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Abstract—The study of alternative probabilistic transformation
(PT) in DS theory has emerged recently as an interesting
topic, especially in decision making applications. These recent
studies have mainly focused on investigating various schemes for
assigning both the mass of compound focal elements to each
singleton in order to obtain Bayesian belief function for real-
world decision making problems. In this paper, work by us also
takes inspiration from both Bayesian transformation camps, with
a novel evolutionary-based probabilistic transformation (EPT) to
select the qualified Bayesian belief function with the maximum
value of probabilistic information content (PIC) benefiting from
the global optimizing capabilities of evolutionary algorithms.
Verification of EPT is carried out by testing it on a set of
numerical examples on 4D frames. On each problem instance,
comparisons are made between the novel method and those exist-
ing approaches, which illustrate the superiority of the proposed
method in this paper. Moreover, a simple constraint-handling
strategy with EPT is proposed to tackle target type tracking
(TTT) problem, simulation results of the constrained EPT on
TTT problem prove the rationality of this modification.
Keywords: Evidence Reasoning, Probabilistic Transforma-
tion, Evolutionary Algorithm, Target Type Tracking problems,
Decision Making.

I. INTRODUCTION

Since the pioneering work of Dempster and Shafer [1], [2],
which is known as Dempster-Shafer evidence theory (DST),
in the late 70’s regarding the possibility of distinguishing
“unknown” and “imprecision” and fusing different evidences
based on associative and commutative Dempster’s combination
rule, this new area of research (now known as evidence
reasoning) has grown considerably as indicated by the no-
table increment of technical papers in peer-reviewed journals,
conference and special sessions. However, the computational
complexity of reasoning with DST is one of the major points
of criticism this formalism has to face.

To overcome this difficulty, various approximating methods
have been suggested that aim at reducing the number of focal
elements in the frame of discernment (FoD) so as to maintain
the tractability of computation computation. One common
strategy is to simplify FoD by removing and/or aggregating
focal elements for approximating original belief funcion [3].
Among these methods, probability transformations (PTs) seem
particularly desirable for reducing such computation complex-
ity by means of assigning the mass of non-singleton elements
to each singleton [4], [5]. The research on this probabilistic

measure has received a lot of attentions and accordingly many
efficient PTs have been pointed out by scholars in recent
years. In them, a classical transformation, denoted as BetP
[4], which offers a good compromise between the maximum
of credibility (Bel) and the maximum of plausibility (Pl) for
decision making. Unfortunately, BetP does not provide the
highest probabilistic information content (PIC) [7]; Sudano
[8] also proposed series of alternatives and principles of
these similar to BetP, which were called PrPl, PrBel and
PrHyb; CuzzP [9], which was proposed by Cuzzolin in the
framework of DST in 2009, showed its ability of probabilistic
transformation; Another novel transformation was proposed
by Dezert and Smarandache in the framework of DSmT
(free DSm model, hybrid DSm model or Shafer’s model),
which was called DSmP [7] and comprehensive comparisons
have been made in [7] to prove the capabilities of DSmP in
probabilistic transformation.

However, most mentioned aforementioned PTs have been
always concentrated mainly on two crucial issues: (1) How to
implement this operation (or assignment)? (2) How to evaluate
the quality of this transformation? In this paper, we suggest
a novel PT method based on evolutionary algorithm, namely,
evolutionary-based probabilistic transformation (EPT), which
alleviates the above two difficulties together based on op-
timization using a reasonable criteria. A similar idea was
proposed by Han et.al [10] and the difference lies in the
optimization approaches and objective functions. In the EPT
method, the global search replaces the assigning operator used
in the classical PTs and the evaluation criteria is embedded into
EPT to provide important guidance for the searching proce-
dure. Specifically, the mass of the singletons are randomly
generated in evolutionary-based framework, which need to
satisfy the constraints of probability distributions in evidence
reasoning. Also, a selection operator is presented to assess the
best individual in all populations by a special objective func-
tion (desirable evaluation criteria). Referring to the previous
works [7], the PIC is used in this paper to select the best1

solution as an objective function in EPT. Simulation results
on 4D frames test cases show that the proposed EPT, in these
problems, is able to outperform other PTs that pay special
attention to some ratio created from the available information

1based on the highest PIC value.
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(i.e. Bel or Pl). Moreover, we suggest a simple constraint-
handling strategy with EPT that suits well for two target type
tracking (TTT) problems. These first appealing results of EPT
method encourage its use for more complex and real-world
decision making problems.

The rest of this paper is organized as follows. In Section II
we briefly summarize the basis of DST and several classical
PT formulas. A novel EPT approach is presented in details
in Section III. In Section IV several cases and comprehensive
comparisons borrowed from previous papers are carried out
to demonstrate the superiority of proposed method. Also,
target type tracking problem and the pertinent analysis of
EPT in TTT are described in detail in this section. Moreover,
the limitation of EPT are also discussed in Section. V. The
conclusion is drawn in Section. VI.

II. BASIS OF BELIEF FUNCTIONS

In this section, we introduce the belief functions terminol-
ogy of DST and the notations used in the sequel of this paper.

