
Limitation on Effective Degree of Quantum Parallelism 

Masataka Ohta 

Email: mohta@necom830.hpcl.titech.ac.jp 

Department of Computer Science, School of Information Science and Engineering 

Tokyo Institute of Technology 

2-12-1-W8-54, O-okayama, Meguro, Tokyo 1528552, JAPAN 

  

Feb. 14, 2018 

 

Abstract: Consider a binary quantum channel with binary states |0� and |1� as an output channel of 

some quantum computation device and assume that, if the channel is used as a classical binary channel 

where |0� and |1� represent bit values of 0 and 1, respectively, the channel has small error probability 

of p. Then, |0� transmitted over the channel will typically be �1 − �|0� + 	
���|1�	(0 ≤ � < 2�). 

That is, error of the channel makes|0� and �1 − �|0� + 	
���|1� indistinguishable, which means 

different results of parallel execution of the device can’t be represented by |0� and �1 − �|0� +

	
���|1�.	As representing N parallel binary results needs 2� distinguishable states, effective degree 

of quantum parallelism of the device, which is defined as degree of parallelism of binary results with 

arbitrary small error probability by ideal encoding and ideal error correction, is limited by 

log2(π/2�� + 1). That is, in practice, quantum computers are only as powerful as classical ones. Then, 

a brief introduction on modern communication technology over photons is provided to show that 

capacity of a binary quantum channel is almost twice better than quantum physicists had thought, that 

a classical state representing an entangled state exists and that “qubit” is a bad idea. Finally, it is shown 

that, without error caused by noise, ideal classical computers can be arbitrary fast. 

  

I. INTRODUCION 

 In theory, quantum computers are believed to be more powerful than classical ones. For 

example, factorization of an integer is solved in polynomial (w.r.t. the number of digits of the integer) 

time by quantum computers [1], though, by practical classical computers, the best known algorism 

requires exponential time. It is essential that [1] use quantum parallelism. That is, a single computation 

step of a quantum device has quantum parallelism that exponentially many entangled terms are 

computed in parallel. 

 In practice, however, quantum devices suffer from error. Just as error of a classical channel 

limits capacity of the channel [2], error of a quantum device should limit effective degree of quantum 

parallelism by quantum superposition. 

 Consider a binary quantum channel with binary states |0� and |1� as an output channel of 



some quantum computation device and assume that, if the channel is used as a classical binary channel 

where |0� and |1� represent a bit value of 0 and 1 respectively, the channel has small error probability 

of p. Then, |0� transmitted over the channel will typically (those physicists not familiar with theory 

of Shannon can still understand “typical” as typical states of statistical mechanics) be �1− �|0� +

	
���|1�	(0 ≤ � < 2�) . That is, error of the channel makes |0�  and �1 − �|0� + 	
���|1� 

indistinguishable, which means different results of parallel execution of the device can’t be represented 

by |0�  and �1 − �|0� + 	
���|1� , which is the essential part of Shannon Hartley theorem on 

capacity of analog channels. As entire quantum state is cos� |0� + 	
� cos� |1� 	(0 ≤ � < 2�, 0 ≤

φ < π), sin� �~ｐ, and as representing N parallel binary results needs 2� distinguishable states, 

effective degree of quantum parallelism of the device, which is defined as degree of parallelism of 

binary results with arbitrary small error probability by ideal encoding and ideal error correction, is 

limited by log2(π/2�� + 1) (1 is added, because, even with large p, the entire state is distinguished as 

itself). , which is, not surprisingly, capacity of an analog channel with SNR of π/2��. That is, in 

practice, quantum computers are only as powerful as classical ones. 

 While Quantum Threshold Theorem may reduce error doubly exponentially with 

exponential amount of hardware, because of exponential relationship between degree of parallelism 

and the number of distinguishable states, it only means exponential increase of degree of parallelism 

by exponential amount of hardware, which is no better than practical classical computers. 

 

II. Brief Introduction on Modern Communication Technology over Photons 

 Radio waves as a solution of Maxwell’s equations are transvers waves having 

two polarization modes, amplitude and phase of which can be controlled independently. 

