PCR6 (Proportional Conflict redistribution rule #6)
has been proposed in DSmT and it is usually adopted5 in
recent applications of DSmT. The fusion of two BBAs 𝑚1(.)
and 𝑚2(.) by the PCR6 rule is obtained by 𝑚𝑃𝐶𝑅6(∅) = 0
and ∀𝐴 ∈ 𝐷Θ ∖ {∅}
𝑚𝑃𝐶𝑅6(𝐴) = 𝑚12(𝐴)+

∑
𝐵∈𝐷Θ∖{𝐴}∣𝐴∩𝐵=∅

[
𝑚1(𝐴)

2𝑚2(𝐵)

𝑚1(𝐴) +𝑚2(𝐵)
+

𝑚2(𝐴)
2𝑚1(𝐵)

𝑚2(𝐴) +𝑚1(𝐵)
]

(2)
where 𝑚12(𝐴) =

∑
𝐵,𝐶∈𝐷Θ∣𝐵∩𝐶=𝐴𝑚1(𝐵)𝑚2(𝐶) is the

conjunctive operator, and each element 𝐴 and 𝐵 are expressed
in their disjunctive normal form. If the denominator involved
in the fraction is zero, then this fraction is discarded. The
general PCR6 formula for combining more than two BBAs
altogether is given in [5], Vol. 3. We adopt the generic notation
𝑚𝑃𝐶𝑅6

12 (.) = 𝑃𝐶𝑅6(𝑚1(.),𝑚2(.)) to denote the fusion of
𝑚1(.) and 𝑚2(.) by PCR6 rule. PCR6 is not associative
and PCR6 rule can also be applied in DST framework (with
Shafer’s model of FoD) by replacing 𝐷Θ by 2Θ in Eq. (2).

B. Hierarchical coarsening for fusion of Bayesian BBAs

Here, we briefly recall the principle of hierarchical coarsen-
ing of FoD to reduce the computational complexity of PCR6
combination of original Bayesian BBAs. The fusion of original
non-Bayesian BBAs will be presented in the next section.

This principle was called rigid grouping in our previous
works [17]–[19]. The goal of this coarsening is to replace
the original (refined) Frame of Discernment (FoD) Θ by a
set of coarsened ones to make the computation of PCR6 rule
tractable. Because we consider here only Bayesian BBA to
combine, their focal elements are only singletons of the FoD
Θ ≜ {𝜃1, . . . , 𝜃𝑛}, with 𝑛 ≥ 2, and we assume Shafer’s model
of the FoD Θ.

A coarsening of the FoD Θ means to replace it with another
FoD less specific of smaller dimension Ω = {𝜔1, . . . , 𝜔𝑘} with
𝑘 < 𝑛 from the elements of Θ. This can be done in many
ways depending the problem under consideration. Generally,
the elements of Ω are singletons of Θ, and disjunctions of

4We use DS index to refer to Dempster-Shafer’s rule (DS rule) because
Shafer did really promote Dempster’s rule in in his milestone book [1].

5PCR6 rule coincides with PCR5 when combining only two BBAs [5].
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elements of Θ. For example, if Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4}, then the
possible coarsened frames built from Θ could be, for instance,
Ω = {𝜔1 = 𝜃1, 𝜔2 = 𝜃2, 𝜔3 = 𝜃3 ∪ 𝜃4}, or Ω = {𝑤1 =
𝜃1∪𝜃2, 𝜔2 = 𝜃3∪𝜃4}, etc. When dealing with Bayesian BBAs,
the projection6 𝑚Ω(.) of the original BBA 𝑚Θ(.) is simply
obtained by taking

𝑚Ω(𝜔𝑖) =
∑

𝜃𝑗⊆𝜔𝑖

𝑚Θ(𝜃𝑗) (3)

The hierarchical coarsening process (or rigid grouping) is
a simple dichotomous approach of coarsening obtained as
follows:

∙ If 𝑛 = ∣Θ∣ is an even number:
The disjunction of the 𝑛/2 first elements 𝜃1 to 𝜃𝑛

2
of Θ

define the element 𝜔1 of Ω, and the last 𝑛/2 elements
𝜃𝑛

2 +1 to 𝜃𝑛 of Θ define the element 𝜔2 of Ω, that is

Ω ≜ {𝜔1 = 𝜃1 ∪ . . . ∪ 𝜃𝑛
2
, 𝜔2 = 𝜃𝑛

2 +1 ∪ . . . ∪ 𝜃𝑛}
and based on (3), one has

𝑚Ω(𝜔1) =
∑

𝑗=1,...,𝑛2

𝑚Θ(𝜃𝑗) (4)

𝑚Ω(𝜔2) =
∑

𝑗=𝑛
2 +1,...,𝑛

𝑚Θ(𝜃𝑗) (5)

For example, if Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4}, and one considers
the Bayesian BBA 𝑚Θ(𝜃1) = 0.1, 𝑚Θ(𝜃2) = 0.2,
𝑚Θ(𝜃3) = 0.3 and 𝑚Θ(𝜃4) = 0.4, then Ω = {𝜔1 =
𝜃1 ∪ 𝜃2, 𝜔2 = 𝜃3 ∪ 𝜃4} and 𝑚Ω(𝜔1) = 0.1 + 0.2 = 0.3
and 𝑚Ω(𝜔2) = 0.3 + 0.4 = 0.7.