A. DST basis

In DST [2], the elements 𝜃𝑖 (𝑖 = 1, . . . , 𝑁 ) of the frame
of discernment (FoD) Θ ≜ {𝜃1, . . . , 𝜃𝑁} must be mutually
exhaustive and exclusive. The power set of the FoD is denoted
2Θ and a basic belief assignment (BBA), also called a mass
function, is defined by the mapping: 2Θ → [0, 1], which
satisfies 𝑚(∅) = 0 and

∑
𝐴⊆2Θ

𝑚(𝐴) = 1 (1)

where 𝑚(𝐴) is defined as the BBA of 𝐴. The element 𝐴 is
called a focal element of 𝑚(.) if 𝑚(𝐴) > 0. The belief and
plausibility functions, which are in one-to-one mapping with
the BBA 𝑚(.), are defined for all 𝐴 ⊆ Θ by

𝐵𝑒𝑙(𝐴) =
∑
𝐵⊆𝐴

𝑚(𝐵) (2)

𝑃𝑙(𝐴) = 1−𝐵𝑒𝑙(𝐴) =
∑

𝐴∩𝐵 ∕=∅
𝑚(𝐵), ∀𝐴 ⊆ Θ (3)

where 𝐴 ≜ Θ ∖ 𝐴 is the complement of 𝐴 in Θ. The belief
interval [𝐵𝑒𝑙(𝐴), 𝑃 𝑙(𝐴)] represents the uncertainty committed
to 𝐴 and the bounds of this interval are usually interpreted as
lower and upper bounds of the unknown (possibly subjective)
probability of 𝐴. This interval plays an important role in the
implementation of EPT as shown in details in Section III.

B. DSmT basis

In the framework of Dezert-Smarandache Theory (DSmT)
[5], the FoD Θ is considered as a finite set of 𝑁 exhaustive
elements only (without the requirement of exclusivity of the
elements). The BBA 𝑚(.) is then defined on the hyper-power
set of the FoD (i.e. the free Dedekind’s lattice 𝐷Θ), taking
eventually into account some integrity constraints (if any). The
main differences between DST and DSmT frameworks are: (1)
the model on which one works with, and (2) the combination

rule. In the sequel, we will work with BBA defined only on
the classical power-set for simplicity. Instead of distributing
equally total conflicting mass onto elements of 2Θ as within
Dempster’s rule through the normalization step, or transferring
the partial conflicts onto partial uncertainties as within DSmH
rule [4], we use the Proportional Conflict Redistribution rules
(PCRs) [5] based on the transfer of conflicting masses (total
or partial) proportionally to non-empty sets involved in the
model according to all integrity constraints. In DSmT, the most
effective rule is the PCR6 rule which is defined2 for the fusion
of two BBA’s 𝑚1(.) and 𝑚2(.) as 𝑚𝑃𝐶𝑅6(∅) = 0 and ∀𝐴 ∈
2Θ ∖ {∅}

𝑚𝑃𝐶𝑅6(𝐴) = 𝑚12(𝐴)+
∑

𝐵∈2Θ∖{𝐴}∣𝐴∩𝐵=∅
[
𝑚1(𝐴)

2𝑚2(𝐵)

𝑚1(𝐴) +𝑚2(𝐵)
+

𝑚2(𝐴)
2𝑚1(𝐵)

𝑚2(𝐴) +𝑚1(𝐵)
]

(4)
where 𝑚12(𝐴) is the conjunctive operator, and each element
𝐴 and 𝐵 are expressed in their disjunctive normal form.

C. Classical Probabilistic Transformations

The efficiency of probabilistic transformation (PT) in the
field of decision making has been analyzed in deep by Smets
[4]. Various PTs have been proposed in the open literature and
the main transformations are briefly recalled in this section.

1) BetP: Smets in [4], [6] first proposed pignistic proba-
bility to make decision which aims to transfer the mass of
belief of each non-specific element onto the singletons. The
classical pignistic probability is defined as 𝐵𝑒𝑡𝑃 (∅) = 0, and
∀𝐴 ∈ 2Θ ∖ {∅}:

𝐵𝑒𝑡𝑃 (𝜃𝑖) ≜
∑

𝐴⊆2Θ,𝐴 ∕=∅

∣𝜃𝑖 ∩𝐴∣
∣𝐴∣

𝑚(𝐴)

1−𝑚(∅) (5)

Because in Shafer’s framework 𝑚(∅) = 0, the formula (5) can
simply be rewritten for any singleton 𝜃𝑖 ∈ Θ as

𝐵𝑒𝑡𝑃 (𝜃𝑖) =
∑

𝐵∈2Θ,𝜃𝑖⊆𝐵

1

∣𝐵∣𝑚(𝐵)

= 𝑚(𝜃𝑖) +
∑

𝐵∈2Θ,𝜃𝑖⊂𝐵

1

∣𝐵∣𝑚(𝐵)
(6)

2) CuzzP: An intersection probability denoted as CuzzP
[9] was proposed using the proportional repartition of the
total non-specific mass (total non-specific mass (𝑇𝑁𝑆𝑀) =∑

𝐴∈2Θ,∣𝐴∣𝑚(𝐴)) for each contribution of the non-specific
masses involved. CuzzP is defined by 𝐶𝑢𝑧𝑧𝑃 (∅) = 0, and for
any singleton 𝜃𝑖 ∈ Θ by

𝐶𝑢𝑧𝑧𝑃 (𝜃𝑖) ≜ 𝑚(𝜃𝑖) +
𝑃𝑙(𝜃𝑖)−𝑚(𝜃𝑖)∑
𝑗 (𝑃𝑙(𝜃𝑖)−𝑚(𝜃𝑗))

⋅ 𝑇𝑁𝑆𝑀 (7)

