
The Free Coding Manifesto

Adam Lucas Young

ayoung235@gmail.com

October 29, 2017

This manifesto is dedicated to Bantu Steve Biko 1946-1977.

Abstract: Working-class coders and vulnerability researchers the world over
are subject to prior restraints on their speech imposed by the institutions they
work for. The restraints are in the form of non-disclosure agreements (NDAs)
and employment contracts that are typically enforced using a process called pre-
publication censorship. Industrial pre-publication censorship chills contributions
of source code to society and chills the publication of vulnerabilities found in
code that has been given to society. This has a harmful effect on the depth,
breadth, and information assurance of society’s foundation of code. Restrictions
on the human spirit call for new liberties to be defined and upheld. This man-
ifesto defines Freedom A and Freedom B as follows. Freedom A: you have the
freedom to write code and give it to society under conditions of your choosing.
Freedom B: you have the freedom to write and publish, under conditions of your
choosing, a critique or documentation of code that has been given to society.
Free coding is defined as Freedom A and Freedom B. Obstructions to free coding
are identified and measures are presented to uphold free coding. The measures
presented include a proposed corporate policy that balances institutional equi-
ties with personal liberty, a software license term tailored after Freedom B, and
an experimental free coding software license. Utilitarian, philosophical, and the-
ological foundations of free coding are given. Obstructions to free coding form
a subset of the problem of knowledge hoarding. I present my interpretations of
the Book of Genesis, namely, the Original Command and the Original Paradox.
I believe that these interpretations reveal the root of the problem of knowledge
hoarding.

ii

Contents

1 Utilitarian Foundation of Free Coding 1
1.1 Introduction . 1
1.2 Free Coding . 5
1.3 Obstructions to Free Coding . 6
1.4 Balancing the Free Coding Teeter-Totter 8

1.4.1 Free Coding Policy . 9
1.4.2 The Business Benefits of Free Coding 11
1.4.3 Supporting Free Coding via Licensing 12
1.4.4 Contract Patching . 13

1.5 Conclusion . 13

2 Philosophical Foundation of Free Coding 14
2.1 Introduction . 14
2.2 Free Expression and the Manifesto 17

2.2.1 The Positive Manifesto . 17
2.2.2 Free Speech Justifications for this Manifesto 18

2.3 The Problem: Restraints on Free Coding 20
2.3.1 Problem 1: Pre-Publication Censorship 20
2.3.2 Problem 2: Industrial Censorship De-Anonymization . . . 21
2.3.3 Problem 3: The Euphemism of “Business Ethics” 23
2.3.4 Problem 4: The Negative Message of Censorship Policy . 26

2.4 A Philosophical Interpretation of Industrial Pre-Publication Cen-
sorship . 26

2.5 Western Philosophical Foundation of Free Coding 28
2.6 Devil’s Advocate: Reasons Against Free Coding 30

2.6.1 General Reasons Against Free Coding 30
2.6.2 Institutional Reasons Against Free Coding 32
2.6.3 “Cyber Defense” Reasons Against Free Coding 33

2.7 The Philosophy of Coder Consciousness 33
2.8 Conclusion . 38

Copyright c© 2017 Adam L. Young. This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License
(https://creativecommons.org/licenses/by-nd/4.0/).

3 On Lady Wisdom and Knowledge Hoarding 39
3.1 Introduction . 39
3.2 Religion and Knowledge Hoarding 40
3.3 Lady Wisdom . 42

3.3.1 Lady Wisdom Throughout the Ages 42
3.3.2 Lady Wisdom Owns Knowledge 45

3.4 Established Doctrines on the Garden of Eden 45
3.5 The Original Command . 47
3.6 The Original Paradox . 50
3.7 Aspiring to be Trees of Life . 52
3.8 The Root of the Problem of Knowledge Hoarding 52
3.9 Theological Foundation of Free Coding 54
3.10 The Instantaneous Embrace . 55
3.11 Triadic Characterization . 55
3.12 Conclusion . 56

4 The Experimental Free Coding License 57
4.1 Introduction . 58
4.2 Background . 61
4.3 Censorship and Vulnerability Hoarding 62
4.4 The Free Coding License . 64
4.5 Results: Security Contributions 68

4.5.1 Reducing Vulnerability Hoarding 68
4.5.2 Increasing the Amount of Free/Libre and Open Source Code 69

4.6 Policy Analysis . 70
4.7 Spreading Freedom . 71

4.7.1 Policy Spider Plant . 71
4.7.2 Eastern Philosophical Inspiration 72
4.7.3 Freedom Amplification . 72
4.7.4 Policy-Man-Computer Symbiosis 73

4.8 Conclusion . 74

5 Acknowledgments 75

iv

Chapter 1

Utilitarian Foundation of Free Coding

Employment agreements and institutional policies and procedures, such as in-
dustrial pre-publication censorship, are intended to solve a tangible problem
faced by the institution: preventing the exposure of critical business models,
processes, data, patentable inventions, copyrighted material, and trade secrets.
However, such controls, when overreaching, negatively impact the individual lib-
erty of employed coders and vulnerability researchers. Overreaching censorship
has a chilling effect on contributions of code to free/libre and open source soft-
ware projects, thereby diminishing the depth and breadth of society’s foundation
of code. Similarly, it has a chilling effect on publishing vulnerabilities found in
free/libre and open source software, thereby diminishing the information assur-
ance of society’s foundation of code and exacerbating vulnerability hoarding.
This chapter addresses this problem by presenting methods to help balance in-
dustrial censorship controls with personal liberty. It shows the practical benefits
of free coding to institutions and individuals alike, thereby establishing a utili-
tarian foundation of free coding.

1.1 Introduction

There is no question that for an institution to succeed it must be forward think-
ing, innovative, and stay ahead of the pack. It must succeed in a never-ending
process of acquiring and retaining talent. The back-end systems that receive in-
formation, process it, and provide services to end-users are critical to the success
of many modern businesses. Should such wholly internal business processes and
logic become public, a competitor may easily be able to replicate the business
model. Institutions therefore have a vested interest in preventing the disclosure
of their internal processes and business logic.

NDAs and employment contracts are typically leveraged to prevent the dis-
closure of sensitive information. Employees that resign walk off with some level

Copyright c© 2017 Adam L. Young. This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License
(https://creativecommons.org/licenses/by-nd/4.0/).

of proprietary knowledge. NDAs and employment contracts are designed to pre-
vent word-of-mouth, hard copy, and soft copy disclosure of sensitive business
practices, processes, data, and logic. Such agreements are commonly enforced
using a process called pre-publication censorship. This is a process in which
employees are required to submit to a pre-publication censor within their firm
works that they want to publish, works produced during or outside of business
ours. The process reviews the work and notifies the employee as to whether or
not the institution is willing to allow publication. The institution may decide
that the work falls under the category of work-for-hire and thereby refuse to
authorize publication. An employee that refutes a decision risks losing his or
her job. An employee that skirts the pre-publication censorship process risks
losing his or her job.

The problem at hand is that of overreaching institutional censorship policy.
An example of overreaching policy is as follows: institutional policy that imposes
pre-publication censorship of all journal articles, code, books, research papers,
reports, and presentations produced by employees during and outside of work
hours wherein review and approval is required prior to public dissemination.
This completely violates the essence of the First Amendment to the Constitu-
tion of the United States of America as it pertains to abridging the freedom of
speech.1 I define the free coding teeter-totter problem to be as follows: balancing
the institution’s perceived need to censor employees with the human right to free
speech as it pertains to code.2 Central to this chapter is the question of how to
balance the free coding teeter-totter.

A natural question to ask is just how pervasive overreaching pre-publication
censorship policy is. In a world, under the many-worlds interpretation, wherein
all institutional censorship policy is public, this question may be answered by
surveying existing institutional censorship policies and presenting an analysis of
them. However, in this world, institutional censorship policies are, to a great
extent, kept secret. Progress on the social front is hampered by secret insti-
tutional censorship policy. If such policy upholds the highest ethical standards
then why not publish it? Doing so would allow a young coder to know the coding
restrictions that she will be subject to before taking the job. Doing so would
allow a student to know how pervasive coding restrictions are before majoring
in Computer Science. I would at once justify the breadth of this problem using
concrete data derived from published institutional policies but not enough data
is available. It is this lack of data, resulting from excessive secrecy of institu-
tional censorship policy, that has forced me to speak publicly about my own
dehumanizing censorship experiences in order to convince the skeptic that this

1The First Amendment applies to laws that Congress passes. I don’t think the founders of
America ever anticipated mass censorship of the working-class by corporations.

2This is analogous to the Congressional teeter-totter [55].

2

problem is real and harmful.
I am a working-class victim of industrial pre-publication censorship. The

following is an account of the harm that industrial pre-publication censorship,
and the associated culture that condones it, has inflicted upon my soul and the
souls of my colleagues:

1. Scientists called “wild dogs”: In a prior role I was once at a company
lunch wherein it was openly stated that “research scientists are like a pack
of wild dogs, roaming and frothing at the mouth.” This was said in direct
reference to the disposition of research scientists to publish. The speaker
was apparently unaware of my contributions to science at the time.

2. Creative literary works will be reviewed: While in a leadership role
I was once tasked with managing the expectations of an employee, who
I shall call Bob, who was having particular moral difficulty with the pre-
publication censorship process. I was chosen to assist for being the most
familiar with the process, having gone through it numerous times myself.
In an obvious “statement” and in compliance with the overreaching pol-
icy, Bob submitted a creative literary work of his through the censorship
process and resigned shortly thereafter.

3. Give infosec talk = get fired: I also had a colleague, who I shall call
Dave, who was headed to a conference to give an infosec talk. On his way
to the conference he was informed that if he went to the conference he
would be fired. Likewise, Dave was not long for that position thereafter.

4. My family was threatened: But the singularly defining event, the grav-
ity of which exceeded all events before it and all events after it, happened
to me at a chance encounter at work. In a clear reference to my wife Elisa,
my daughter Mia, my son Evan, and I, using an unmistakable metaphor
that I will never forget, a man at work told me that all four of us were
going down. He said it was the only direction we were headed in. Then he
asked me why it was so. Based on multiple conversations with this person
I have every reason to believe that this threat was in direct reference to
my active research in Cryptovirology.

Every single one of these examples stem from a culture of vulnerability hoard-
ing and exploit weaponization. So, whereas the problem of pre-publication cen-
sorship might not be evident to some, it is prominent to me. I believe that this
problem will become orders of magnitude worse for posterity in every sector of
industry. The damage pre-publication censorship causes doesn’t get better by
sweeping such experiences under the rug. It gets worse.

3

It has been said that there can be no ‘heresy’ without ‘orthodoxy’ (p. 4
of [31]). It is an unfortunate reality that the orthodox view of sharing these
experiences is that it “airs dirty laundry.” This view stems from the doctrine
of corporate personhood coupled with the principle of double-effect.3 The word
‘heresy’ originally meant ‘an act of choosing’—leading to ‘the choice of philo-
sophical principles’ (p. 5 of [31]). The word ‘heresy’ lacked the negative con-
notation that modern society assigns to it. The heretical view of sharing these
experiences is that it reveals souls that have been harmed by censorship; that
the pre-publication censorship process is sacrilegious.4 Chapter 3 provides the
context for this point.