Degree of freedom by quantum superposition of binary quantum states, in classical 

context, merely means relative amplitude and relative phase between two polarization 

modes. 

However, as signals of two polarization modes are easily mixed during 

transmission, for example, by reflections, it was difficult to extract capacity of both 

modes, except for direct sight communications such as communications between a 

satellite and ground stations, where right and left circular polarization states can be 

separated by properly designed anntenas. Still, information has been encoded in 

absolute amplitude and phase as relative variation of amplitude and phase in time 

traditionally as analog AM (Amplitude Modulation) and PM (Phase Modulation) radio 

waves. With modern digital communication technology, short sequence of symbols with 

known amplitude and phase, which is called preamble or training sequence, is used as a 

delimiter between bytes or packets and reference amplitude and phase. Long term phase 

reference is maintained by LO (Local Oscillator) usually controlled by PLL (Phase 



Locked Loop). 

Thanks to Moore’s law, which predicts semiconductor circuit size can be scaled 

down twice in every 18 months, and Denard’s scaling law, which means speed of 

semiconductor circuit doubles if size and driving voltage is scaled down twice, it becomes 

practical to use DSPs (Digital Signal Processers) to restore original signals transmitted 

over multiple interfering channels using preambles as reference to estimate how signals 

in the channels interfere, which is called MIMO (Multiple Input and Multiple Output), 

special case of which is PDM (Polarization Division Multiplexing). MIMO is extensively 

used in 4G and Wifi.  

With PDM, modern communication technology utilizes both relative and 

absolute amplitude and phase of a binary quantum state, which is twice more capacity 

than quantum superposition save capacity consumed by preambles. 

As Moore’s law further evolve, it is now possible to use PDM for optical signals 

over optical fibers, which is practically used in some 100G Ethernet implementations. 

As infrared photons over optical fibers has more energy than radio wave photons and 

power saving is of important concern, the number of photons consisting a symbol to 

achieve certain raw (that is, before error correction) error rate is minimized by taking 

into consideration quantum fluctuations as quantum noise such as shot noise. 

Then, consider two binary quantum states. Can entanglement introduce new 

degree of freedom not available to classical channels? Disappointingly, it is merely that 

degree of freedom by entanglement of two binary states is freedom of absolute amplitude 

and phase of the second state as relative amplitude and phase relative to those of the 

first state. As such, an entangled state can be represented as a classical state of two 

classical channels. By representing | 0�  and | 1�  as classical states of vertical and 

horizontal polarization, |00� and |11� corresponds to classical state of both channels 

vertically polarized and horizontally polarized, respectively. Thus, |00�+|11� corresponds 

to classical state of both channels diagonally polarized, which is classical superposition 

of horizontal and vertical polarization with same phase. Interestingly, |01�+ |10�  is 

represented by the same classical state, implications of which is discussed in a separate 

paper [ENT]. 

 Now, as a binary quantum state can carry information by four real numbers of 

absolute and relative amplitude and phase, it is obviously improper to call it “qubit”. 

Moreover, even if we use only two states of |0� and |1�, it is still inappropriate to call it 

“qubit”, as we may use a symbol with {|00�, |10�, |11�} excluding |01�, in which case, 

while log% 3	bits may be encoded in the symbol, we can’t count the number of bits encoded 

by each “qubit”. Information is represented by symbols, not by partial states consisting 



the symbols. 

 

III. Classical Computers can be Arbitrary Fast 

 As ideal noiseless classical computers are not annoyed by quantum effects such 

as size of atoms, which limits machining accuracy, or a unit of electric charge, which 

limits minimum current through shot noise, there is no limitation to apply Moore’s law 

and Denard’s scaling law, which means ideal noiseless classical computers can be 

arbitrary fast. 

 

IV. CONCLUSIONS 

 As noise of practical quantum devices limits effective degree of quantum parallelism of the 

device, it is practically impossible to make quantum computers more powerful than classical ones. 

 Computer scientists, including the Author, must concentrate on making classical computers 

faster, less power consuming with wider von Neumann bottlenecks. 

 But, first of all, let’s celebrate 100th birthday of Shannon, if it is not too late [100th] 
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