2PCR6 rule coincides with PCR5 rule when combining only two BBA’s
[5].
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3) DSmP: In 2008, Dezert and Smarandache [7] have
proposed a new generalized pignistic transformation defined
by 𝐷𝑆𝑚𝑃𝜀(∅) = 0 and for any singleton 𝜃𝑖 ∈ Θ by

𝐷𝑆𝑚𝑃𝜀(𝜃𝑖) ≜ 𝑚(𝜃𝑖) + (𝑚(𝜃𝑖) + 𝜀)

×
⎧⎨
⎩

∑
𝐴∈2Θ,𝜃𝑁⊂𝐴,∣𝐴∣≥2

𝑚(𝐴)∑
𝐵∈2Θ,𝐵⊂𝐴,∣𝐵∣=1𝑚(𝐵) + 𝜀 ⋅ ∣𝐴∣

⎫⎬
⎭

(8)

As shown in [7], DSmP makes a remarkable improvement
compared with BetP, and CuzzP, since a more judicious
redistribution of the ignorance masses to the singletons have
been adopted by DSmP.

4) PrBP1 and PrBP2: Two novel pignistic probabilistic
transformations were proposed by Pan in [11], which assume
that the BBA is proportional to the product of 𝐵𝑒𝑙(𝜃𝑖) and
𝑃𝑙(𝜃𝑖) among each singleton element 𝜃𝑖 of 𝐴 ⊆ Θ.

𝑃𝑟𝐵𝑃1(𝜃𝑖) =
∑
𝜃𝑖⊆𝐴

(
𝐵𝑒𝑙(𝜃𝑖)𝑃𝑙(𝜃𝑖)∑

𝜃𝑗⊆𝐴𝐵𝑒𝑙(𝜃𝑗)𝑃𝑙(𝜃𝑗)

)
⋅𝑚(𝐴) (9)

Also, Pan et.al. assume that the masses are distributed propor-
tionally to some given parameters 𝑠𝑖 = 𝐵𝑒𝑙(𝜃𝑖)/(1− 𝑃𝑙(𝜃𝑖))
or 𝑠𝑖 = 𝑃𝑙(𝜃𝑖)/(1−𝐵𝑒𝑙(𝜃𝑖)):

𝑃𝑟𝐵𝑃2(𝜃𝑖) =
∑

𝐴,𝜃𝑖⊆𝐴

(
𝑠𝑖∑

𝑗,𝜃𝑗⊆𝐴 𝑠𝑗

)
⋅𝑚(𝐴) (10)

As we can see, a Bayesian mass function which has only
singleton focal elements can be obtained by any of these PTs.

D. Probabilistic Information Content (PIC)

The PIC criterion [12] is classically adopted to evaluate
the performances of a probabilistic transformation of a BBA.
If 𝑚(.) is a Bayesian BBA defined on a discrete finite FoD
Θ = {𝜃1, 𝜃2, . . . , 𝜃𝑁}, its PIC value is defined as3

𝑃𝐼𝐶(𝑚) ≜ 1 +
1

log2𝑁

𝑁∑
𝑖=1

𝑚(𝜃𝑖) log2𝑚(𝜃𝑖) (11)

The PIC metric actually measures the information content
of a (probabilistic) source characterized by a Bayesian BBA
𝑚(.), which the value of this metric always belong to [0; 1].
It corresponds to the (normalized) dual of Shannon’s entropy
measure. When the Bayesian BBA is uniform over the FoD Θ,
one has 𝑚(𝜃𝑖) = 1/𝑁 for 𝑖 = 1, 2, . . . , 𝑁 and the PIC metric
is minimum, i.e. 𝑃𝐼𝐶(𝑚) = 𝑃𝐼𝐶min = 0. The PIC metric is
maximum, i.e. 𝑃𝐼𝐶(𝑚) = 𝑃𝐼𝐶max = 1 if the Bayesian BBA
𝑚(.) is deterministic, that is if there exists an element 𝜃𝑖 of Θ
such that 𝑚(𝜃𝑖) = 1. While simple, appealing and generally
adopted by the community, the PIC criteria is however not
always sufficient to evaluate the efficiency of a PT as discussed
in [14]. This point will be addressed in Section V.

3where 0 log2(0) = 0 by convention.

III. EVOLUTIONARY-BASED PROBABILISTIC

TRANSFORMATION (EPT)

The idea to approximate any BBA into a Bayesian BBA
(i.e. a subjective probability measure) using the minimization
of the Shannon entropy under compatibility constraints has
been proposed recently by Han et al. in [10], [14] using “on-
the-shelf” optimization techniques. In this paper, we present in
details a new optimization method to achieve this PT based on
a random evolutionary algorithm to acquire maximization of
the PIC value. That is why we call it the Evolutionary-based
Probabilistic Transformation (EPT) method.

Let’s assume that the FoD of the original BBA 𝑚(.) to
approximate by a Bayesian BBA is Θ ≜ {𝜃1, 𝜃2, . . . , 𝜃𝑁}.
The EPT method consists of the following steps:

∙ Step 0 (setting parameters): 𝑡max is the max number of
iterations; 𝑛max is the population size in each iteration;
𝑃𝑐 is the crossover probability, and 𝑃𝑚 is the mutation
probability.