In the foregoing I have identified not one but two distinct problems relating to
industrial pre-publication censorship. These problems compound one another,
forming a double-whammy involving censorship: overreaching institutional pre-
publication censorship policy plus secrecy of said policy to boot. A situation
reminiscent of this exists with respect to the law. As an outcome of its rulings,
the secret U.S. FISA court that authorizes surveillance produces an ever growing
body of secret law. Since secret law is not subject to public scrutiny, the public
has limited assurance that the secret laws uphold the Fourth Amendment. There
is one confirmed FISA court case that involved a violation of the Fourth Amend-
ment [55]. It is possible that one or more secret laws run afoul of the Fourth
Amendment. The secrecy of those laws prevent the public from knowing the
depth and breadth of the problem and prevent the public from leveraging their
voting power to effect change. This is a double-whammy involving surveillance:
possible unconstitutional surveillance law plus secrecy of said law to boot.

Not all firms impose undue restrictions on their coders and vulnerability
researchers. Some do, but have a very strong habit of “looking the other way”
when publications escape review, ultimately giving rise to a perilous sense of
freedom. Based on my experience there appears to be an increasing trend in
industry towards overreaching pre-publication censorship policy, employment
contracts, and NDAs. For example, I cannot recall, at the start of my career,
companies requiring visitors to sign an NDA in order to set foot within corporate
buildings. Requiring mere visitors to sign an NDA seems to be a growing trend.

This rest of this chapter takes a pragmatic view of free coding, appealing to
the utilitarian. Chapter 2 explores rational arguments in support of free coding,
leveraging principles from Western philosophy. Overreaching restrictions on free
coding form a subset of the problem of knowledge hoarding. Chapter 3 presents a
theological foundation of the problem of knowledge hoarding. Chapter 4 presents

3The applicability of the principle of double-effect here is covered in Chapter 2.
4“I would not show regard for any man, or temper my speech for anyone’s sake; For I do

not know how to temper my speech—My Maker would soon carry me off!” (Job 32:21-22 of
[17]).

4

a highly experimental software license aimed at comprehensively upholding free
coding. Acknowledgments are given in Chapter 5.

1.2 Free Coding

I now define what I call Freedom A and Freedom B:

Freedom A:

You have the freedom to write code and give it to society
under conditions of your choosing.

Freedom B:

You have the freedom to write and publish,
under conditions of your choosing,

a critique or documentation of code that has been given to society.

I define free coding to be Freedom A and Freedom B. Free coding and free
software are different concepts. Free software is embodied by Freedoms 0, 1,
2, and 3 [43].5 A program is free software if the program’s users have the four
essential freedoms:

Freedom 0: The freedom to run the program as you wish, for any purpose.

Freedom 1: The freedom to study how the program works, and change it so it
does your computing as you wish. Access to the source code is a precondition
for this.

Freedom 2: The freedom to redistribute copies so you can help your neighbor.

Freedom 3: The freedom to distribute copies of your modified versions to others.
By doing this you can give the whole community a chance to benefit from your
changes. Access to the source code is a precondition for this.

The following example illustrates Freedom A and Freedom B in conjunction
with Freedoms 0, 1, 2, and 3.

Alice the cryptographer writes a free encryption program and gives the source
code of it to society (Freedom A). She is protecting people from harm. Bob the
free software freelancer redistributes copies of it as a service to others for a fee
(Freedom 2). Carol the vulnerability researcher receives a copy from Bob and
studies the source code (Freedom 1), finds a vulnerability in it, and publishes a

5www.gnu.org/philosophy/free-sw.en.html

5

description of the vulnerability (Freedom B). Dave the coder reads the vulner-
ability description, fixes the code (Freedom 1), and gives the fixed encryption
program to society (Freedom A and Freedom 3). Eddie the journalist receives
the fixed encryption program and uses it to encrypt his controversial article
(Freedom 0).

Notice how free coding and free software go hand in hand. If Alice could not
give her program to society, Bob would not have it to redistribute. If Bob could
not redistribute it, Carol would not receive a copy. If Carol received a copy, she
could find the vulnerability in it. But, if she could not publish a description of
the vulnerability she found, Dave would be oblivious to the vulnerability and
would not fix the code. If Dave learned of the vulnerability, but could not fix the
code and distribute the fixed program, then Eddie would not have a safe and
trustworthy encryption program to use. Regardless of whether one considers
code to be property or speech, the following is irrefutable: in some countries,
Eddie could be tortured and murdered as a result.

Freedom A helps protect people from harm. The example provided is giving
encryption code to society. Freedom A therefore embodies, within the realm of
code, the freedom to protect people from harm, the freedom to give, and freedom
of speech.

Freedom B also helps protect people from harm. The example provided
involves publishing a description of a vulnerability in code that has been given
to society. Freedom B therefore embodies, within the realm of code, the freedom
to protect people from harm, the freedom to give, and freedom of speech.

The security benefits of Freedoms A, B, 0, 1, 2, and 3 are summarized in
Table 1.1. Free coding supports the spiritual nature of coders and vulnerability
researchers to contribute to society and make the world a better place. It is a
way for them to leverage their unique gifts to help their neighbors.

1.3 Obstructions to Free Coding

Overreaching industrial pre-publication censorship is one obstruction to free
coding. Other obstructions include international regulations that treat crypto
code as munitions and that treat proof-of-concept exploit code as munitions.
Laws also restrict free coding.6 Such obstructions threaten the depth, breadth,
and information assurance of society’s foundation of code.

In Olmstead v. United States (1928) Justice Louis Brandeis published a
famous dissent against the government’s position that wire-tapping does not
run afoul of the Fourth Amendment since wire-tapping does not extend into the

6The state secret privilege has been applied to descriptions of software vulnerabilities.

6

Upholding Security Impacts
Freedom...

A Removes obstructions to giving source code society, thereby
increasing the number of programs having public source code,
thereby increasing the opportunities that vulnerabilities and
logic that mistreats the user will be found in programs that
people rely on. Removes obstructions to giving strong security
and crypto source code to society.

B Removes obstructions to publishing descriptions of vulnera-
bilities in public source code, thereby prompting the pub-
lic source code to be fixed. Removes obstructions to pub-
lishing descriptions of logic that mistreats the user in public
source code, thereby prompting the public source code to be
fixed. Removes obstructions to publishing: implementation-
level vulnerabilities, design/architectural vulnerabilities, foun-
dational/theoretical vulnerabilities. Removes obstructions to
publishing easy-to-understand APIs and documentation that
facilitate secure coding.

0 Removes obstructions to using security programs, crypto pro-
grams, and trustworthy programs in general.

1 Removes obstructions to analyzing software to see if the code
mistreats the user (Chp. 4 of [43]). Example transgres-
sions: spyware, censorship, backdoors, time-bombs, steal-
ing credentials, surreptitious software installation, contrived
performance while under test, concealed user options (from
www.gnu.org/proprietary). Removes obstructions to fixing an
exploitable vulnerability once it becomes known. Removes ob-
structions to fixing logic that mistreats the user once it be-
comes known.

2 Removes obstructions to redistributing secure and trustworthy
source code for widespread use.

3 Removes obstructions to fixing vulnerabilities, fixing security
issues, and removing logic in public source code that mistreats
the user, wherein the derivative source code is publicly dis-
tributed.

Table 1.1: Security benefits of Freedoms A, B, 0, 1, 2, and 3

7

home. He wrote,7

“The makers of our Constitution undertook to secure conditions favorable
to the pursuit of happiness. They recognized the significance of man’s spiritual
nature, of his feelings and of his intellect. They knew that only a part of the
pain, pleasure and satisfactions of life are to be found in material things. They
sought to protect Americans in their beliefs, their thoughts, their emotions and
their sensations. They conferred, as against the Government, the right to be let
alone—the most comprehensive of rights, and the right most valued by civilized
men.”

To emphasize the above: the right to be let alone is the most comprehensive
of rights and the right most valued by civilized men. How then can industrial
pre-publication censorship be allowed to extend into the home of Americans and
censor all of their publications?

The obstructions are not limited to policies, procedures, regulations, and
laws. The belief that code is property as opposed to speech causes Alice to think
twice before contributing knowledge to society: her career progression may be at
risk, her reputation as a loyal worker-bee may be at risk, she may be subject to
civil liability [28], and she may be accused of violating international agreements
[5]. This creates both fear and apprehension of contributing code to society and
publishing vulnerabilities that are found in code that has been given to society.
The issue is not only the submission of a work for pre-publication censorship
review and having it be rejected; the issue is also believing so thoroughly that
code is property that one does not even try. The tangible obstructions to free
coding have unequivocally given rise to psychological obstructions to free coding.
Industrial pre-publication censorship of all publications appears to be on track
to becoming an uncontested social norm.

1.4 Balancing the Free Coding Teeter-Totter

I argue that censoring all publications made by employees is overkill. There
is simply no good reason for such a blanket policy. From an information se-
curity perspective it is essentially equivalent to the following, “block all out-
bound network traffic by default and create proxy servers for new protocols
when they arise.” Whereas this approach may certainly be suitable for securing
the Internet-facing perimeter of an enterprise, it is certainly not suitable for
application to people.

7Olmstead v. United States, 277 U.S. 438 (1928).

8

1.4.1 Free Coding Policy

A different approach is to have institutions define a list of types of code that are
subject to pre-publication censorship. Such a definition would appear within the
institution’s policy. For example, an on-line gaming company might list: gaming
code, gaming engines, graphics drivers, sound drivers, peripheral device drivers,
and networking code in support of on-line gaming. This restricts censorship to
certain types of code and gives coders the freedom to contribute all other types
of code to society, free from censorship. An institution can make the list be
“the empty list,” thereby showing zero tolerance for censorship. An institution
can also grant employees the freedom to publish, without any prior restraint,
all descriptions of all vulnerabilities they find in all code that has been given
to society. This explicitly authorizes and endorses the publication of software
vulnerabilities in code that has been explicitly given to society. This approach
is taken in the institutional policy defined below. Use of this policy would help
balance the free coding teeter-totter.

The policy statement in the text box below is version 1.0 of the “free coding
policy.” When adopted by an institution, the institution replaces [Institution-
Name] with its own name. Corresponding changes in employment contracts and
“intellectual property” agreements may be needed to adequately support the
policy.

The policy adheres to the principle of voluntary co-operation (p. 169 of
[42]). The institution chooses to utilize the policy. The institution defines the
categories listed in policy statement (1). An institution that does not list a sin-
gle category fully eliminates pre-publication censorship of code. An institution
that lists a few categories implements a limited form of pre-publication censor-
ship. An institution that lists “all software” in policy statement (1) maintains
complete pre-publication censorship of source code. However, even in this ex-
treme case, policy statement (3) serves to uphold at least part of the goals of
free coding. The policy, by design, accommodates a wide-range of business risk
tolerance levels.

Any adoption of the policy by an institution that previously censored all
publications would help uphold free coding. Even if policy statement (1) has a
laundry list of types of code that is censored, there are at least some types of
code that will not be censored at all. Progress does not have to be all or nothing.

9

Free Coding Policy:

1. All staff seeking to publish source code that falls into any of the following categories must
submit the source code for publication approval prior to publicly disseminating it:

This list of categories is subject to change at any time.

2. All staff seeking to publish source code that falls outside of the categories listed in (1) above
are authorized to publish it under a license of their choosing without review and without approval
and [InstitutionName] will not assert copyright ownership over the source code, provided that
all of the following conditions are met: the source code does not violate any copyrights held by
[InstitutionName], the source code does not infringe on any patents held by [InstitutionName], the
source code does not utilize any trade secrets of [InstitutionName], the source code was produced
outside of work hours, and the source code was not produced using resources owned by our
organization.