∙ If 𝑛 = ∣Θ∣ is an odd number:
In this case, the element 𝜔1 of the coarsened frame Ω is
the disjunction of the [𝑛/2+1]7 first elements of Θ, and
the element 𝜔2 is the disjunction of other elements of Θ.
That is

Ω ≜ {𝜔1 = 𝜃1 ∪ . . . ∪ 𝜃[𝑛2 +1], 𝜔2 = 𝜃[𝑛2 +1]+1 ∪ . . . ∪ 𝜃𝑛}
and based on (3), one has

𝑚Ω(𝜔1) =
∑

𝑗=1,...,[𝑛2 +1]

𝑚Θ(𝜃𝑗) (6)

𝑚Ω(𝜔2) =
∑

𝑗=[𝑛2 +1]+1,...,𝑛

𝑚Θ(𝜃𝑗) (7)

For example, if Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5}, and one consid-
ers the Bayesian BBA 𝑚Θ(𝜃1) = 0.1, 𝑚Θ(𝜃2) = 0.2,
𝑚Θ(𝜃3) = 0.3, 𝑚Θ(𝜃4) = 0.3 and 𝑚Θ(𝜃5) = 0.1, then
Ω = {𝜔1 = 𝜃1 ∪ 𝜃2 ∪ 𝜃3, 𝜔2 = 𝜃4 ∪ 𝜃5} and 𝑚Ω(𝜔1) =
0.1 + 0.2 + 0.3 = 0.6 and 𝑚Ω(𝜔2) = 0.3 + 0.1 = 0.4.

Of course, the same coarsening applies to all original BBAs
𝑚Θ

𝑠 (.), 𝑠 = 1, . . . 𝑆 of the 𝑆 > 1 sources of evidence to work
with less specific BBAs 𝑚Ω

𝑠 (.), 𝑠 = 1, . . . 𝑆. The less specific

6For clarity and convenience, we put explicitly as upper index the FoD for
which the belief mass refers.

7The notation [𝑥] means the integer part of 𝑥.

BBAs (called coarsened BBAs by abuse of language) can then
be combined with PCR6 rule of combination according to
formula (2). This dichotomous coarsening method is repeated
iteratively 𝑙 times as schematically represented by a bintree8.
The last step of this hierarchical process is to calculate the
combined (Bayesian) BBA of all focal elements according
to the connection weights of the bintree structure, where the
number of iterations (or layers) 𝑙 of the tree depends on
the cardinality ∣Θ∣ of the original FoD Θ. Specifically, the
assignment of each focal element is updated according to the
connection weights of link paths from root to terminal nodes.
This principle is illustrated in details in the following example.

Example 1: Let’s consider Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5}, and the
following three Bayesian BBAs

Focal elem. 𝑚Θ
1 (.) 𝑚Θ

2 (.) 𝑚Θ
3 (.)

𝜃1 0.1 0.4 0
𝜃2 0.2 0 0.1
𝜃3 0.3 0.1 0.5
𝜃4 0.3 0.1 0.4
𝜃5 0.1 0.4 0

The hierarchical coarsening and fusion of BBAs is obtained
from the following steps:

Step 1: We define the bintree structure based on iterative
half split of FoD as shown in Fig. 1.

1 2 3 4 5

1 2 3 4 5

1 2

1 2

3 4 5

1 2

11 12 21 22

111 112

1 2

3 4 5 6

7 8

Figure 1: Fusion of Bayesian BBAs using bintree coarsening
for Example 1.

The connecting weights are denoted as 𝜆1, . . . , 𝜆8. The
elements of the frames Ω𝑙 are defined as follows:

∙ At layer 𝑙 = 1: Ω1 = {𝜔1 ≜ 𝜃1 ∪ 𝜃2 ∪ 𝜃3, 𝜔2 ≜ 𝜃4 ∪ 𝜃5}
∙ At layer 𝑙 = 2:

Ω2 = {𝜔11 ≜ 𝜃1 ∪ 𝜃2, 𝜔12 ≜ 𝜃3, 𝜔21 ≜ 𝜃4, 𝜔22 = 𝜃5}
∙ At layer 𝑙 = 3: Ω3 = {𝜔111 ≜ 𝜃1, 𝜔112 ≜ 𝜃2}

8Here we consider bintree only for simplicity, which means that the
coarsened frame Ω consists of two elements only. Of course a similar method
can be used with tri-tree, quad-tree, etc.