∙ Step 1 (population generation): A set P𝑡 of 𝑗 =
1, 2, . . . , 𝑛max random probability values 𝑃 𝑗

𝑡 =
{𝑃 𝑗(𝜃1), . . . , 𝑃

𝑗(𝜃𝑁 )} is generated such that the con-
straints (12)–(14) for 𝑗 = 1, 2, . . . , 𝑛max are satisfied
in order to make each random set of probabilities 𝑃 𝑗

𝑡

compatible with the original BBA 𝑚(.)

𝑃 𝑗(𝜃𝑖) ∈ [0; 1], 𝑖 = 1, 2, . . . , 𝑁 (12)
𝑁∑
𝑖=1

𝑃 𝑗(𝜃𝑖) = 1 (13)

𝐵𝑒𝑙(𝜃𝑖) ≤ 𝑃 𝑗(𝜃𝑖) ≤ 𝑃𝑙(𝜃𝑖), 𝑖 = 1, 2, . . . , 𝑁 (14)

∙ Step 2 (fitness assignment): To each probability set 𝑃 𝑗
𝑡 ,

(𝑗 = 1, 2, . . . , 𝑛max), we compute its PIC value and use it
as its fitness factor 𝐹 . More precisely, one takes 𝐹 (𝑃 𝑗

𝑡 ) =
𝑃𝐼𝐶(𝑃 𝑗

𝑡 ).
∙ Step 3 (best approximation of 𝑚(.)): the best set of

probability 𝑃 𝑗best
𝑡 with highest PIC value is sought,

and its associated index 𝑗best are stored respectively in
”Best-Individual” and ”Index-of-BestIndividual”.

∙ Step 4 (selection, crossover and mutation): The tourna-
ment selection, crossover and mutation operators drawn
from evolutionary theory framework [13] are imple-
mented to create the associated offspring population
P′

𝑡 based on the parent population P𝑡. If 𝐹 (𝑃 𝑗best
𝑡 ) ≥

𝐹 (𝑃 ′𝑗best
𝑡 ), then the ”Best-Individual” remains unchanged;

otherwise, Best-Individual = 𝑃 ′𝑗best
𝑡 .

∙ Step 5 (Stopping EPT): The steps 1–4 illustrate the 𝑡-th
iteration of EPT method. If 𝑡 ≥ 𝑡max then EPT method is
completed, otherwise another iteration must be done by
taking 𝑡+ 1 = 𝑡 and going back to step 1.

The scheme of EPT method is shown in Fig.1 and its
pseudo-code is given in Algorithm 1.

IV. SIMULATION RESULTS

In this section we compare EPT’s results to other mentioned
PTs. In particular, we show the important gain of PIC we
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Figure 1: Scheme of EPT algorithm.

Algorithm 1 Evolutionary-Based PT (EPT)

1: Define Stopping Criteria, (𝑡 ≤ 𝑡max); population Size
𝑛max for each iteration; crossover probability 𝑃𝑐, and
mutation probability 𝑃𝑚.

2: Generate an initial random population P𝑡 of consistent
probabilities 𝑃 𝑗

𝑡 with 𝑚(.).
3: For each individual 𝑃 𝑗

𝑡 in P𝑡 do
4: Calculate Fitness 𝐹 (𝑃 𝑗

𝑡 ) = 𝑃𝐼𝐶(𝑃 𝑗
𝑡 ) of 𝑃 𝑗

𝑡

5: Store the best individual 𝑃 𝑗best
𝑡

6: End
7: Repeat:
8: Selection: Select 2 individuals based on fitness
9: Crossover: exchange parts of 2 individuals with proba-

bility 𝑃𝑐

10: Mutation: mutate the child individuals with probability
𝑃𝑚

11: After these three sub-steps, the updated population P′
𝑡

is obtained
12: Calculate the fitness of individuals of P′

𝑡, and store the
best individual 𝑃 ′𝑗𝑏𝑒𝑠𝑡

𝑡

13: If 𝐹 (𝑃 𝑗best
𝑡 ) ≥ 𝐹 (𝑃 ′𝑗best

𝑡 )
14: Best-Individual remains unchanged
15: else
16: Best-Individual = 𝑃 ′𝑗best

𝑡

17: If 𝑡 ≥ 𝑡max then stops, otherwise 𝑡+ 1 → 𝑡 and go back
to line 7

can obtain, and the capability of EPT to improve target type
tracking.

A. Examples and comparisons

In order to compare different PTs with EPT, two cases
borrowed from [11] and [12] are considered, where PIC is
used for evaluation. In all the following cases, the parameters
𝑡max, 𝑛max, 𝑃𝑐 and 𝑃𝑚 necessary to EPT method have been
set to 𝑡max = 50, 𝑛max = 1000, 𝑃𝑐 = 0.9 and 𝑃𝑚 = 0.1
respectively.

Example 1: Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4}

The BBA 𝑚(.) to approximate by a Bayesian BBA (prob-
ability measure) is

𝑚(𝜃1) = 0.16, 𝑚(𝜃2) = 0.14, 𝑚(𝜃3) = 0.01, 𝑚(𝜃4) = 0.02

𝑚(𝜃1 ∪ 𝜃2) = 0.20, 𝑚(𝜃1 ∪ 𝜃3) = 0.09, 𝑚(𝜃1 ∪ 𝜃4) = 0.04

𝑚(𝜃2 ∪ 𝜃3) = 0.04, 𝑚(𝜃2 ∪ 𝜃4) = 0.02, 𝑚(𝜃3 ∪ 𝜃4) = 0.01

𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.10, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃4) = 0.03

𝑚(𝜃1 ∪ 𝜃3 ∪ 𝜃4) = 0.03, 𝑚(𝜃2 ∪ 𝜃3 ∪ 𝜃4) = 0.03

𝑚(Θ) = 0.08

The Bayesian BBA obtained by classical PT (5)–(10) and
EPT with their corresponding PIC values calculated by (11)
are given in Table I. As expected, the EPT provides the
maximum PIC .