3. All staff are authorized to publish descriptions of all vulnerabilities they find in all code that
has been given to society. [InstitutionName] will not assert copyright ownership over descriptions
of vulnerabilities in code that has been given to society.

4. To show support for free coding, all staff are authorized to publish the following statement and
only the following statement in regards to this policy: “[InstitutionName] has adopted version 1.0
of the free coding policy.” All staff members are prohibited from publishing the list of categories
from (1) above.

Policy statement (1) is effectively a “disallowed list” in the sense that it is
types of code that are censored. All types of code that are not on this list
are not censored, subject to certain conditions. Alternatively, policy statement
(1) could have been defined to be an “allowed list.” With an allowed list an
institution defines the types of code that are not censored, subject to certain
conditions. Everything else would be censored.

These are two different types of controls. They are both sensitive to the
accuracy level of the list. I am of the opinion that an allowed list that defines
only those types of software that are not censored would be insufficiently broad
in practice. A disallowed list is a logical solution in this case, from the viewpoint
of supporting free coding.

Policy statement (4) is what I call a policy quine, a new policy concept that
I named in honor of the philosopher Willard Van Orman Quine. I define a
policy quine to be as follows: a policy statement that authorizes one or more
persons to publish (e.g., duplicate) some or all of the policy statement itself and
possibly surrounding policy statements as well. In this case it authorizes the
publication of a specified line of text. The purpose of this statement is to raise
public awareness of institutions that openly support free coding in the hope that
other institutions will follow suit.

There is significant competition for coders and vulnerability researchers. A
firm that adopts free coding principles early on could have a hiring advantage
over firms that do not. The risk of losing technical talent to firms that openly

10

support free coding could drive adoption and produce “ethical pressure” across
the industry to support free coding. Ultimately, supporting free coding may
become a social norm that coders and vulnerability researchers come to expect.

This policy is intended to allow institutions to balance business needs with
personal liberty. I encourage its adoption to strengthen national security, im-
prove the security of the enterprise, and improve personal liberty and privacy.

1.4.2 The Business Benefits of Free Coding

The following are benefits that adopting the free coding policy may have on the
business:

1. Improved IT Security: Supporting free coding may increase the amount
and types of free/libre and open source software since it removes unneces-
sary obstructions to giving code to society. This type of software is heavily
used by institutions directly by their own developers and also indirectly in
third party hardware and software products such as appliances, operating
systems, servers, and applications. Public code is subject to the widest
degree of scrutiny possible and thereby affords every opportunity for vul-
nerabilities to be found and fixed. Supporting free coding also opens the
door for the publication of vulnerabilities that are discovered. This di-
rectly improves the information assurance of free/libre and open source
software. The net effect is this: an improvement in the security posture of
the enterprise.

2. Improved Free/Libre and Open Source Software: The free coding
policy paves the way for improving existing free/libre and open source
software as well as the introduction of new free/libre and open source
software code bases. This broadens and improves the set of software that
companies can leverage in their own products and services. The net effect
is this: it may reduce the cost of software development since more code
will be available as free/libre and open source software.

3. Advantage in Hiring and Retaining Talent: The free coding policy
encourages institutions to be open about supporting free coding. Many
software developers and vulnerability researchers value their freedom. An
institution that publicizes that it supports free coding may have a hiring
advantage over institutions that do not and may be better able to retain
talent.

4. Improved Respect for Humanity: The free coding policy supports the
individual liberty of employees. It recognizes the fact that many yearn to

11

give back to their communities, with some better positioned to contribute
code and vulnerability discoveries as opposed to money. By supporting
free coding, the moral character of institutions will be improved in a key
area, paving the way for the individual to give to society.

Supporting free coding has the potential to strengthen the IT security pos-
ture of the enterprise, reduce costs in software development, gain an advantage in
attracting and retaining staff, and improve avenues in which staff can give back
to their communities. The benefits also extent to improving national security
and respecting the privacy and liberty of individuals.

1.4.3 Supporting Free Coding via Licensing

Copyleft (Chp. 29 of [43]) is a software licensing technique that has been used
to uphold the freedom to use public knowledge, a technique that leverages the
power of copyright. I believe that the power of copyright can also be used to
uphold the freedom to give knowledge to the public. This is applying the power
of copyright in the other direction. In particular, below I leverage copyright
in a license term that upholds Freedom B tailored to the case of vulnerability
publication.

This is an important point that is worth repeating. The license term below
should not be confused with provisions of the GPL in any capacity. The GPL is
about upholding the freedom to use knowledge that has been given to society and
making sure that it can be used in downstream works. The license term below
is about the freedom to give knowledge to society. These are two completely
different things: using public knowledge vs. giving knowledge to the public. It
is inaccurate to say that the below license term “is an extension to the GPL”
since it does not uphold the freedom to use public knowledge. It is inaccurate
to say that the below license term “is an extension of copyleft” for the same
reason. It is my hope that the principles of free coding will not be confused with
the principles of free software. They are different.

By conditioning the modification, redistribution, and distribution of deriva-
tives of a program on the adoption of Freedom A and Freedom B, the legal
power of copyright can be leveraged to uphold free coding. Below is a license
term that supports Freedom B restricted to the case that the code critique is
the description of a vulnerability.

“The phrase “freedom to publish” means the freedom to publish without ap-
proval, without restraint, and without prior restraint. If you are an organization
then as a condition of modifying, redistributing, or distributing derivatives of
the covered work you must: (1) grant all of your staff the freedom to publish,
under conditions of their choosing, descriptions of all vulnerabilities they find in

12

all code that his been given to society, and (2) waive all copyright claims to all
descriptions, produced by your staff, of all vulnerabilities in all code that has
been given to society.”

The above term can be used as a starting point to upholding Freedom B in
software licenses. Care should be taken to leverage an appropriate term that
forces the above term to take effect in works produced downstream. The above
term is experimental. Only legal experts should develop it and include it in a
mature software license.

1.4.4 Contract Patching

The Software Freedom Conservancy has observed that employment agreements
that free/libre and open source software (FLOSS) developers sign can affect
whether and how developers contribute to FLOSS projects. ContractPatch is an
initiative of the Software Freedom Conservancy to give developers the language
that they need to defend their freedom to contribute to FLOSS projects. The
initiative is aimed at providing developers with negotiation tactics that can be
used during the hiring process, providing language for a prospective employment
agreement, and giving general information on legal rights relating to contracts.8

1.5 Conclusion

The foundation has been laid by the Free Software Foundation to uphold the
freedom to use public knowledge. But, there are significant obstructions to
giving knowledge to the public in the first place. These are two separate but
important issues. They impact one another as shown in the software life-cycle
example involving Alice, Bob, Carol, Dave, and Eddie.

Institutions have equities they seek to manage. People have a spiritual desire
to help their neighbors. These are the opposing sides of the free coding teeter-
totter. I encourage vigorous debate on this issue, to let the marketplace of ideas
find a way forward [26, 25]. It is in the interests of the institution and the
individual alike to balance this teeter-totter, as it will allow both to benefit
from technological advances and free will.

8See: https://sfconservancy.org/contractpatch

13

Chapter 2

Philosophical Foundation of Free Coding

Prior to the 1980s source code was, for the most part, universally shared gratis.
Then NDAs and industrial pre-publication censorship were applied to hoard
source code. In the 1990s software bugs transitioned from being widely perceived
as defects to being widely perceived as vulnerabilities that can be exploited.
Today, the CIA and NSA hoard software vulnerabilities, placing the privacy
and safety of individual Americans at risk. So, now even software vulnerabilities
are being hoarded. What is happening to humanity? Where are we going? One
can only wonder what’s next. There will be something next. Insert the next
harmful hoarding practice here: X . New restrictions on the human spirit call
for new liberties to be defined and upheld. Chapter 1 introduced free coding to
uphold the freedom of coders and vulnerability researchers to give knowledge to
society. This chapter leverages rational arguments and principles from Western
philosophy to establish a philosophical foundation of free coding. I present a
new philosophy that I call coder consciousness that is aimed at inspiring coders
and vulnerability researchers to embrace the spiritual nature of coding.

2.1 Introduction

People help others in a variety of ways. Some give by teaching. Others give
by volunteering their time and energy. Some give blood. Others give money.
Some give an encore on the street corner. And some leverage their intellectual
capacities to write code and give it to society.

This manifesto is about the freedom to give knowledge to society, to give
within the realm of code. I define Freedom A and Freedom B as follows.

Copyright c© 2017 Adam L. Young. This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License
(https://creativecommons.org/licenses/by-nd/4.0/).

Freedom A:

You have the freedom to write code and give it to society
under conditions of your choosing.

Freedom B:

You have the freedom to write and publish,
under conditions of your choosing,

a critique or documentation of code that has been given to society.

Note that these definitions include the freedom to “write” the code and the
freedom to “write” the critique. It may seem that this is not necessary. This
is not the case. A Restricted Person under South Africa’s banning decree was
forbidden to write anything, even a diary or a postcard. A Restricted Person
was forbidden to speak to or associate with more than one person at a time other
than immediate family,1 was forbidden to travel, was forbidden to communicate
publicly, and was forbidden to be quoted in any publication. Donald Woods and
Steve Biko were Restricted Persons. Donald noted 44 people restricted under
the rule of apartheid (Prologue of [54]).

Freedom A is important for security for multiple reasons. It is a freedom
that is needed to give security code such as an encryption program to society.
This protects people from harm. Source code that is published offers every
opportunity for vulnerability researchers to find exploitable vulnerabilities in
the code. Source code that is kept secret hampers the ability of vulnerability
researchers to find exploitable vulnerabilities in it. Source code that is secret also
hampers the ability of coders to determine whether or not the code constitutes
malware. There are many programs having secret source code that spy on their
users or mistreat them in some way.2 Many such programs are not even formally
designated as malware by antivirus programs. Simply put, published source code
is important in achieving information assurance and trust. Freedom A therefore
embodies these liberties: freedom of speech, freedom to give, and freedom to
protect people from harm.

Freedom B is important for security for multiple reasons. It embodies the
freedom of a vulnerability researcher to publish a description of a vulnerability
that he or she finds in code that has been given to society. This protects people
from harm. There are multiple manifestations of such vulnerabilities, ranging

1Steve Biko could attend no gathering of any kind except a bona fide Church service (p.
161 of [4]).

2See www.gnu.org/proprietary

15

from classic buffer overflow bugs, to arbitrarily complex design flaws, to deep
mathematical failures in the security foundation of code. Such critiques are the
expressions of the vulnerability researcher in every respect. Freedom B therefore
embodies these liberties: freedom of speech, freedom to give, and freedom to
protect people from harm.

I define free coding to be Freedoms A and B. Freedoms A and B are entirely
separate and distinct from Freedoms 0, 1, 2, and 3 from the Free Software
Movement (Chp. 1 of [43]). Freedoms A and B address the freedom to give
knowledge to society. Freedoms 0−3 address the freedom to use knowledge that
has been given to society.3 Therefore, the notion of free coding should not be
confused with the notion of free software.

Freedoms A and B are human rights. They allow Alice to contribute to
public knowledge and thereby help her neighbor Bob. Freedom A and Freedom
B are critically important in building society’s foundation of code: the volume
of code, the quality of the code, and the information assurance of the code.

A summary of this chapter is as follows:

1. Free coding is defined, obstructions that exist to free coding are identified,
and the harmful effects that incorrect terminology has on free coding are
covered.