100



Step 2: The BBAs of elements of the (sub-)frames Ω𝑙 are
obtained as follows:

∙ At layer 𝑙 = 1, we use (6)-(7) because ∣Θ∣ = 5 is an odd
number. Therefore, we get

Focal elem. 𝑚Ω1
1 (.) 𝑚Ω1

2 (.) 𝑚Ω1
3 (.)

𝜔1 ≜ 𝜃1 ∪ 𝜃2 ∪ 𝜃3 0.6 0.5 0.6
𝜔2 ≜ 𝜃4 ∪ 𝜃5 0.4 0.5 0.4

∙ At layer 𝑙 = 2: We work with the two subframes Ω21 ≜
{𝜔11, 𝜔12} and Ω22 ≜ {𝜔21, 𝜔22} of Ω2 with the BBAs:

Focal elem. 𝑚Ω21
1 (.) 𝑚Ω21

2 (.) 𝑚Ω21
3 (.)

𝜔11 ≜ 𝜃1 ∪ 𝜃2
1
2

4
5

1
6

𝜔12 ≜ 𝜃3
1
2

1
5

5
6

Focal elem. 𝑚Ω22
1 (.) 𝑚Ω22

2 (.) 𝑚Ω22
3 (.)

𝜔21 ≜ 𝜃4
3
4

1
5 1

𝜔22 ≜ 𝜃5
1
4

4
5 0

These mass values are obtained by the proportional
redistribution of the mass of each focal element with
respect to the mass of its parent focal element in the bin
tree. For example, the value 𝑚Ω21

2 (𝜔11) = 4/5 is derived
by taking

𝑚Ω21
2 (𝜔11) =

𝑚Θ
2 (𝜃1) +𝑚Θ

2 (𝜃2)

𝑚Θ
2 (𝜃1) +𝑚Θ

2 (𝜃2) +𝑚Θ
2 (𝜃3)

=
0.4

0.5
=

4

5

Other mass values are computed similarly using this
proportional redistribution method.

∙ At layer 𝑙 = 3: We use again the proportional redistribu-
tion method which gives us

Focal elem. 𝑚Ω3
1 (.) 𝑚Ω3

2 (.) 𝑚Ω3
3 (.)

𝜔111 ≜ 𝜃1
1
3 1 0

𝜔112 ≜ 𝜃2
2
3 0 1

Step 3: The connection weights 𝜆𝑖 are computed
from the assignments of coarsening elements. In each
layer 𝑙, we fuse sequentially9 the three BBAs us-
ing PCR6 formula (2). More precisely, we compute at
first 𝑚𝑃𝐶𝑅6,Ω𝑙

12 (.) = 𝑃𝐶𝑅6(𝑚Ω𝑙
1 (.),𝑚Ω𝑙

2 (.)) and then
𝑚𝑃𝐶𝑅6,Ω𝑙

(12)3 (.) = 𝑃𝐶𝑅6(𝑚𝑃𝐶𝑅6,Ω𝑙

12 (.),𝑚Ω𝑙
3 (.)). Hence, we

obtain the following connecting weights in the bintree:

∙ At layer 𝑙 = 1:

𝜆1 = 𝑚𝑃𝐶𝑅6,Ω1

(12)3 (𝜔1) = 0.6297

𝜆2 = 𝑚𝑃𝐶𝑅6,Ω1

(12)3 (𝜔2) = 0.3703

∙ At layer 𝑙 = 2:

𝜆3 = 𝑚𝑃𝐶𝑅6,Ω21

(12)3 (𝜔11) = 0.4137

𝜆4 = 𝑚𝑃𝐶𝑅6,Ω21

(12)3 (𝜔12) = 0.5863

𝜆5 = 𝑚𝑃𝐶𝑅6,Ω22

(12)3 (𝜔21) = 0.8121

𝜆6 = 𝑚𝑃𝐶𝑅6,Ω22

(12)3 (𝜔22) = 0.1879

9Because PCR6 fusion is not associative, we should apply the general
PCR6 formula to get best results. Here we use sequential fusion to reduce the
computational complexity even if the fusion result is approximate.

∙ At layer 𝑙 = 3:

𝜆7 = 𝑚𝑃𝐶𝑅6,Ω3

(12)3 (𝜔111) = 0.3103

𝜆8 = 𝑚𝑃𝐶𝑅6,Ω3

(12)3 (𝜔112) = 0.6897

Step 4: The final assignment of belief mass to the elements
of original FoD Θ are calculated using the product of the
connection weights of link paths from root (top) node to
terminal nodes (leaves). We finally get the following resulting
combined and normalized Bayesian BBA