Table I: Results of Different PTs in Example 1.

𝜃1 𝜃2 𝜃3 𝜃4 𝑃𝐼𝐶
𝐶𝑢𝑧𝑧𝑃 0.3860 0.3382 0.1607 0.1151 0.0790
𝐵𝑒𝑡𝑃 0.3983 0.3433 0.1533 0.1051 0.0926

𝐷𝑆𝑚𝑃0 0.5176 0.4051 0.0303 0.0470 0.3100
𝐷𝑆𝑚𝑃0.001 0.5162 0.4043 0.0319 0.0476 0.3058
𝑃𝑟𝐵𝑃1 0.5419 0.3998 0.0243 0.0340 0.3480
𝑃𝑟𝐵𝑃2 0.5578 0.3842 0.0226 0.0354 0.3529

EPT 0.7246 0.2218 0.0266 0.0270 0.4508

Example 2: Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4}
In this case, we randomly generate BBAs and compare EPT

with classical PTs (CuzzP, BetP, DSmP, PrBP1 and PrBP2
given by (5)–(10)). The original BBAs to approximate are
generated according to Algorithm 2 of [15].

Algorithm 2 Random generation of BBA

1: Input: Frame of Discernment Θ = {𝜃1, 𝜃2, 𝜃3, 𝜃4}
2: 𝑁𝑚𝑎𝑥 :Maximum number of focal element
3: Output : BBA-m
4: Generate 𝐾(Θ), which is the power set of Θ
5: Generate a random permutation of 𝐾(Θ) → 𝑅(Θ)
6: Generate an integer between 1 and 𝑁𝑚𝑎𝑥 → 𝑙
7: For each First 𝑘 elements of 𝑅(Θ) do
8: Generate a value within [0, 1] → 𝑚𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙
9: End

10: Normalize the vector 𝑚 = [𝑚1,𝑚2, ⋅ ⋅ ⋅ ,𝑚𝑙] → 𝑚′

11: 𝑚(𝜃𝑖) = 𝑚′
𝑖

In our test, we have set the cardinality of the FoD to 4
and fixed the number of focal elements to 𝑙 = 𝑁𝑚𝑎𝑥 = 15.
We randomly generate 𝐿 = 30 BBA’s. Six PT methods
are tested and PIC is used to evaluate the quality of their
corresponding results are shown in Fig.2. As we can see, EPT
outperforms significantly other methods based on maximum
of PIC criterion, which is normal.

B. Evaluation of EPT in Target Type Tracking problem

Target Type Tracking (TTT) problem can be briefly de-
scribed below [16]:
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Figure 2: PIC values obtained with EPTs and classical PTs.

1) Target Type Tracking Problem (TTT):

1. Considering 𝜁 = 1, 2, ⋅ ⋅ ⋅ , 𝜁𝑚𝑎𝑥 be the time index
and let 𝑁 possible target types 𝑇𝑎𝑟𝜁 ∈ Θ =
{𝜃1, 𝜃2, ⋅ ⋅ ⋅ , 𝜃𝑁} in the surveillance area; For instance,
in the normal air target surveillance systems the FoD
could be Θ = {𝐹𝑖𝑔ℎ𝑡𝑒𝑟, 𝐶𝑎𝑟𝑔𝑜}. That is, 𝑇𝑎𝑟1 =
𝜃1 ≜ 𝐹𝑖𝑔ℎ𝑡𝑒𝑟, 𝑇𝑎𝑟2 = 𝜃2 ≜ 𝐶𝑎𝑟𝑔𝑜. Similarly, the
FoD in a ground target surveillance systems could be
Θ𝑔𝑟𝑜𝑢𝑛𝑑 = {𝑇𝑎𝑛𝑘, 𝑇𝑟𝑢𝑐𝑘, 𝐶𝑎𝑟,𝐵𝑢𝑠}. In this paper,
we just consider the air target surveillance systems to
prove the practicability of EPT.

2. At every time 𝜁, the true type of the target 𝑇𝑎𝑟 (𝜁) ∈ Θ
is immediately observed by an attribute-sensor (here, we
assume a possible target probability).

3. A defined classifier is applied to process the attribute
measurement of the sensor which provides the probabil-
ity 𝑇𝑎𝑟𝑑 (𝜁) on the type of the observed target at each
instant 𝜁.

4. The sensor is in general not totally reliable and is
characterized by a 𝑁 ×𝑁 confusion matrix:

M = [𝑀𝑖𝑗 = 𝑃 (𝑇𝑎𝑟𝑑 = 𝑇𝑎𝑟𝑗 ∣𝑇𝑟𝑢𝑒𝑇𝑦𝑝𝑒 = 𝑇𝑎𝑟𝑖)]
(15)

where 0 ≤ 𝑖 ≤ 𝑁 ; 0 ≤ 𝑗 ≤ 𝑁 .

Here, we briefly summarize the main steps of TTT using
EPT.