2. A philosophical interpretation of the industrial practice of pre-publication
censorship is presented.

3. A Western philosophical foundation of free coding is given that leverages
arguments in support of free coding.

4. To explore all sides of the issue, arguments against free coding are pre-
sented.

5. Western philosophy is applied to characterize the problem of knowledge
hoarding.

6. A new philosophy called coder consciousness is presented. It is aimed at
encouraging coders and vulnerability researchers to embrace the spiritual
nature of coding.

I dedicate this manifesto to Bantu Steve Biko. I first learned about Biko from
the song “Biko” by Peter Gabriel that I heard when I was a child. I played it
on the record player over and over. Being a young white boy living in suburban
Connecticut with all the privilege in the world, I had no conception of this great

3The battle for freedom to use public knowledge is addressed in (p. 189 of [53]).

16

man. But something in the music caused Biko to subconsciously take root in
my soul. Bantu Steve Biko fought apartheid, fought the systematic subjugation
of native South Africans, and fought the disintegration and distortion of South
African culture and history. Prior to the arrival of the Anglo–Boer colonists,
South Africans had a sacred tradition of sharing (p. 96 of [4]).

I dedicate this manifesto to Steve Biko for the following reasons: First and
foremost, because he was a visionary philosopher on social oppression, social
resistance, and social change. When he was on trial in South Africa it was
quite literally his ideas that were on trial; Secondly, because he endured the
worst-possible restrictions on giving knowledge to society, being forbidden to
write, speak publicly, and meet with more than one person at a time except
with immediate family or to attend a bona fide Church service. Thirdly, because
he sacrificed his life at the violent hands of the oppressor to free his people; and
lastly, to uphold the parting guidance of Donald Woods in his book “Biko” (p.
376 of [54]):

“Help to finish the work of Steve Biko. Help to smash the remaining links
of the chains he broke, and let the sound of this work echo around the world so
that chains may be broken wherever they hold in bondage the bodies and minds
of men.”

2.2 Free Expression and the Manifesto

The concept of a manifesto has a negative connotation in Western society. It is
associated with a form of radicalism, surfacing uncomfortable or controversial
issues that many would rather not think about. Yet the Merriam-Webster dic-
tionary contains the following rather disarming definition: a written statement
declaring publicly the intentions, motives, or views of its issuer.

2.2.1 The Positive Manifesto

The U.S. Declaration of Independence is a manifesto. The dissent of a U.S.
judge is a manifesto. The GNU Manifesto set the stage for free software in 1984
(p. 31 of [42]). Without it, the data centers of the world would be filled with
nonfree operating systems having secret source code together with laws that
make reverse-engineering them illegal as opposed to the GNU/Linux operating
system that is free software. It is because of free software that we are able to
study the source code of the GNU/Linux operating system and look for malicious
logic at the source code level. There are those who look down upon the GPLv2,
declaring it virus-like since it forces all new software with which it is intertwined
to be shared with society. That is its precise intention because it is code that

17

has been given to society distributed with the condition that modifications be
available for use by society. The GPLv3 goes even further to assure the freedom
to use public knowledge. Some companies live in perpetual fear that one of their
developers will merge their proprietary code with free software released solely
under the GPL, thereby placing their proprietary code in peril of having to be
shared.

Yet even the harshest of critics of the GPL can surely see the value in the
GNU/Linux operating system being free software. Without it many users and
organizations would be compelled to place their trust in nonfree operating sys-
tems that have secret source code, operating systems that would inevitably un-
dermine the privacy and safety of their users. Simply put, the GNU Manifesto
set in motion a monumental defense against tyranny.

2.2.2 Free Speech Justifications for this Manifesto

Free coding embodies freedom of speech, freedom to give, and freedom to protect
people from harm. In the sections that follow rational arguments in support of
free coding are given. Yet it is also instructive to convey the justifications for
freely expressing this manifesto itself. The following are arguments in support
of free speech outlined by James Fieser [12], namely, democratic government,
the search for truth, and personal autonomy.

Democratic Government: The industrial practice of pre-publication censor-
ship is addressed herein that chills contributions of code to society and that
chills the publication of critiques of code that has been given to society. Pre-
publication censorship has a harmful effect on the body of software that people
can build upon, use, and trust. It has a harmful effect on the information assur-
ance provided by software that people rely on every day for their privacy and
safety. Free speech is a cornerstone of democracy. It is a way for the people
to inform their legislators of injustice and unethical practices, thereby allowing
lawmakers to pass laws that protect the human rights of citizens, reining in
industry when it oppresses the people. A goal of this manifesto is to inform
democratic debate on practices that inhibit free coding. This type of speech is
required for the proper functioning of a democracy.

Search for truth: Free speech is essential to allow society to search for truth.
This is distinct from the role that free speech plays in democracy. Silencing
new concepts and ideas prevents society from advancing on scientific and social
fronts. As observed by John Stuart Mill (p. 21 of [25]):

“But the peculiar evil of silencing the expression of an opinion is, that it
is robbing the human race; posterity as well as the existing generation; those

18

who dissent from the opinion, still more than those who hold it. If the opinion
is right, they are deprived of the opportunity of exchanging error for truth: if
wrong, they lose, what is almost as great a benefit, the clearer perception and
livelier impression of truth, produced by its collision with error.”

The Western philosopher Hannah Arendt constructs “the meaning of life”
out of a sincere and open-ended commitment to becoming human by virtue of
the decisions we make, the skillful use of language in the public domain, and
unique contributions to the creation of a collective identity (p. 33 of [35]). In
this sense, the search for truth is one facet of the meaning of life. A goal of this
manifesto is to define the issue of free coding, bring it to the fore, and encourage
debate and progress on it.

Personal autonomy: Free speech is a human right. As thinking, caring, and
creative members of the human race we yearn to convey through speech and
expression the thoughts and visions in our minds, the feelings in our hearts, and
the music in our souls. In the words of H. W. Beecher, “Liberty is the soul’s
right to breathe, and when it cannot take a long breath, laws are girdled too
tight. Without liberty man is in a syncope.” (p. 70 of [3]).

The Universal Declaration of Human Rights adopted by the United Nations
in 1948 states the following in Article 19:

“Everyone has the right to freedom of opinion and expression; this right
includes freedom to hold opinions without interference and to seek, receive and
impart information and ideas through any media and regardless of frontiers.”

Two additional free-speech justifications for this manifesto are the dead
dogma argument ([25], p. 28-29,35 of [49]) and Liberty of Thought from John
Stuart Mill.

Dead Dogma: Unless a new idea or belief is fully, frequently, and fearlessly
discussed, one is in danger of holding it as a dead dogma, providing only an
unthinking and formulaic response. In not speaking about nor challenging re-
straints on free coding, coders are likely to: accept restraints on free coding
as a simple fact of life, not understand both sides of the free coding issue, not
feel passionate about arguments in support of free coding, and lean towards be-
lieving restraints on free coding are justified simply because no one talks about
free coding. Without opponents of commonly held views we will be less alive as
rational thinkers.

Liberty of Thought: John Stuart Mill believed that there is essentially no
difference between the freedom to think vs. the freedom to speak and write. He
wrote, “This one branch is the Liberty of Thought: from which it is impossible to

19

separate the cognate liberty of speaking and of writing” (p. 18 of [25]). One who
is willing to accept this as true may rightfully equate the severity of restraining
speech to the severity of restraining thought itself.

2.3 The Problem: Restraints on Free Coding

A major hurdle to achieving free coding is industrial pre-publication censorship.
In the subsections that follow the dimensions of this problem are presented.
Steps that an institution can take to better manage the needs of the business
with respect to personal liberty are covered in Chapter 1.

2.3.1 Problem 1: Pre-Publication Censorship

When copyright law is in effect Freedom A may be restrained by not allowing
one to copy source code covered by copyright when the privilege of copying has
not been granted. Employment law and agency principles affect whether or not
a work is legally “made for hire.” This can affect who the copyright holder is.
These are legal restraints.

When we talk about free coding we are talking about liberty, not the law
or the Constitution. These can be unethical. The Constitution did not grant
women the right to vote until the 19th Amendment in 1920. The Fugitive Slave
Act of 1793 guaranteed the right of a slaveholder to recover an escaped slave.
The title of the Act was “An Act respecting fugitives from justice, and persons
escaping from the service of their masters.”4 Jim Crow laws segregated African
Americans from whites until 1965.5 It is appalling when the voting majority
supports such things as Jim Crow laws. The majority can be woefully unjust.
Therefore, we owe it to ourselves as thinking, feeling, and conscionable members
of the human race to ever question what is and ever contemplate what may be
so that our spirits may transcend.

This manifesto addresses the following obstruction to free coding:

Problem: Overreaching institutional policy and agreements that impose undue restrictions on
the speech of the institution’s staff members. An example is an institutional policy that imposes
pre-publication censorship of all journal articles, code, books, research papers, reports, and pre-
sentations produced by staff during and outside of work hours. Review and approval is required
prior to public dissemination. This is an obstruction to free coding.

Approval to publish a given work is often required from the author’s man-
ager and possibly others, sometimes going significantly far up the management

4en.wikipedia.org/wiki/Fugitive Slave Act of 1793
5en.wikipedia.org/wiki/Jim Crow laws

20

chain. Pre-publication review is work. It is work that is assigned in 180 degrees
the opposite direction than work is normally assigned in companies. An author
creates work and assigns it to his manager to complete. Pre-publication censor-
ship is therefore an administrative burden of the first order; and whether or not
that is what it seems from above that is what it is from below.

Industrial pre-publication censorship strips the proletariat of his clothes,
makes him effuse his soul upon the operating table, invites opinion and critique
from his managers where none is wanted, poking here at a spelling error, ques-
tioning there a line of thought, with the occasional congratulatory remark being
offered, ever reminding the proletariat that his work is indeed being judged by
those who wield power over him. It is a process that inextricably links the pro-
letariat’s ability to feed his children on the morrow with his feeble attempts at
making the world a better place by speaking. The following is from Henry David
Thoreau in his chapter entitled Economy [45]:

“The mass of men lead lives of quiet desperation. What is called resignation is

confirmed desperation. From the desperate city you go into the desperate country, and

have to console yourself with the bravery of minks and muskrats.”

A company may seek to justify the practice of pre-publication censorship on
the basis that other companies institute pre-publication censorship as well. This
is an instance of the tyranny of the majority. From On Liberty by John Stuart
Mill (p. 7 of [25]):

“This view of things, recommending itself equally to the intelligence of thinkers

and to the inclination of those important classes in European society to whose real or

supposed interests democracy is adverse, has had no difficulty in establishing itself; and

in political speculations ‘the tyranny of the majority’ is now generally included among

the evils against which society requires to be on its guard.”

Among coders, cryptographers are particularly sensitized to obstructions to
sharing code. The ciphers they design and code have been treated no less than
weapons of war banned from export by international arms control regulations.6

2.3.2 Problem 2: Industrial Censorship De-Anonymization

Brilliant minds have published works anonymously under pen names, otherwise
known as pseudonyms, for years. It is a standard approach to publishing con-
troversial ideas and creative works in the face of an intolerant or prejudiced
majority. Example authors include Steve Biko as Frank Talk and Mary Ann
Evans as George Eliot. Also, there are real-world scenarios in which a coder

6See Bernstein v. United States.

21

may need to exercise free coding anonymously. This section concludes with two
such examples.

Exercising the right to contribute written works to society anonymously is
particularly challenging when faced with a pre-publication censor. To explain
why sufficiently, an understanding of the controls that are leveraged in institu-
tions is needed.