𝑚Θ(𝜃1) = 𝜆1 ⋅ 𝜆3 ⋅ 𝜆7 = 0.6297 ⋅ 0.4137 ⋅ 0.3103 = 0.0808

𝑚Θ(𝜃2) = 𝜆1 ⋅ 𝜆3 ⋅ 𝜆8 = 0.6297 ⋅ 0.4137 ⋅ 0.6897 = 0.1797

𝑚Θ(𝜃3) = 𝜆1 ⋅ 𝜆4 = 0.6297 ⋅ 0.5863 = 0.3692

𝑚Θ(𝜃4) = 𝜆2 ⋅ 𝜆5 = 0.3703 ⋅ 0.8121 = 0.3007

𝑚Θ(𝜃5) = 𝜆2 ⋅ 𝜆6 = 0.3703 ⋅ 0.1879 = 0.0696

III. NEW HIERARCHICAL FLEXIBLE COARSENING METHOD

Contrary to the (rigid) hierarchical coarsening method pre-
sented in section II, in our new flexible coarsening approach
the elements 𝜃𝑖, 𝑖 = 1, . . . , 𝑛 in FoD Θ will not be half
split to build coarsening focal elements 𝜔𝑗 , 𝑗 = 1, . . . , 𝑘 of
the FoD Ω𝑙. In the hierarchical flexible (adaptive) coarsening
method, the elements 𝜃𝑖 chosen to belong to the same group
are determined using the consensus information drawn from
the BBAs provided by the sources. Specifically, the degrees
of disagreement between the provided sources on decisions
(𝜃1, 𝜃2, ⋅ ⋅ ⋅ , 𝜃𝑛) are first calculated using the belief-interval
based distance 𝑑𝐵𝐼 [16], [20] to obtain disagreement vector.
Then, the k-means algorithm is applied for clustering elements
𝜃𝑖, 𝑖 = 1, . . . , 𝑛 based on the corresponding value in consensus
vector. It is worth noting that values of disagreement reflect the
preferences of independent sources of evidence for the same
focal element. If they are small, it means that all sources have
a consistent opinion and these elements should be clustered in
the same group. Conversely, if disagreement values are large,
it means that the sources have strong disagreement on these
focal elements, and these focal elements need to be clustered
in another group.

A. Calculating the disagreement vector

Let us consider several BBAs 𝑚Θ
𝑠 (⋅), (𝑠 = 1, . . . , 𝑆) defined

on same FoD Θ of cardinality ∣Θ∣ = 𝑛. The specific BBAs
𝑚𝜃𝑖(.), 𝑖 = 1, . . . , 𝑛 entirely focused on 𝜃𝑖 are defined by
𝑚𝜃𝑖(𝜃𝑖) = 1, and for 𝑋 ∕= 𝜃𝑖 𝑚𝜃𝑖(𝑋) = 0. The disagreement
of opinions of two sources about 𝜃𝑖 is defined as the 𝐿1-
distance between the 𝑑𝐵𝐼 distances of the BBAs 𝑚Θ

𝑠 (.), 𝑠 =
1, 2 to 𝑚𝜃𝑖(.), which is expressed by

𝐷12(𝜃𝑖) ≜ ∣𝑑𝐵𝐼(𝑚
Θ
1 (⋅),𝑚𝜃𝑖(⋅)))− 𝑑𝐵𝐼(𝑚

Θ
2 (⋅),𝑚𝜃𝑖(⋅))∣ (8)

The disagreement of opinions of 𝑆 ≥ 3 sources about 𝜃𝑖, is
defined as

𝐷1−𝑆(𝜃𝑖) ≜
1

2

𝑆∑
𝑖=1

𝑆∑
𝑗=1

∣𝑑𝐵𝐼(𝑚
Θ
𝑖 (⋅),𝑚𝜃𝑖(.))

− 𝑑𝐵𝐼(𝑚
Θ
𝑗 (⋅),𝑚𝜃𝑖(.))∣ (9)
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where 𝑑𝐵𝐼 distance is defined by10 [20]

𝑑𝐸𝐵𝐼(𝑚1,𝑚2) ≜

√√√⎷𝑛𝑐 ⋅
2𝑛−1∑
𝑖=1

[𝑑𝐼(𝐵𝐼1(𝜃𝑖), 𝐵𝐼2(𝜃𝑖))]2 (10)

Here, 𝑛𝑐 = 1/2𝑛−1 is the normalization constant and
𝑑𝐼([𝑎, 𝑏], [𝑐, 𝑑]) is the Wasserstein’s distance defined by

𝑑𝐼([𝑎, 𝑏], [𝑐, 𝑑]) =
√
[𝑎+𝑏

2 − 𝑐+𝑑
2 ]2 + 1

3 [
𝑏−𝑎
2 − 𝑑−𝑐

2 ]2. And
𝐵𝐼(𝜃𝑖) = [𝐵𝑒𝑙(𝜃𝑖), 𝑃 𝑙(𝜃𝑖)].

The disagreement vector D1−𝑆 is defined by

D1−𝑆 ≜ [𝐷1−𝑆(𝜃1), . . . , 𝐷1−𝑆(𝜃𝑛)] (11)

B. Clustering focal elements

Once D1−𝑆 is derived, a clustering algorithm is used to
coarsen focal elements according to their corresponding values
in D1−𝑆 . In this paper, we have used the k-means algorithm11

to cluster focal elements. For each source 𝑠 = 1, . . . , 𝑆, the
mass assignments of focal elements in two12 different clusters
are added up according to formulas (12)–(13).