1. Initialization. Determine the target type frame
Θ = {𝜃1, 𝜃2, ⋅ ⋅ ⋅ , 𝜃𝑁} and set the initial BBA
𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (𝜃1 ∪ 𝜃2 ∪ ⋅ ⋅ ⋅ ∪ 𝜃𝑁 ) = 1 since there is no
information about the first target type that will be
observed;

2. Updating BBA. An observed BBA 𝑚𝑜𝑏𝑠(.) on types of
unknown observed target is defined from current target
type declaration and confusion matrix M;

3. Combination. We combine the current BBA 𝑚𝑜𝑏𝑠(⋅)
with initial BBA 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙(⋅) according to PCR6 com-
bination rule: 𝑚𝑃𝐶𝑅6(⋅) = 𝑚𝑜𝑏𝑠(⋅)⊕𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙(⋅) ;

4. Approximation. Using 𝐸𝑃𝑇 (⋅) to approximate
𝑚𝑃𝐶𝑅6(⋅) into a Bayesian BBA;

5. Decision Making. Taking a final decision about the type
of the target at current observation time based on the
obtained Bayesian BBA;

6. Updating BBA. Set 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙(⋅) = 𝑚𝑃𝐶𝑅6(⋅), and in-
crease time index 𝜁 = 𝜁 + 1 and go back to step 2.

2) Raw Dataset of TTT: We have tested our EPT-based
TTT on a very simple scenario for a 2D TTT, namely Θ =
{𝐹𝑖𝑔ℎ𝑡𝑒𝑟, 𝐶𝑎𝑟𝑔𝑜} for two types of classifiers. The matrix M1

corresponds to the confusion matrix of the good classifier, and
M2 corresponds to the confusion matrix of the poor classifier.

M1 =

[
0.95 0.05
0.05 0.95

]
;M2 =

[
0.75 0.25
0.25 0.75

]
(16)

In our scenario, a true Target Type sequence over 120 scans
is generated according to Fig. 3. We can observe clearly from
Fig. 3 that Cargo (which is denoted as Type 2) appears at
first in the sequence, and then the observation of the Target
Type switches three times onto Fighter Type (Type 1) during
different time duration (namely, 20s, 10s, 5s).
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Figure 3: Raw Sequence of True Target Type.

A pathological case for TTT: Our analysis has shown that
EPT can nevertheless be in troubles for tracking two target
types as proved in this simple particular example (when 0 ≤
𝑚(𝜃1 ∪ 𝜃2) ≤ 0.1). Let’s consider the following BBA

𝑚𝑡𝑎𝑟𝑔𝑒𝑡(.) = [𝜃1, 𝜃2, 𝜃1 ∪ 𝜃2] = [0, 1, 0]

According to the compatibility constraints (12)–(14), the
population P′

𝑡 is obtained from P𝑡 through a selection pro-
cedure. Next, individual 𝑃 ′𝑗

𝑡 in P′
𝑡 which is denoted as

𝑃 ′𝑗
𝑡 = [𝑚′(𝜃1),𝑚′(𝜃2)] is subject to initial constraint (1) and

(17):

𝑚′(𝜃1) ≥ (𝐵𝑒𝑙(𝜃1) = 𝑚(𝜃1) = 0)

𝑚′(𝜃1) ≤ (𝑃𝑙(𝜃1) = 𝑚(𝜃1) +𝑚(𝜃1 ∪ 𝜃2) = 0 + 0 = 0);

𝑚′(𝜃2) ≥ (𝐵𝑒𝑙(𝜃2) = 𝑚(𝜃2) = 1)

𝑚′(𝜃2) ≤ (𝑃𝑙(𝜃2) = 𝑚(𝜃2) +𝑚(𝜃2 ∪ 𝜃1) = 1 + 0 = 1);

(17)
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From the above inequalities, one sees that only one probability
measure 𝑃𝑆

𝑡 = [𝑚(𝜃1),𝑚(𝜃2)] = [0, 1] (where the superscript
index 𝑆 means Single) satisfies this constraint. However
because of mechanism of EPT and real-coded generic
algorithm (RCGA), the probabilities 𝑃 𝑗

𝑡 in population P𝑡

which are randomly generated in the interval [0, 1], will
have a very little chance to be equal to the suitable measure
[0, 1] satisfying the constraints. That is why EPT becomes
inefficient in this case which occurs with a probability of
1/𝑛max, where 𝑛max denotes the size of population4 P𝑡.
Unfortunately, in TTT decision making problems, such case
cannot be avoided because it can really happens.

To circumvent this problem and make EPT approach
working in all circumstances, we need to modify a bit the
EPT method to generate enough individuals for making se-
lection step efficiently when the bounds of belief interval
[𝐵𝑒𝑙, 𝑃 𝑙] take their min and max values ([0.9, 0.05, 0.05],
[0.05, 0.9, 0.05]). For achieving this, we propose to enlarge
the interval through a parameter 𝜆, and maintain the property
of original interval in some degree at the same time. More
precisely, the modified belief interval, denoted [𝐵𝑒𝑙′, 𝑃 𝑙′], is
heuristically computed by a simple thresholding technique as
follows:
First, we assume that the original BBA we consider here for
FoD Θ = {𝜃1, 𝜃2} is [𝜃1, 𝜃2, 𝜃1 ∪ 𝜃2] = [𝑎, 𝑏, 𝑐], (𝑎+ 𝑏+ 𝑐) =
1; 0 ≤ 𝑐 ≤ 0.1)