Some institutions have each employee sign an “intellectual property” agree-
ment and/or employment contract. Contained therein may be language that
mandates the pre-publication censorship of all publications produced by the
employee during and outside of work hours. The institution may have a policy
that requires that all employees submit all written works intended for publi-
cation through a specific pre-publication censorship procedure. The procedure
may be defined in a procedure document and/or ticketing system. The chain
of approvers may be well-defined a priori but in some cases it is somewhat ad
hoc. Finally, some institutions go as far as to return to the requesting author a
hard copy of the fully processed publication request, the final state being “ap-
proved” or “rejected.” The purpose of the policy and corresponding procedure
is to enforce the “intellectual property” agreement/employment contract.

The requesting author is typically required to provide the full written work
to be published to the institution and reveal him or herself as an author. Anony-
mous does not mean the censor plus Alice knows that Alice is the author. Anony-
mous means that only Alice knows Alice is the author. Anonymous means
anonymous. Her anonymity is compromised by even the smallest shred of infor-
mation that can correlate her to the published work.

Below is a hypothetical exchange between Alice and the censor of ABC Corp,
her employer:

Alice: I am requesting approval to publish a paper anonymously. I plan to use
a pseudonym.

Censor: Okay, well what is it about?

Alice: I can’t really say without de-anonymizing the paper

Censor: Did you write this yourself or do you have co-authors?

Alice: If I tell you the number of authors (i.e., number of pseudonyms that will
be used) that could completely de-anonymize the work.

Censor: Fine. But you must tell us if all co-authors work for this company.

Alice: There exists a co-author not at this company.

Censor: Thank you. Please tell us if the paper relates to or could impact our
business in any way.

22

Alice: The paper does not mention ABC Corp anywhere.

Censor: You didn’t answer the question completely. Could it impact our busi-
ness in any way?

Alice: I cannot see into the future. It advances a certain area of knowledge in
a non-trivial way. So, here is one speculation: it could change the way some
people at ABC Corp view the underlying problem.

Censor: Can you please clarify?

Alice: No. That would risk de-anonymizing the work. In fact, you’ve already
forced me to reveal that there is more than one author.

Every person should have the right to publish his or her ideas under a
pseudonym. No person should have to break that anonymity for their em-
ployer. Alice is justifiably concerned that by revealing even the smallest bit of
information about the publication to her employer that her authorship could be
inferred by her employer. She may have no control over how well the institution
will safeguard her identity as an author.

The ability to exercise free coding anonymously is important for the privacy
and safety of coders in some contexts. The following are examples that illus-
trate this. Suppose that Alice lives in a censorship state and that she wants to
contribute code to an anti-censorship protocol. If the authorities were to find
out, they might arrest her or place her on a watch list. The same applies if she
discovers and publishes a critical vulnerability in it, thereby hardening it against
attack.

2.3.3 Problem 3: The Euphemism of “Business Ethics”

The phrase “business ethics” came into common usage in the U.S. in the 1970s
[15]. The phrase originally denoted the study of everyday moral and ethical
norms to business. However, over time its meaning expanded to denote the moral
and ethical norms in business that uphold some human rights but not others.
In the office, the phrase “business ethics” has strayed from its original meaning.
The proletariat sees this phrase placed upon a pedestal with a plaque that
reads “highest ethical standards,” declaring the importance of knowing one’s
customer (to avoid allegations of money laundering), adhering to embargoes
against certain foreign countries, prohibiting hiring children under 18 to do
dangerous work, and prohibiting the use of prison labor, bonded labor, military
labor, slave labor, and indentured labor [8], while on the other hand not only
failing to mention the human right to freedom of speech but in fact instituting
policies and procedures that take away the freedom of speech of employees. The

23

term “business ethics” conspicuously omits the issue of the human right to free
speech.

Calling things by their right name is critically important. Confucius believed
that this is the single most important way to achieve peace and order. The
Chinese word Li cannot be rendered by an English word. Interpretations include:
sense of propriety, the order of things, ritual, good manners, and an ideal social
order with everything in its place (p. 13 of [57]). An understanding of Li helps
convey a corollary of Confucius’ teachings: that everything should be called
by its right name. Confucius believed that when the ceremonies are improper,
things become disorderly, and when the terminology employed is incorrect, then
things are out of place (p. 98 of [57]).

When Confucius wrote the Spring and Autumn, a goal of his was to restore
the social order by using crisp distinctions in terminology. When the Baron of
Wu usurped the title of “King,” Confucius wrote down “Baron Wu” thinking he
had denigrated him (p. 17 of [57]). By using certain words to condemn or show
approval of practices of his time, Confucius hoped that if a king ever opened
the book in the future and adopted the principles it taught, unruly princes and
thieves of power would restrain themselves out of shame (p. 96 of [57]).

At one point in which Confucius was potentially faced with the opportunity
to govern he was asked, “If the ruler of Wei should put you in power, how would
you begin?” Confucius answered by saying, “I would begin with establishing a
correct usage of terminology.” (p. 85 of [57]).

The Free Software Foundation (FSF) has pointed out the negative impact
of improper terminology on user freedom. An example from the FSF will go a
long way to show the impact of terminology on user freedom.

When we hear the acronym DRM expanded into “digital rights manage-
ment” it causes us to think of the “rights” of the rights holder of the work it
covers.7 It can just as easily be expanded into “digital restrictions management”
that instead causes us to think of the restrictions that it imposes on users (p.
88 of [43]). The phrase “digital rights management” therefore sends a negative
message from a user’s perspective, fostering sympathy for the rights holder while
marginalizing the end user. The FSF has provided astute guidance on recogniz-
ing and countering this type of indoctrination.8 This example shows that words
and phrases are loaded with meaning and can lead one to overlook one side of a
particular issue. The FSF has not only identified and exposed misleading termi-
nology that negatively impacts user freedom, but has also offered replacement
terminology in an effort to fix the problem.

Words and phrases can also be hurtful with pervasive and long lasting ef-

7It is more accurate to say “privileges” instead of “rights.”
8www.gnu.org/philosophy/words-to-avoid.en.html

24

fects. In directly responding to a judge, Steve Biko stated: “...the term black is
normally in association also with negative aspects, in other words you speak of
the black market, you speak of the black sheep of the family, you speak of—you
know, anything which is supposed to be bad is also considered to be black”
(Chp. 3 of [54]). The information security industry is remarkably insensitive to
phrases that use the word black:

1. Blacklist: It is standard practice in information security to use a whitelist
to define elements that are allowed and a blacklist to define elements
that are not allowed. For example, a firewall can be configured to use
a “whitelist” of IP addresses. A packet is not allowed in unless it’s source
IP address is in the whitelist. Whitelisted IPs are privileged. Alterna-
tively, a firewall can be configured to use a “blacklist” of IP addresses. A
packet is allowed in unless it’s source IP is in the blacklist, in which case
the packet is blocked from entering. Blacklisted IPs are bad.

2. Black market: The term black market is used to describe ethically ques-
tionable marketplaces in which vulnerabilities are sold, sometimes to ill-
intentioned buyers.

3. Blackhat: The word blackhat is often used to refer to a computer attacker
that breaks into a computer network or computer with malicious intent.
It is also used to refer to an exploitive computer security researcher. This
contrasts with a “whitehat” that is a “good guy” security analyst that
seeks vulnerabilities for the purpose of having them fixed.

These terms enter into infosec conversations the world over on a daily basis.
The use of a color to differentiate these things is hurtful and unnecessary. Biko
had it right in 1976. The IT Security industry should be more mindful of this
issue. I encourage the use of alternative terminology. The following may be con-
sidered: “allowed list,” “disallowed list,” “underground vulnerability market,”
“goodhat,” “neutralhat,” and “badhat.”

It is my hope that these examples, namely, “business ethics,” “digital rights
management,” “blacklisting,” “vulnerability black market,” and “blackhat” con-
vey the importance of calling things by their right name. Getting back to the
issue of the phrase “business ethics,” I posit the question: is there a more suit-
able phrase and under what circumstances should it be used? I argue that, in the
case of a company that institutes pre-publication censorship of all publications
produced by all of its staff during and outside of work hours, a more suitable
name is “bourgeoisie ethics.”

25

2.3.4 Problem 4: The Negative Message of Censorship Policy

Institutional policy that mandates pre-publication censorship of all publications
produced by the institution’s members and blanket agreements that lay claim
to the same sends a negative message: that the freedom to contribute to pub-
lic knowledge pales in importance to protecting “intellectual property.” This
is evidenced by the office that censors the speech of the institution’s members.
Such measures feign service to every echelon, the nethermost notwithstanding,
fronting such hazards as these should an article bypass review: diminished prof-
its, increased liabilities, forfeiture of privileges, brand damage, and drawing
unwanted attention. It is through such policy and agreements that institutions
inculcate upon the proletariat the belief that contributing to public knowledge
is perilous. In one fell swoop such measures trample the coding liberty of the
individual within and the corresponding humanitarian benefits to society with-
out.

The worst case is not the forfeiture of coding liberty by Alice, the coder,
who, having little alternative, must make ends meet; for she may yet vie for her
freedom. Rather, the worst case is a working-class so hopelessly institutionalized
that it ceases to believe that freedom is achievable. At length the very taste of
coding liberty may be all but forgotten.

2.4 A Philosophical Interpretation of Industrial Pre-
Publication Censorship

According to the Constitution, people have rights, corporations do not. The U.S.
Constitution does not mention corporations. But in 1823 the Supreme Court
decided Society for the Propagation of the Gospel in Foreign Parts v. Town
of Pawlet. In writing for the court, Justice Joseph Story explicitly granted to
corporations the same property protections that individuals have.9 In 1930 Chief
Justice Marshall wrote that, “The great object of an incorporation is to bestow
the character and properties of individuality on a collective and changing body
of men.”10

Corporate personhood is a personification of the corporation, one that is
backed by the law. In what follows corporate personhood is regarded as a person
who I shall call the “corporate person.” The issue at hand is the property rights
of the “corporate person” vs. the free speech rights of the individual. The below
timeline shows the initial transition of code from being perceived as speech to
being perceived as property.

9en.wikipedia.org/wiki/Corporate personhood
10Providence Bank v. Billings, 29 U.S. 514 (1830).

26

1970s: In the 1970s software was shared openly across communities (p. 15 of
[42]). Computers used to be large, expensive, and few and far between. Software
was garnish freely given by most computer companies to make computers more
appetizing (p. 99 of [53]). As the price of computers dropped and operating
system and application software showed promise of being profitable, code began
to be treated as property instead of speech.

1980s: Non-Disclosure Agreements (NDA) covering software started to appear
in the 1980s ending the era of source code sharing. NDAs were fashioned to cover
software to restrict the sharing of code. Stallman recounts his first encounter
with an NDA on a visit to Carnegie Mellon University. He was requesting the
source code to a Xerox laser printer and found to his surprise that the person
with it had promised not to share it with anyone due to an NDA (p. 8 of [53]).
He also recounts when the AI lab purchased the PDP-10 in 1982 that, for the
first time, came with an associated NDA (p. 16 of [42]). This implied that you
had to promise not to help your neighbor to even get a copy of the OS.

Industrial pre-publication censorship of code operates in tandem with NDAs
to further control the dissemination of code. It was the opportunity to generate
profit that prompted companies to start treating code as property instead of
speech. This historical context establishes the practice of the “corporate person”
to effectively treat code as property. The switch in society from sharing code
to hoarding code opened the door to censorship of code. I now argue that the
principle of double-effect comes into play in relation to censoring code.