𝑚Ω
𝑠 (𝜔1) =

∑
𝜃𝑖∈𝜔1

𝑚Θ(𝜃𝑖) (12)

𝑚Ω
𝑠 (𝜔2) =

∑
𝜃𝑗∈𝜔2

𝑚Θ(𝜃𝑗) (13)

C. Combination of the BBAs

Based on the disagreement vector and k-means algorithm, a
new adaptive bintree structure based on this flexible coarsening
decomposition is obtained (see example in the next section)
and the elements in FoD Θ are grouped more reasonably
in each layer of the decomposition. Once the adaptive bin-
tree structure is derived, other steps (multiplications of link
weights) can be implemented which are identical to hierarchi-
cal (rigid) coarsening method presented in section II to get the
final combined Bayesian BBA.

D. Summary of the method

The fusion method of BBAs to get a combined Bayesian
BBA based on hierarchical flexible decomposition of the FoD
consists of the four steps below illustrated in Fig. 2.

∙ Step 1 (pre-processing): At first, all input BBAs to
combine are approximated to Bayesian BBAs with DSmP
transform.

∙ Step 2 (disagreement vector): D1−S(⋅) is calculated us-
ing 𝑑𝐵𝐼 distances to estimate the degree of disagreement
of BBAs 𝑚Θ

1 , . . . , 𝑚Θ
𝑆 on potential decisions 𝜃1,. . . , 𝜃𝑛.

∙ Step 3 (adaptive bintree): The adaptative bintree de-
composition of the FoD Θ is obtained using k-Means
algorithm to get elements of subframes Ω𝑙.

∙ Step 4 (assignments and connection weights): For
each source 𝑚Θ

𝑠 (⋅) to combine, the mass assignment of

10For simplicity, we assume Shafer’s model so that ∣2Θ∣ = 2𝑛, otherwise
the number of elements in the summation of (10) should be ∣𝐷Θ∣ − 1 with
another normalization constant 𝑛𝑐.

11which is implemented in MatlabTM

12because we use here the bisection decomposition.

each element of subframe Ω𝑙 is computed by (12)–(13).
The weight of links between two layers of the bintree
decomposition are obtained with PCR6 rule13.

∙ Step 5 (fusion): The final result (combined Bayesian
BBA) is computed by the product of weights of link paths
from root to terminal nodes.

PCR6 fusion

All layers 
explored?

is Bayesian?

DSmP
transform

Final Combined 
Bayesian BBA

yes

no no

Flexible grouping using 
K-Means

yes

no

Input BBAs 
1 , , Sm m

sm

2

Product of path 
link weights

yes

Figure 2: Hierarchical flexible decomposition of FoD for
fusion.

IV. TWO SIMPLE EXAMPLES

A. Example 1 (fusion of Bayesian BBAs)

Let us revisit example 1 presented in section II-B. It can be
verified in applying formula (9) that the disagreement vector
D1−3 for this example is equal to

D1−3 = [0.4085, 0.2156, 0.3753, 0.2507, 0.4086]

The derivation of 𝐷1−3(𝜃1) is given below for convenience.

𝐷1−3(𝜃1) = ∣𝑑𝐵𝐼(𝑚
Θ
1 (⋅),𝑚𝜃1(𝜃1))− 𝑑𝐵𝐼(𝑚

Θ
2 (⋅),𝑚𝜃1(𝜃1))∣

+ ∣𝑑𝐵𝐼(𝑚
Θ
2 (⋅),𝑚𝜃1(𝜃1))− 𝑑𝐵𝐼(𝑚

Θ
3 (⋅),𝑚𝜃1(𝜃1))∣

+ ∣𝑑𝐵𝐼(𝑚
Θ
1 (⋅),𝑚𝜃1(𝜃1))− 𝑑𝐵𝐼(𝑚

Θ
3 (⋅),𝑚𝜃1(𝜃1))∣

= 0.4085.

Based on the disagreement vector and k-means algorithm, a
new adaptive bintree structure is obtained and shown in Fig. 3.
Compared to Fig. 1, the elements in FoD Θ are grouped more
reasonably. In vector D1−3, 𝜃1 and 𝜃5 lie in similar degree of
disagreement so that they are put in the same group. Similarly
for 𝜃2 and 𝜃4. However, element 𝜃3 seems weird, which is
put alone at the beginning of flexible coarsening. Once this
adaptive bintree decomposition is obtained, other steps can
be implemented which are identical to hierarchical coarsening
method of section II to get the final combined BBA.

The flexible coarsening and fusion of BBAs is obtained from
the following steps:

13general formula preferred, or applied sequentially to reduce complexity.
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Figure 3: Example 1: Flexible bintree decomposition of FoD.