Step 1: Let 𝑚′(𝜃1 ∪ 𝜃2) = 𝑐+ 𝜆;
Step 2: if 𝑎 > 𝑏

𝑚′(𝜃1) = 𝑎− 𝜆;𝑚′(𝜃2) = 𝑏;𝑚′(𝜃1 ∪ 𝜃2) = 𝑐+ 𝜆;
(18)

Step 3: if 𝑎 ≤ 𝑏

𝑚′(𝜃1) = 𝑎;𝑚′(𝜃2) = 𝑏− 𝜆;𝑚′(𝜃1 ∪ 𝜃2) = 𝑐+ 𝜆;
(19)

So the value of [𝐵𝑒𝑙′(𝜃1), 𝑃 𝑙′(𝜃1)] and [𝐵𝑒𝑙′(𝜃2), 𝑃 𝑙′(𝜃2)] can
be calculated based on Eq.(18),Eq.(19), which are presented
as follows:
When 𝑎 > 𝑏:{

𝑃𝑙′(𝜃1) = 𝑚(𝜃1) +𝑚′(𝜃1 ∪ 𝜃2) = 𝑎− 𝜆+ 𝑐+ 𝜆 = 𝑎+ 𝑐;

𝐵𝑒𝑙′(𝜃1) = 1− 𝑃𝑙′(𝜃1) = 1− (𝑏+ 𝑐+ 𝜆) = 𝑎− 𝜆.

(20)

⎧⎨
⎩

𝑃𝑙′(𝜃2) = 𝑚(𝜃2) +𝑚′(𝜃1 ∪ 𝜃2) = 𝑏+ 𝑐+ 𝜆 = 𝑏+ 𝑐+ 𝜆;

𝐵𝑒𝑙′(𝜃2) = 1− 𝑃𝑙′(𝜃2)
= 1− (𝑎− 𝜆+ 𝑐+ 𝜆) = 1− (𝑎+ 𝑐) = 𝑏.

(21)

When 𝑎 ≤ 𝑏:⎧⎨
⎩

𝑃𝑙′(𝜃1) = 𝑚(𝜃1) +𝑚′(𝜃1 ∪ 𝜃2) = 𝑎+ 𝑐+ 𝜆;

𝐵𝑒𝑙′(𝜃1) = 1− 𝑃𝑙′(𝜃1)
= 1− (𝑏− 𝜆+ 𝑐+ 𝜆) = 1− (𝑏+ 𝑐) = 𝑎.

(22)

4In our simulation, we did take 𝑛max = 1000.

{
𝑃𝑙′(𝜃2) = 𝑚(𝜃2) +𝑚′(𝜃1 ∪ 𝜃2) = 𝑏− 𝜆+ 𝑐+ 𝜆 = 𝑏+ 𝑐;

𝐵𝑒𝑙′(𝜃2) = 1− 𝑃𝑙′(𝜃2) = 1− (𝑎+ 𝑐+ 𝜆) = 𝑏− 𝜆.

(23)

Explanation: Through step 1, one computes the total
singleton mass one has in the entire BBA and the threshold
value 0.9 allows to evaluate if the percentage of singleton mass
is big enough or not. Here, we not only consider the unique
extreme case 𝑚𝑡𝑎𝑟𝑔𝑒𝑡(⋅) = [𝜃1, 𝜃2, 𝜃1 ∪ 𝜃2] = [0, 1, 0], but also
other possible cases such as 𝑚𝑡𝑎𝑟𝑔𝑒𝑡(⋅) = [𝜃1, 𝜃2, 𝜃1 ∪ 𝜃2] =
[0.0001, 0.9998, 0.0001]. Why do we consider the concept
of percentage? Actually, the higher percentage of singleton
mass, the smaller interval for 𝑃 𝑗

𝑡 , in other words, the higher
value of 𝑚 (𝜃1 ∪ 𝜃2), the bigger interval for 𝑃 𝑗

𝑡 which can
be shown in Eq.(17); The step 2 and step 3 give the way
of calculating the updated upper bound of belief interval
[𝐵𝑒𝑙′, 𝑃 𝑙′] and Eq.(20)–Eq.(23) prove that the parameter
𝜆 determines the range of the interval; Next, we give two
examples to show how the above method works:

The pathological case 1 for TTT (using modified EPT)

𝑚𝑡𝑎𝑟𝑔𝑒𝑡(.) = [𝜃1, 𝜃2, 𝜃1 ∪ 𝜃2] = [0.0001, 0.9998, 0.0001] .

Here, the parameter 𝜆 is arbitrarily5 set to 0.4. Then
one computes in step 2 the modified plausibility bounds
𝐵𝑒𝑙′(𝜃1) = 0.0001, 𝑃𝑙′(𝜃1) = 0.0001 + 0.0001 + 𝜆 =
0.4002 and 𝐵𝑒𝑙′(𝜃2) = 0.9998 − 0.4 = 0.5998, 𝑃𝑙′(𝜃2) =
0.9999. So we get [𝐵𝑒𝑙′(𝜃1), 𝑃 𝑙′(𝜃1)] = [0.0001, 0.4002] and
[𝐵𝑒𝑙′(𝜃2), 𝑃 𝑙′(𝜃2)] = [0.5998, 0.9999].