The principle of double-effect was put forth by the philosopher, theologian,
and jurist Thomas Aquinas. The principle of double-effect explains the permis-
sibility of an act that inflicts significant harm as a side-effect of promoting some
form of good. For example, it explains why some rationalize that it is okay for
Alice to hit Bob so hard that he dies if it is the only way for Alice to save herself
from Bob’s attack (p. 224 of [50]).

The practice of industrial pre-publication censorship can be rationalized us-
ing the principle of double-effect from the perspective of the “corporate person.”
The “corporate person” believes that it is okay to apply pre-publication censor-
ship to a member of the corporation on the premise that it is the only way to
“protect” the property of the “corporate person.”

Therefore, it was the invention of corporate-owned property followed by the
invention that code is property instead of speech that set the right of the “cor-
porate person” to own property on a collision course with the human right of
free speech.

27

2.5 Western Philosophical Foundation of Free Cod-
ing

The goal of this section is to present a philosophical foundation for free coding.
For security benefits of free coding that may appeal to the utilitarian, see Table
1.1.

At the outset, it may seem that but one obstruction is at issue: the practice
of pre-publication censorship. In fact, many will have obstructions of their own:
monoliths that eclipse Freedom A and Freedom B. Being wholly distinct, they
mire the way forward for the logician, the capitalist, and the pious. This section
appeals to the logician and the capitalist and Chapter 3 appeals to the pious.

It was noted that Kantian ethics; or, the Golden Rule, demonstrates the
destructive nature of restricting a user’s ability to use a program (p. 36 of
[42]). Kantian philosophy can also be used to rationalize the harm caused by
obstructing Freedom A and Freedom B.

In a toast to Kant, I now fashion the modern business practice of pre-
publication censorship into a maxim. The maxim should not be too narrow
since pre-publication censorship chills many types of speech: from publishing
articles and books, to code contributions to society, to publishing vulnerabilities
found in code given to society, to matters that may affect the reputation of the
institution,11 to anything at all that may be deemed “intellectual property.”
Such public discourse may be perceived as impacting the “equities” of the in-
stitution. In the case of a cyber arms producer, vulnerabilities in code are their
bread and butter. So, the term equities is fitting.

A maxim has three components: (1) the action, or type of action, (2) the end
or purpose to be achieved by the action, or the motive, and (3) the conditions un-
der which it is to be done.12 The proposed maxim for industrial pre-publication
censorship is as follows: “Apply pre-publication censorship to the working-class
to protect the equities of our institution, administering it to all within but not
those without so that our workers can choose to live free of censorship.” The
action is: apply pre-publication censorship to the working-class. The purpose
to be achieved is: to “protect” the equities of our institution. The conditions
are: administering it to all within but not those without so that our workers
can choose to live free of censorship. The maxim begs for reprieve, to give it a
fighting chance, to take in the full measure of it’s effect on the individual, the
institution, and society.

Kantian philosophy has us take a maxim, apply it universally, and then ask

11Is there consideration given to the reputational harm that industrial pre-publication cen-
sorship policy has on employees?

12en.wikipedia.org/wiki/Maxim (philosophy)

28

the question, “Is it still conceivable in this world?” For if it is, then we should
properly embrace it and carry on; or, if it should prove inconceivable, why then
we should shine the brightest light upon it for all to see.

For concreteness, let us suppose that ABC Corporation applies this maxim
and that Alice, a working-class coder, is one of their number. Per Kantian
philosophy we now apply this maxim universally; every corporation is ABC
Corporation. We see then that there is nowhere for Alice to turn. The maxim
is upended since Alice cannot skirt censorship. A contradiction in conception
has therefore been reached. Holding the maxim is irrational. Working-class
coders and vulnerability researchers are, in effect, living in a total and complete
censorship state.

This universal state is entirely conceivable and possible. I have proven logi-
cally that the business practice of pre-publication censorship is destructive. But
there are still more states to consider. Does paring back the number of infring-
ing institutions pardon ABC Corporation? If none other than XYZ Corporation
supports free coding, is the innocence of all corporations tied to the existence of
XYZ? Quite to the contrary, ABC Corporation is in every way responsible for
its measure of harm to society.

The point here is that the argument of ABC Corporation, “you agreed to
these work conditions so if you want you can work some place else” does not
in any way exonerate the unethical censorship practice at ABC Corporation.
Just before the 1920s it was believed, though not yet scientifically proven, that
asbestos was hurting people in factories that produced insulation. The fibers
could be seen floating in the air. Asbestos companies conducted their own
investigations and in some cases tried to suppress the inconvenient results [37].
Let us instead suppose that ABC Corporation consists of factories that make
insulation out of asbestos with asbestos floating in the air. Does the argument,
“you agreed to these work conditions so if you want you can work some place
else” apply in that situation? There may be a factory with clean air that Alice
can go work at now, but in the future perhaps no such factory will exist; and
even if there is such a factory and Alice goes to it, what about all the workers she
leaves behind? The existence of an insulation factory that has clean air does not
justify the prolonged exposure of employees at ABC Corporation to asbestos.
The fact that Alice originally “agreed” to work in the factory does not make
the asbestos in the air any less harmful. There are wounds inflicted upon the
body and there are wounds inflicted upon the soul. It so happens that in both
of these cases, the workplace is tainted so as to take your breath away.

So, in the case of overreaching censorship policy the following has been
shown: the argument that the overreaching censorship policy is ethical since
Alice is free to work some place else is fallacious. It distracts the listener away
from the harmful work environment at Alice’s company by suggesting that a

29

company without a harmful work environment might exist.
The above Kantian universalization argument was applied to an institution

instead of an individual. Kant argued that a person should only act on maxims
that are universalizable (p. 118 of [50]). Some may therefore question the
applicability of a Kantian universalization argument to an institution instead of
a person.

In regards to corporate personhood, if one is willing to bestow the character
and properties of individuality to an institution and the rights thereunto, then
one should be equally determined to hold the corporate person (i.e., institution)
accountable to the highest moral standards in every case and without exception.
Put another way, if we accept as valid corporate personhood, then the corporate
person (i.e., institution) must be held accountable to Kantian universalization
arguments.

This rationalizes the application of Kantian universalization to ABC Cor-
poration and therefore the finding that ABC Corporation is in violation of the
human right to free speech. This type of rationalization may become increasingly
important as corporate personhood expands to cover ever more civil rights. Cor-
porate personhood has been resurfacing in American law for a long time [47].
In Citizens United v. FEC in 2010 the majority ruled that corporations, by
virtue of being associations of individuals, have free speech rights under the
First Amendment. It is not inconceivable that corporate personhood might one
day extend to cover the Fifth Amendment.

2.6 Devil’s Advocate: Reasons Against Free Coding

To present a balanced view it is necessary to play devil’s advocate and present
reasons for restricting free coding. These reasons are broken down into general
reasons, institutional reasons, and “cyber defense” reasons.

2.6.1 General Reasons Against Free Coding

Malware source code presents an interesting challenge to free coding since it is
code that is designed to cause harm. In playing devil’s advocate it is therefore
instructive to consider the freedom to publish malware source code.

In a secure ransomware attack, a cryptovirus, cryptotrojan, or cryptoworm
hybrid encrypts the victim’s data using the attacker’s public key that is embed-
ded in the malware, thereby denying the victim access to his or her own data.
Assuming there are no backups, only the attacker can recover the victim’s data
since only the attacker has the corresponding private decryption key. This is
called cryptoviral extortion. Moti Yung and I invented cryptoviral extortion,
i.e., the secure ransomware attack, and presented it at the 1996 IEEE Security

30

& Privacy conference [56]. This same paper noted the possibility of extorting
electronic money as ransom payment from malware attacks. This allows the
attacker to be paid remotely and anonymously. This was long before Bitcoin
existed. Ransomware is a scourge that extorted approximately 1 billion dollars
from victims in 2016 [24]. Ransomware is one attack of many in an area of
research known as Cryptovirology.

Arguably, one of the most extreme cases of writing code and giving it to
society is writing ransomware and giving the ransomware code to society. A
case in point is a coder that writes and publishes a cryptographically sound
cryptoworm that successfully evades detection. One might infer from this that
one should censor contributions of code to society.

I disagree. Controlling code contributions to society via censorship is a
slippery slope. Soon after the publication of the cryptoviral extortion attack in
1996 some people insisted that no victim would ever pay the ransom. Others
insisted that the attack had no utility beyond simply deleting the hard drive.
Still others could not mentally get past the new terminology of cryptovirology
itself and dismissed the warnings forthwith. A skeptic was encountered who did
not believe that the protocol constituted a real threat, dismissing it as being
only “theoretical.” This dismissal prompted the further explanation that the
original IEEE S&P paper on cryptoviral extortion also detailed a real world
experiment that proved that the attack works. The experiment, conducted in
1995, demonstrated the first cryptoviral extortion attack. It was carried out
on a Macintosh SE/30 computer and it used RSA and the Tiny Encryption
Algorithm. It was only after explaining this real-world experiment that the
skeptic believed. It is a fact that some people simply do not take a malware
threat seriously unless you can show them the code of the malware. period.

On the whole, industry was not motivated to develop and deploy defenses
against cryptoviral extortion until attacks that demanded Bitcoin were well un-
derway. In short, the threat of cryptoviral extortion was largely ignored for two
decades. There is no substitute for the awakening that demonstrably effective
attack code provides.

Another challenge to free coding involves the publication of software exploit
code. A vulnerability researcher who finds a vulnerability will often research the
degree to which the vulnerability can be exploited. Whether or not a vulnera-
bility is exploitable can be confirmed by attempting to write functional exploit
code. For example, exploit code may demonstrate the ability of the attacker
to abuse the vulnerability to execute arbitrary code of the attacker’s choosing
on the victim’s machine. Functional exploit code can be weaponized to deliver
malware to the target system.

A software vulnerability can be devastating. The Shadow Brokers blew the
whistle on the NSA by publishing MS Windows exploits that the NSA hoarded

31

[48]. Once this exploit code was exposed an adversary leveraged it to create
and release the WannaCry cryptoworm (ransomware). Functional exploit code
can place lives in danger, e.g., when transportation systems are vulnerable. One
might conclude from this that code contributions to society should be censored
since exploit code can cause harm.

Again I disagree. The social norm in this case is for the vulnerability re-
searcher to engage in responsible disclosure, giving the author of the software a
90-day window with which to craft a fix and release it prior to publishing the
vulnerability.

Finally there is the conceivable apocalyptic scenario in which a pillar of
modern cryptography topples over. A cryptanalyst could conceivably discover
a probabilistic polynomial time algorithm that solves the integer factorization
problem. This would break the RSA cipher overnight. If the cryptanalyst pub-
lished the code that breaks RSA, this would expose an inconceivable number of
computer systems to risk: on-line shopping systems, on-line banking systems,
secure e-mail servers, VPN servers, software update systems, and so on.

Once again I argue that even this provides an insufficient basis for censoring
contributions of code to society. Responsible disclosure should again be consid-
ered by the researcher, though a window longer than 90 days may be advisable.

In addition to publishing code there is the issue of publishing critiques of
code. A coder could publish a critique of source code that carries out the cryp-
toviral extortion attack that explains how to make the attack more effective. I
argue that this should not be censored for the same reason that publishing source
code for ransomware should not be censored. Similarly, being free to publish
descriptions of vulnerabilities and descriptions of software exploits is important
to convey the gravity of the associated risk and enable countermeasures to be
devised and put into place.