Step 1: According to Fig.3, the elements of the frames Ω𝑙

are defined as follows:
∙ At layer 𝑙 = 1: Ω1 = {𝜔1 ≜ 𝜃3, 𝜔2 ≜ 𝜃1 ∪ 𝜃2 ∪ 𝜃4 ∪ 𝜃5}
∙ At layer 𝑙 = 2: Ω2 = {𝜔21 ≜ 𝜃1 ∪ 𝜃5, 𝜔22 ≜ 𝜃2 ∪ 𝜃4}
∙ At layer 𝑙 = 3: Ω3 = {𝜔211 ≜ 𝜃1, 𝜔212 ≜ 𝜃5, 𝜔221 ≜
𝜃2, 𝜔222 ≜ 𝜃4}

Step 2: The BBAs of elements of the (sub-)frames Ω𝑙 are
obtained as follows:

∙ At layer 𝑙 = 1, we use (12)-(13) and we get
Focal elem. 𝑚Ω1

1 (.) 𝑚Ω1
2 (.) 𝑚Ω1

3 (.)

𝜔1 ≜ 𝜃3 0.3 0.1 0.5
𝜔2 ≜ 𝜃1 ∪ 𝜃2 ∪ 𝜃4 ∪ 𝜃5 0.7 0.9 0.5

∙ At layer 𝑙 = 2: We use again the proportional redistribu-
tion method which gives us:

Focal elem. 𝑚Ω2
1 (.) 𝑚Ω2

2 (.) 𝑚Ω2
3 (.)

𝜔21 ≜ 𝜃1 ∪ 𝜃5
3
7

4
9

1
5

𝜔22 ≜ 𝜃2 ∪ 𝜃4
4
7

5
9

4
5

∙ At layer 𝑙 = 3: We work with the two subframes Ω31 ≜
{𝜔211, 𝜔212} and Ω32 ≜ {𝜔221, 𝜔222} of Ω3 with the
BBAs

Focal elem. 𝑚Ω31
1 (.) 𝑚Ω31

2 (.) 𝑚Ω31
3 (.)

𝜔211 ≜ 𝜃1
1
2

1
2

1
2

𝜔212 ≜ 𝜃5
1
2

1
2

1
2

Focal elem. 𝑚Ω32
1 (.) 𝑚Ω32

2 (.) 𝑚Ω32
3 (.)

𝜔221 ≜ 𝜃2
2
5 0 1

5

𝜔222 ≜ 𝜃4
3
5 1 4

5

Step 3: The connection weights 𝜆𝑖 are computed from the
assignments of coarsening elements. Hence, we obtain the
following connecting weights in the bintree:

∙ At layer 𝑙 = 1:

𝜆1 = 0.2226; 𝜆2 = 0.7774.

∙ At layer 𝑙 = 2:

𝜆3 = 0.2200; 𝜆4 = 0.7800.

∙ At layer 𝑙 = 3:

𝜆5 = 0.5; 𝜆6 = 0.5;𝜆7 = 0.0669; 𝜆8 = 0.9331.

Step 4: We finally get the following resulting combined and
normalized Bayesian BBA

𝑚Θ(⋅) = {0.0855, 0.0406, 0.2226, 0.5658, 0.0855}.
B. Example 2 (with non-Bayesian BBAs)

Example 1bis: Let’s consider Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5}, and the
following BBAs given by

Focal elem. 𝑚Θ
1 (.) 𝑚Θ

2 (.) 𝑚Θ
3 (.)

𝜃1 0.1 0.4 0
𝜃2 0.2 0 0
𝜃3 0.3 0.05 0
𝜃4 0.03 0.05 0
𝜃5 0.1 0.04 0

𝜃1 ∪ 𝜃2 0.1 0.04 0
𝜃2 ∪ 𝜃3 ∪ 𝜃5 0 0.02 0.1
𝜃3 ∪ 𝜃4 0.02 0.1 0.2
𝜃1 ∪ 𝜃5 0.1 0.3 0.2

Θ 0.05 0 0.5

Step 1 (Pre-Processing): All these three BBAs are trans-
formed into Bayesian BBAs with DSmP transform and the
generated BBAs are illustrated as

Focal elem. 𝑚Θ
1 (.) 𝑚Θ

2 (.) 𝑚Θ
3 (.)