Consequently, any Bayesian BBA 𝑃 𝑗
𝑡 = [𝑚′(𝜃1),𝑚′(𝜃2)]

must be generated according the (modified) compatibility
constraints

𝑚′(𝜃1) ∈ [𝐵𝑒𝑙′(𝜃1), 𝑃 𝑙′(𝜃1)] = [0.0001, 0.4002]

𝑚′(𝜃2) ∈ [𝐵𝑒𝑙′(𝜃2), 𝑃 𝑙′(𝜃2)] = [0.5998, 0.9999]

The pathological case 2 for TTT (using modified EPT)

𝑚𝑡𝑎𝑟𝑔𝑒𝑡(.) = [𝜃1, 𝜃2, 𝜃1 ∪ 𝜃2] = [0.45, 0.48, 0.07] .

Here, the parameter 𝜆 is set to 0.2. Then any Bayesian
BBA 𝑃 𝑗

𝑡 = [𝑚′(𝜃1),𝑚′(𝜃2)] must be generated according the
(modified) compatibility constraints

𝑚′(𝜃1) ∈ [𝐵𝑒𝑙′(𝜃1), 𝑃 𝑙′(𝜃1)] = [0.45, 0.72]

𝑚′(𝜃2) ∈ [𝐵𝑒𝑙′(𝜃2), 𝑃 𝑙′(𝜃2)] = [0.28, 0.55]

In order to evaluate the influence of the parameter 𝜆,
we have reexamined all the pathological cases based on the
following procedure:

1) The value of parameter 𝜆 is taken to five possible values:
0, 0.1, 0.2, 0.3, 0.4, 0.5;

2) We randomly generate initial population P𝑡 based on 𝜆,
which is also subjected to the constraints (12)–(14).

5The value of the parameter 𝜆 can be chosen to any value in [0, 1] by the
designer for his/her own reason to ensure the alternative interval effectively
in modified EPT version.
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With this simulation, we can observe in Fig.4 the impact of
𝜆 value on the number of 𝑃 𝑗

𝑡 in P𝑡. When 𝜆 = 0 happens 6,
there exists no suitable 𝑃 𝑗

𝑡 for case one which demonstrates
the necessity to circumvent the pathological case problem.
Obviously, the number of 𝑃 𝑗

𝑡 increases with the increase of
𝜆 value, which efficiently proves the advantage of using the
modified EPT approach to make selection step of the evolu-
tionary algorithm more efficient. One point we need to clarify
is that the intervals i.e. [𝐵𝑒𝑙′(𝜃1), 𝑃 𝑙′(𝜃1)], [𝐵𝑒𝑙′(𝜃2), 𝑃 𝑙′(𝜃2)]
induced from parameter 𝜆 above aims at guaranteeing enough
number of 𝑃 𝑗

𝑡 in P𝑡 in the implementation of EPT.
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Figure 4: Impact of 𝜆 (x-axis) on individuals in P𝑡 (y-axis).

3) Simulation Results of TTT Based on Modified EPT: Our
simulation consists in 100 Monte-Carlo runs and we show in
the sequel the averaged performances of EPT and DSmP. The
figures 5–8 illustrate the Bayesian BBA’s obtained by DSmP
[7] -(part a) and our new EPT method-(part b) based on TTT
using PCR6 fusion rule. One sees that regardless of the good
classifier M1 and poor classifier M2, EPT is able to track
properly the quick changes of target type.

V. LIMITATION OF EPT

As pointed out by Han et al. in [14], in general it is
not enough, nor comprehensive to evaluate the quality of
probabilistic transformation of a BBA from only the PIC
criterion, even if the chosen PT provides highest PIC value
by optimization. Our EPT approach, is not exempt of this
problem of course as we can see in the simple example below,
where no optimization technique provides useful (robust)
solution.

Let’s consider the FoD Θ = {𝜃1, 𝜃2} with the BBA to
approximate chosen as follows:

𝑚(𝜃1) = 0.10001, 𝑚(𝜃2) = 0.10000, 𝑚(𝜃1 ∪ 𝜃2) = 0.79999

Based on PIC value optimization using EPT (or any other
efficient optimization techniques), we will obtain the Bayesian

6which actually the original EPT is applied
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BBA 𝑚(𝜃1, 𝜃2) = [0.0001605, 0.9998394] with 𝑃𝐼𝐶 =
0.9977. This simple example shows that in the original BBA
𝑚(𝜃1) is almost the same as 𝑚(𝜃2) and there is no solid
reason to get a very high probability for 𝜃2 and a small
one for 𝜃1 in the Bayesian BBA, even if a highest PIC
is reached. Exaggerated high PIC is not always preferred
(unreasonable or directly make wrong decisions), which can
be seen in Fig.6 and Fig.8, although the PIC should be as
high as possible for decision making problems. Therefore, a
reasonable compromise must be found between PIC level and
also fidelity level of the transformations to the original BBA,
which is a theoretical open challenging problem left for further
research works.

VI. CONCLUSION

An evolutionary algorithm for probabilistic transformation
(EPT) has been proposed in this paper. It uses the genetic
algorithm to obtain Bayesian belief function with highest
PIC value. The utility of EPT was verified on a set of
three probabilistic transformation cases borrowed from the
literature. On these cases, the performance of EPT has been
compared to other existing probabilistic transformations. Our
results indicate that EPT performs better than others on all
problems from PIC increasing standpoint. The shortcomings of
original EPT version have been clearly identified on two type
tracking problems, and they have been overcome thanks to a
modification of belief interval constraints. As future works, we
would like to establish more appropriate evaluation criteria and
make more comparisons between performances of this EPT
approach with other recent proposed evolutionary algorithms.
We would also make more investigations on EPT to extend it
to work with more than two targets.
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