In the foregoing, risks associated with publishing code and publishing vul-
nerabilities were considered. In all cases I find censorship unjustifiable.

2.6.2 Institutional Reasons Against Free Coding

Industrial pre-publication censorship is a catch-all that aims to prevent the
release of information that, if disclosed, could negatively impact the institu-
tion. This information includes sensitive business practices, processes, data,
patentable ideas, trade secrets, and information that falls under copyright. The
issue is when the censorship is overreaching.

For example, consider an on-line game company that houses internal servers
for a medieval on-line role playing game. Such a company would have a sub-
stantial code base. An employee of this company that contributes code to a
competing commercial on-line role playing game presents an obvious and logi-

32

cal conflict-of-interest. In this case, institutional pre-publication censorship is a
logical approach to preventing such conflicts of interest.

However, there is no need for the censorship policy to be overbroad. It should
apply only to those types of code bases that are deemed to present a conflict
of interest. For an approach to balancing pre-publication censorship with free
coding, see Section 1.4.

The publication of software vulnerabilities presents a potential conflict of
interest for institutions that produce cyber arms. This case is addressed in the
next subsection.

2.6.3 “Cyber Defense” Reasons Against Free Coding

Intelligence agencies, the military, and law-enforcement leverage security vul-
nerabilities to gather intelligence, win wars, and enforce the law. In their eyes,
allowing a member of their community to publish a secret vulnerability that
is “strategically” exploitable risks “aiding the enemy” or closing off access to
target systems should the vulnerability be fixed in them.

Insofar as these three missions are concerned, contributing code to society
and publishing critiques or documentation of code that has been given to soci-
ety may be construed as negatively impacting their missions depending upon the
circumstances. For example, publishing source code that implements a secure
cipher hampers wire-tapping; publishing polished documentation that makes a
crypto library easier for programmers to use hampers wire-tapping; publish-
ing an exploitable vulnerability may cause it to be fixed, thereby preventing
“strategic” exploitation.

Security systems can be proactive or reactive. A proactive security measure
places locks on all the doors to a house. A reactive security measure places video
cameras at all the doors to identify would-be robbers that might break in. We
can spend great time and effort improving our ability to spy on one another, or
we can spend great time and effort improving the locks on our doors. I prefer
the latter.

Making sure that there are no obstructions to free coding is a proactive
security measure. Having the codebase for society be free of vulnerabilities is a
matter of national security.

2.7 The Philosophy of Coder Consciousness

The writer expresses himself through words. The musician expresses herself
through music. The painter expresses himself on canvas. The dancer expresses
herself through motion and the coder expresses herself through code. Yet, the
industrial coder is made to feel that her contributions of knowledge to society

33

are a liability, and, by virtue of wanting to contribute knowledge to society,
that she herself is a liability by extension.13 It is at this stage that the chilling
effects of pre-publication censorship are complete. The coder has reached the
docile state of silence and knowledge is self restrained. The coder, by way of
institutionalization, is led to believe that she is producing machinery as opposed
to expressing herself through code. Given enough time, she becomes a cog in
the machine itself.

I endeavor to raise awareness of this issue, as it has far reaching consequences,
from restraining the amount of source code given to society to diminishing the
information assurance of source code that has been given to society. Software
exploits facilitate the oppression of all manner of people in all manner of situa-
tions: due to the color of their skin, their religious beliefs, their political beliefs,
and their walk of life, e.g., journalists and activists. Restraints on free coding
call for a new philosophy to counter them. I call this new philosophy “coder
consciousness.”

Coder consciousness is inspired by the concept of Black Consciousness (Chp.
11 of [4]).14 Steve Biko was the father of the Black Consciousness movement.15

Coder consciousness takes into account multiple obstacles to free coding. Three
of these categories of obstacles were defined by Biko. They are as follows: the
emptiness of the past, the dependence of the oppressed on their oppressors,
and traditional complexes (Chp. 11 of [4]). However, I refer to the ‘traditional
complexes’ category as ‘corporate personhood’ to reflect a particular complex
that results from corporate personhood. The fourth obstacle, the use of incorrect
terminology, was observed by Confucius who sought to restore a rationalized
feudal order at a time when the feudal system of the Chou Dynasty was falling
apart (p. 6 of [57]).

Obstacles to free coding:

1. The Emptiness of the Past: For the young coder entering the work-
force today, the beginning of time was the 1980s when NDAs were first
leveraged to restrict the sharing of code and treat code as property instead
of speech. Industrial pre-publication censorship further restricted the flow
of code. The young coder is unconscious of the fact that before the 1980s
code was freely shared gratis. In South Africa, through the history books
of the Anglo–Boer colonists and their associated emphasis on the euro-
pean way of life, the colonists de-emphasized, to the point of forgetfulness
and distortion, the history of Black South Africans. The modern coder

13This mirrors Biko’s liability argument relating to oppressors (p. 68 of [4]).
14Chp. 11 is a paper that was later banned (p. 56 of [54]), written by Biko when he was a

student.
15From the Preface of [4] by Archbishop Desmond-Tutu.

34

suffers this very same phenomenon. Without knowing that code used to
be universally shared gratis and vulnerabilities used to be perceived as de-
fects as opposed to a means of exploitation, coders are at a disadvantage in
conceptualizing a world where code and descriptions of vulnerabilities are
speech.

2. Dependence on the Oppressors: A coder that is dependent upon wage
income must obey the policies of his employer or risk being fired. The more
institutions there are that obstruct free coding, the harder it is for the
coder to find an employer that supports free coding. Dependence causes
fear. Once steeped in fear, speech is chilled.

3. Corporate Personhood: The desire of the corporate person to control
contributions of knowledge to society, rooted in claims of “property” own-
ership, is at odds with the desire of the individual to exercise free speech in
order to contribute knowledge to society. Industrial policies and procedures
commonly obstruct free coding.

4. Incorrect Usage of Terminology: The continued use of improper terms
perpetuate the causes against free coding and cause people to overlook ob-
structions to free coding. Policies that characterize “business ethics” as
being the highest ethical standards while at the same time disregarding
the human right to free speech conceal and soften injustices against the
individual. Words shape the way coders view the world. Incorrect termi-
nology distorts that view and puts a pleasant face on policies that violate
human rights.

Plato’s allegory of the cave addresses people who are doomed to perceive a
false reality (p. 17 of [35], p. 48 of [11]). It is an allegory that applies equally
well to the young coder today. This new cave is man-made in every respect, the
construction of which began in the 1980s. The prisoners are young coders born
chained in the cave, forced to gaze at the shadow puppets on the wall in front
of them and not turn around. The puppet masters correspond to the system
that institutionalizes the pursuit of silver and gold, and the shadow puppets
on the wall are the prisoner’s reality that condones software and vulnerability
hoarding. To achieve coder consciousness is to break free from the cave and reach
the sunlight. The benefit of teaching the history of freedom, as it relates to code,
is that it instills within the coder a sense of what has been, giving hope to the
prospect of reconstructing a world of sharing code and exposing vulnerabilities
instead of a world where software and vulnerabilities are hoarded.

Free coding oppression is one of many forms of oppression. The work of
Johann Fichte provides a framework for understanding social oppression in its

35

various forms. Johann Fichte leveraged thesis, anti-thesis, and synthesis as a for-
mula for the explanation of change (p. 46, note 37 of [52]). They are the cardinal
points around which social revolution revolves. Biko used this triadic formula
to characterize the white liberal view of oppression in South Africa: the thesis
being institutionalized racial segregation, i.e., apartheid, the anti-thesis being
non-racialism, and the synthesis being weakly defined, involving the formation
of non-racial groups. Biko argued that this is an incorrect characterization of
the problem. According to Biko, the correct characterization follows from Black
Consciousness (p. 90 of [4]), that the thesis is strong white racism. Without cor-
rectly characterizing the social problem, one risks leveraging a hopelessly weak
approach to solving it.

It is instructive to apply Fichte’s framework to the problem of free coding
oppression. Inspired by Biko’s model, it helps show both extremes and proposes
a method to go from a state of oppression to a state of freedom. My triadic
characterization of the problem of knowledge hoarding, as it pertains to free
coding, is as follows:

Thesis: Knowledge hoarding

Anti-thesis: Knowledge sharing

Synthesis:

1. Conscientisation: For the coder and vulnerability researcher: conscien-
tise your peers to coder consciousness.16 This will help them achieve coder
consciousness. Conscientisation is not just a nice idea. It is a real, tangible
process that people can follow to cause free coding to be upheld. In the
past the world did not hoard software and the world did not hoard vulner-
abilities. Help people envision a world in which there is no such hoarding.
If people cannot envision it then it will not happen.

2. Responsible Disclosure: For the person that is free to share an instance
of knowledge with society but is afraid that it might cause physical harm:
indeed, there are situations in which the sharing of knowledge can cause
physical harm in the short term. This is a manifestation of the harm
principle put forth by John Stuart Mill. Responsible disclosure prior to
publication may be advisable. But in the long run it should be possible to
share the knowledge.

3. Free Coding License: For the person that is writing code and giving it
to society: consider using a license that upholds free coding. An exam-

16Biko used the term conscientise (p. 114 of [4]).

36

ple license term that upholds Freedom B fashioned around vulnerability
publication was given in Section 1.4.

4. Institutional Policy Publication: For the person that is in a position to
establish institutional policies and procedures: publish the pre-publication
censorship policy of the institution. Presumably it upholds the highest
ethical standards. Doing so will allow coders to evaluate the restrictions
on their freedom before they decide to join the firm. Industry-wide surveys
will allow students to evaluate the breadth of restrictions on free coding
in industry before deciding to become coders.

5. Free Coding Policy: For the person that is in a position to establish
institutional policies and procedures: consider using the free coding policy
from Section 1.4. The free coding policy lets society know that the firm
at least acknowledges the importance of coding liberty.

Coder consciousness is not a matter of pride. It takes into account that final
day of judgment in which one stands alone.

Coder consciousness is: awareness of being gifted as a coder with the re-
sponsibility to use the gift to help one’s neighbor, exalting the freedom to
give knowledge to society, exalting the freedom to use public knowledge, and
knowing in one’s heart that code is speech that reflects the very essence of
one’s soul.

Being a coder is a gift that can be leveraged to help others. This is why
obstructions to free coding need to be overcome. Vulnerable code leads to ex-
ploitation, oppression, torture, and murder; people living in fear, lost sheep.
God does not like it when his sheep are mistreated.

In a letter to Harrison Blake, Henry David Thoreau wrote (p. 419 of [46]):

“These are the regions of the Known and the Unknown. What is the use of
going right over the old track again? There is an adder in the path which your
own feet have worn. You must make tracks into the Unknown. That is what you
have your board and clothes for.”

37

2.8 Conclusion

The farmers at present wear but different shoes, the work of the foot having
been replaced by the work of the mind, their harvest effortlessly reproduced. Is
their yield tangible still? To perceive this as an awakening is folly. For it is now
the farmer himself who is farmed, having likewise been planted row upon row,
oriented and pruned using implements that glisten with exactness. The tangible
crop is renewed.

Can the life long magistrate fairly conclude for the farmer that his plow is
too dull for his tillage? From what finely sharpened experience or enlightening
book comes such revelation? To say that code is not speech is like the dwarf
saying to the elf that his runes are but gibberish; and so, according to elvish ears;
to bypass the apprentice, to seek only the spell that is cast; and to not, in the
fray of dancing candlelight against advancing shadow, marvel at the iridescent
glyphs that lift clear off the page.