𝜃1 0.1908 0.7127 0.2000
𝜃2 0.2804 0 0.1334
𝜃3 0.3387 0.1111 0.2333
𝜃4 0.0339 0.1 0.2000
𝜃5 0.1562 0.0761 0.2333

It can be verified in applying formula (9) that the disagree-
ment vector D1−3 for this example is equal to

D1−3 = [0.5385, 0.3632, 0.3453, 0.2305, 0.2827]

Step 2: According to the clustering algorithm, the elements
of the frames Ω𝑙 are defined as follows:

∙ At layer 𝑙 = 1: Ω1 = {𝜔1 ≜ 𝜃1, 𝜔2 ≜ 𝜃2 ∪ 𝜃3 ∪ 𝜃4 ∪ 𝜃5}
∙ At layer 𝑙 = 2: Ω2 = {𝜔21 ≜ 𝜃2 ∪ 𝜃3, 𝜔22 ≜ 𝜃4 ∪ 𝜃5}
∙ At layer 𝑙 = 3: Ω3 = {𝜔211 ≜ 𝜃2, 𝜔212 ≜ 𝜃3, 𝜔221 ≜
𝜃4, 𝜔222 ≜ 𝜃5}

Step 3: The BBAs of elements of the (sub-)frames Ω𝑙 are
obtained as follows:

∙ At layer 𝑙 = 1, we use (12)-(13) and we get
Focal elem. 𝑚Ω1

1 (.) 𝑚Ω1
2 (.) 𝑚Ω1

3 (.)

𝜔1 ≜ 𝜃1 0.1908 0.7127 0.2000
𝜔2 ≜ 𝜃2 ∪ 𝜃3 ∪ 𝜃4 ∪ 𝜃5 0.8092 0.2873 0.8000

∙ At layer 𝑙 = 2: We use again the proportional redistribu-
tion method which gives us:

Focal elem. 𝑚Ω2
1 (.) 𝑚Ω2

2 (.) 𝑚Ω2
3 (.)

𝜔21 ≜ 𝜃2 ∪ 𝜃3 0.7651 0.3867 0.4584

𝜔22 ≜ 𝜃4 ∪ 𝜃5 0.2349 0.6133 0.5416
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∙ At layer 𝑙 = 3: We work with the two subframes Ω31 ≜
{𝜔211, 𝜔212} and Ω32 ≜ {𝜔221, 𝜔222} of Ω3 with the
BBAs:

Focal elem. 𝑚Ω31
1 (.) 𝑚Ω31

2 (.) 𝑚Ω31
3 (.)

𝜔211 ≜ 𝜃2 0.4529 0 0.3638

𝜔212 ≜ 𝜃3 0.5471 1 0.6362

Focal elem. 𝑚Ω32
1 (.) 𝑚Ω32

2 (.) 𝑚Ω32
3 (.)

𝜔221 ≜ 𝜃4 0.1783 0.5679 0.4616

𝜔222 ≜ 𝜃5 0.8217 0.4321 0.5384

Step 4: The connection weights 𝜆𝑖 are computed from the
assignments of coarsening elements. Hence, we obtain the
following connecting weights in the bintree:

∙ At layer 𝑙 = 1:

𝜆1 = 0.2345; 𝜆2 = 0.7655.

∙ At layer 𝑙 = 2:

𝜆3 = 0.5533; 𝜆4 = 0.4467.

∙ At layer 𝑙 = 3:

𝜆5 = 0.1606; 𝜆6 = 0.8394;

𝜆7 = 0.3349; 𝜆8 = 0.6651.

Step 5: We finally get the following resulting combined and
normalized Bayesian BBA

𝑚Θ(⋅) = {0.2345, 0.0681, 0.3555, 0.1145, 0.2274}.
V. SIMULATION RESULTS AND PERFORMANCES

A. Flexible Grouping of Singletons

1) Similarity: 14 Assuming that Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6,
𝜃7, 𝜃8, 𝜃9, 𝜃10, 𝜃11, 𝜃12, 𝜃13, 𝜃14, 𝜃15} and first, we randomly
generate 2 BBAs, denoted as 𝑚Θ

1 (⋅) and 𝑚Θ
2 (⋅), which can

be seen in Table I.

Table I: BBAs for Two Sources 𝑚Θ
1 (⋅) and 𝑚Θ

2 (⋅)
𝜃1 𝜃2 𝜃3 𝜃4 𝜃5

𝑚Θ
1 (⋅) 0.1331 0.0766 0.0175 0.0448 0.0229

𝑚Θ
2 (⋅) 0.1020 0.0497 0.1094 0.0612 0.0612

𝜃6 𝜃7 𝜃8 𝜃9 𝜃10

𝑚Θ
1 (⋅) 0.1142 0.0023 0.2254 0.1583 3.4959e-04

𝑚Θ
2 (⋅) 0.0069 0.0070 0.0128 0.0833 0.0338

𝜃11 𝜃12 𝜃13 𝜃14 𝜃15

𝑚Θ
1 (⋅) 0.0075 0.0514 0.1121 0.0314 0.0021

𝑚Θ
2 (⋅) 0.1180 0.1202 0.1351 0.0686 0.0309

In order to fully verify the similarity between hierarchical
flexible coarsening method and PCR6 in DSmT, a new strict

14Similarity represents the approximate degree between fusion results using
flexible coarsening and PCR6.

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

1 2 4 5 7

9 10 13 14 15

3 6 8

11 12

1 2 5
4 7 9

10 13 14 15

1 2

4 7
9 10

13 14 15

9 14 10 13 15

13 15

3 6

11 12

3 11 6 12

5

12

14

7 4

9 10

13 15

11 3 6 12

8

Figure 4: Structure of Hierarchical Flexible Coarsening.

distance metric between two BBAs, denoted 𝑑𝐸𝐵𝐼 , was recently
proposed in [20], [16] and it will be used in this paper.

In this paper, we regard 𝑑𝐸𝐵𝐼 as one criteria for evaluating
the degree of similarity between the fusion results obtained
from flexible coarsening and PCR6.

Based on (8) and (10), the disagreement vector D(⋅) is
obtained:

D(⋅) = (0.0032, 0.0020, 0.0290, 0.0092, 0.0147, 0.0228,

0.0059, 0.0537, 0.0154, 0.0131, 0.0338, 0.0235,

0.0118, 0.0145, 0.0120).

Thus, bintree structure of hierarchical flexible coarsening is
illustrated in Fig. 4 and the similarity between fusion results of
hierarchical flexible coarsening and PCR6 is 0.9783. And the
similarity between hierarchical coarsening method and PCR6
is 0.9120. In particular, terminal nodes (the red small box
in Fig. 4) of flexible grouping are not in accordance with the
original order 𝜃1, 𝜃2, ⋅ ⋅ ⋅ , 𝜃15. This is quite different compared
to original hierarchical coarsening method.

From the point of view of statistics, 100 BBAs are randomly
generated to be fused with three methods: hierarchical flexible
coarsening, hierarchical coarsening and also PCR6. Compar-
isons are made in Fig. 5, which show the superiority of our
new approach proposed in this paper (Average value of new
method is 97% and the old method is 93.5%).

B. Flexible Grouping of Conflicting Focal Elements

Assuming that there are five sources of evidence
𝑚Θ

1 (⋅),𝑚Θ
2 (⋅),𝑚Θ

3 (⋅),𝑚Θ
4 (⋅),𝑚Θ

5 (⋅), and the restricted hype-
power set 𝐷Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7, 𝜃8, 𝜃9, 𝜃10, 𝜃1 ∩
𝜃2, 𝜃5 ∩ 𝜃6 ∩ 𝜃7, 𝜃1 ∩ 𝜃5 ∩ 𝜃9 ∩ 𝜃10}. And then we randomly
generate 1000 BBAs for each source to calculate the similarity
using (10). From Fig. 6, we can find that hierarchical flexible
coarsening method can also maintain high degree of similarity
which performs better than hierarchical coarsening.
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Figure 6: Comparisons Between HFC and HC (Singletons and
Conflicting Focal Elements).

C. Flexible Grouping of Uncertain and Hybrid Focal Elements

We can also deal with uncertain and hybrid focal el-
ements. Assuming that there are also five sources of
evidence 𝑚Θ

1 (⋅),𝑚Θ
2 (⋅),𝑚Θ

3 (⋅),𝑚Θ
4 (⋅),𝑚Θ

5 (⋅) and 𝐷Θ
1 =

{𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7, 𝜃8, 𝜃9, 𝜃10, 𝜃1 ∪ 𝜃2, 𝜃5 ∪ 𝜃6 ∪ 𝜃7, 𝜃1 ∪
𝜃5∪𝜃9∪𝜃10}; 𝐷Θ

2 = {𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7, 𝜃8, 𝜃9, 𝜃10, 𝜃2∩
𝜃4 ∪ 𝜃6, 𝜃1 ∪ 𝜃3 ∩ 𝜃5 ∪ 𝜃7 ∩ 𝜃9}15. And then we respectively
and randomly generate 1000 BBAs for these two cases 𝐷Θ

1

and 𝐷Θ
2 . Finally, we calculate the average similarity degree of

HFC and HC with PCR6 in Table II, which illustrates HFC
performs better than old method. However, there exist the extra
time cost of HFC compared to HC due to the clustering steps
in coarsening process.

Table II: Similarity Comparisons

Hierarchical Flexible Coarsening Hierarchical Coarsening

𝐷Θ
1 98% 91%

𝐷Θ
2 97% 93%

VI. CONCLUSION AND PERSPECTIVES

A novel hierarchical flexible approximate method in DSmT
is proposed here. Compared to original hierarchical coarsen-

15In this case, 𝐷Θ
1 represents uncertain focal elements and 𝐷Θ

2 represents
hybrid focal elements.

ing, flexible strategy guarantees higher similarity with PCR6
rules in fusion process. Besides, whether focal elements in
hyper power set are singletons, conflicting focal elements,
uncertain or even hybrid focal elements, the new method
works well. In the future work, we will focus on the general
framework of hierarchical coarsening, which could generate
final non-Bayesian BBAs in order to avoid loss of informa-
tion. Furthermore, other advantages or disadvantages of our
proposed methods such as computational efficiency and time
consumption need to be further investigated.
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