To set upon the road to coding liberty is to loose the wayward girdle, to put
to rout the walls that divide, and to join the symphony of the giving.

38

Chapter 3

On Lady Wisdom and Knowledge Hoarding

Free coding embodies the freedom to give knowledge to society. In particular, it
consists of Freedom A and Freedom B. Freedom A is the following: you have the
freedom to write code and give it to society under conditions of your choosing.
Freedom B: you have the freedom to write and publish, under conditions of your
choosing, a critique or documentation of code that has been given to society.
These freedoms are restricted by practices such as industrial pre-publication
censorship. Restrictions on free coding form a subset of the larger problem
of knowledge hoarding. In this chapter I present my findings on the problem
of knowledge hoarding and establish a theological foundation of free coding.
Writing this chapter involved extensive research and deep spiritual introspection,
filled one day with tears and the next with dreams of the most awe-inspiring
kind. In particular, I convey my interpretations of Genesis 2 and 3, namely, the
Original Command and the Original Paradox. This leads to what I believe is
the root of the problem of knowledge hoarding. My conclusion: that humankind
was explicitly created by God and Lady Wisdom, that Knowledge is sacred, and
that only by raising Knowledge to the stature of Life can humankind solve the
problem of Knowledge hoarding.

3.1 Introduction

The problem of knowledge hoarding is getting steadily worse for society. Source
code has transitioned from being regarded as speech to being regarded as the
property of people. Software vulnerabilities have transitioned from being re-
garded as defects to being regarded as the property of people. The types of
knowledge that people and institutions believe that they own is expanding.

A key question then, is this: what is the root of the problem of knowledge
hoarding? There are multiple approaches to try to find the root of the prob-
lem, for example: Eastern philosophy, Western philosophy, religious dogma, and

Copyright c© 2017 Adam L. Young. This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License
(https://creativecommons.org/licenses/by-nd/4.0/).

religious mysticism. These approaches are by no means mutually exclusive.
Anselm of Cantebury approached issues of faith using reason. He believed that
metaphysical arguments from Latin and Greek classics could provide a deeper
understanding of God’s nature (p. 189 of [35]). This manifesto leverages all of
these approaches to varying extent.

When one goes to Church or to Temple, one is exposed to a combination
of pure Scripture and dogma. Someone who is raised going to Church may
not think to ever question the doctrines of his or her denomination. Western
society teaches one to delegate the interpretation of the Scriptures to “religious
experts.” The division of labor in modern society is taken to such an extreme
that one is no longer encouraged to individually seek Wisdom in Scripture as
for silver and gold. So, if the answer is not to be found in existing dogma then
the answer is not likely addressed by religious establishments.

Hope may lie in the mystical tradition: in Judaism there are Kabbalists
and Hasidim. In Christianity there were the Gnostics. The mystics bring a
creative element to religion, appealing to dreams and visions to understand the
metaphysical realm. Throughout history mystics have collided head-on with
ecclesiastical institutions. Does the path of religious mysticism hold the key to
understanding the root of the problem of knowledge hoarding?

With an understanding of the root of the problem of knowledge hoarding
society can begin to chart a course out of the storm. In the sections that follow
I present what I believe to be the root of the problem of knowledge hoarding.
It is my deepest hope that this problem will be treated with the urgency it
deserves. The freedom of future generations depends on it.

3.2 Religion and Knowledge Hoarding

The unification of church and state as well as the unification of church and school
has been a significant force of oppression throughout human history. Seculariza-
tion has occurred, causing religion to lose both cultural and social significance.
Today, when someone starts preaching many tune out altogether.

The point here is not to pass judgment on the separation of church and state,
of church and school, and of church and workplace; but, to simply acknowledge it
for what it is. Westerners are wont to place religion upon a pedestal, somewhere
distant and out of sight, to be addressed only when it is deemed safe to do so.
This phenomenon has existed for generations and it has affected the relationship
between the Westerner and her religion. Charles Taylor asks (p. 25 of [44]):

“Why was it virtually impossible not to believe in God in, say, 1500 in our
Western society, while in 2000 many of us find this not only easy, but even
inescapable?”

40

Taylor offers these reasons why God’s presence was seemingly undeniable
in the past: (1) natural events such as floods and plagues were seen as acts of
God but are now a dead metaphor as modern legal language attests, (2) the
various associations of life including guilds, boroughs, parishes, and so on were
interwoven with ritual and worship, and (3) people lived in an “enchanted” world
but now live in disenchantment (p. 25 of [44]). He argues that postmodernity
and scientism fuel skepticism and tend to obscure our appreciation for the larger
“constitutive good” (p. 49 of [35]).

This accounts for secularization in society as well as secularization in the
workplace. But, the story does not end with mere secularization. Corporate
personhood has evolved well past a company having the rights of an individual,
being regarded as a person. It is now being openly stated that a company has a
soul [6]. As a Christian I find this cavalier use of the word soul highly offensive.

Part and parcel to the phenomenon of secularization is the tendency of the
Westerner to delegate the interpretation of the Scriptures. Steve Biko observed
a tendency by Christians to make interpretation of religion a specialist job (p.
58 of [4]). This limits those who vigorously search for Wisdom within the bible.

Steve Biko also pointed out the critical relationship between religion and the
oppression of his people. In addressing this, he wrote (p. 59 of [4]):

“Christianity can never hope to remain abstract and removed from the peo-
ple’s environmental problems. In order to be applicable to people, it must have
meaning for them in their given situation. If they are an oppressed people, it
must have something to say about their oppression.”

This leads to the following question: is there a Judeo-Christian foundation
for knowledge hoarding and if so what is it? Having an understanding of the
root of the problem is critical in addressing it. Henry David Thoreau wrote,
“There are a thousand hacking at the branches of evil to one who is striking
at the root” (p. 78 of [45]). If this manifesto only addressed the utilitarian
aspects of free coding, e.g., relating freedoms to security (see Table 1.1) then
the manifesto would only be hacking at the branches. To address this problem
fully it is necessary to identify the root of the problem. Hacking at the branches
of evil is futile over the long term.

The path forward dives head first into religion, leveraging Western philo-
sophical concepts along the way. In some cases Western philosophy is leveraged
to reason about parables in the Bible. In other cases it is used to show the
chasm between rational thought and pure faith.

The word ‘philosopher’ is from the Greek words meaning ‘love of Wisdom’
(p. 3 of [50]). René Descartes proposed the method of skeptical doubt: that
in order to identify foundational truths, a skeptical attitude towards everything

41

must be taken.1 Put another way, all presumed knowledge must be brought
into question (pp. 40-41 of [35]). The modus operandi of the philosopher is
to question everything. Everything is questionable by everyone. Everything is
subject to re-interpretation. Everything is subject to being understood better.
In seeking a better understanding there are no boundaries that the lover of
Wisdom mustn’t cross.

So, for the moment, let us dispense with the Western bias towards believing
that only religious experts are qualified to interpret the Scriptures. Let us dive
straight into the Old Testament with the problem of “knowledge hoarding” at
the forefront of our minds and seek connections throughout. Let us heed Lao-tse
from the East, empty our cups, and flow like water, for water does not tangle
on anything on its way down, and in so doing, free ourselves from every prior
church doctrine. Let us bring with us the rational thought from the West that
has developed over the centuries and use it to challenge existing dogma in our
return to the age of enchantment, and, in so doing, attempt to discern God’s
position on knowledge hoarding.

“For the sages, the knowledge of God came through the tradition of the an-
cestors; observation of the cosmos, society, and human experience; reflection
on and remembrance of sapiential teachings and experience; rational analysis
that was in part related to the understanding that there were connections be-
tween elements in nature; and the activation of the imagination by means of key
metaphors”

—Leo G. Perdue (p. 65 of [34],pp. 73-76 of [33])

3.3 Lady Wisdom

3.3.1 Lady Wisdom Throughout the Ages

Goddess Asherah was the first female deity known to have been worshiped by
the Children of Israel. For about six centuries after the arrival of the Israelite
tribes in Canaan, down to the destruction of Jerusalem in 586 B.C. the Hebrews
worshiped Asherah (p. 34 of [32]). She was the chief goddess of the Canaanite
pantheon and her full name was “Lady Asherah of the Sea.” (pp. 36-37 of [32]).
In Ugaritic mythology she figured prominently as the wife of El, the chief God
(p. 37 of [32]). Worship of Asherah was introduced into the Jerusalem Temple
by King Rehoboam, the son of Solomon, in or about 928 BC. Her statue was
removed and re-introduced multiple times into the Temple over an extended
period of time (p. 50 of [32]).

Gods are rarely invented or discovered and instead are often taken over by one

1Also called Cartesian doubt.

42

group from another. Raphael Patai posits the question: were Asherah, Astarte,
and others Hebrew goddesses or merely foreign abominations as characterized
by the prophets? But, then he goes on to state: “There can be no doubt that
the goddess to whom the Hebrews clung with such tenacity down to the days of
Joshiah, and to whom they returned with such remorse following the destruction
of the Jerusalem Temple was, whatever the prophets had to say about her, no
foreign seductress, but a Hebrew goddess” (p. 32 of [32]).

Patai further asserts that the Hebrew Goddess underwent an astounding
metamorphosis into a manifestation of God’s presence, the Shekhina, a feminine
name just as God’s is masculine (p. 32 of [32]). Shekhina is a Hebrew abstract
noun meaning “the act of dwelling” and in actual usage means that aspect of
the deity which can be apprehended by the senses (p. 99 of [32]). The Shekhina
is identically the “Matronit,” the Matron, Lady, or Queen (p. 32, 252 of [32]).

Over time the Shekhina gained strength and in the 13th century A.D. de-
veloped in Kabbalism as a distinct Hebrew Goddess who often confronted and
sometimes even opposed God (p. 32 of [32]). Mysticism daringly spoke of
Shekhina in most deeply revered sources as the spouse of God (p. 20 of [32]).

Raphael Patai affirms that the Hebrew Goddess is none other than Asherah;
regarding the Hebrew Goddess and Israel: “Is the Hebrew Goddess dead, or
does she merely slumber, soon to awaken rejuvenated by her rest and reclaim
the hearts of her sons and lovers?...And it was there—less than 400 years ago!—
that her Rachel and Leah forms revealed to the pious and the learned the divine
meaning of earthly love, the last of her great motherly-wifely acts, and that her
identity with the ancient Biblical goddess Asherah was recognized in a remark-
able flash of intuitive insight.” (p. 33 of [32]).

Lady Wisdom also features prominently in Jewish and Christian religion,
appearing in the Book of Proverbs that is in both the Torah and the Christian
Bible. A subset of the major themes of this book include divine creation and
providence, the importance of the acquisition of Wisdom, and the power of
the word with a particular emphasis on elegance of expression and persuasion
(p. 48 of [34]). Proverbs 3 tells of the happiness that comes to the person
who finds Wisdom. It also portrays Wisdom in the “guise” of an ancient Near
Eastern goddess of life and covers Wisdom’s role in creation (p. 49 of [34]). Leo
Perdue writes, “Finally, Wisdom, associated with God, is often a personified
and eventually hypostatized attribute seen in the activities of Woman Wisdom,
originally a goddess in Israelite religion prior to the development of monotheism,
and then a personified metaphor.” (p. 30 of [34]).

Familiarity with the Book of Proverbs is needed to place the Book of Genesis
in perspective since Proverbs describes the relationship between God and Lady
Wisdom before the creation of humankind. Lady Wisdom said, “The Lord
possessed me in the beginning of his way, before his works of old” (Proverbs

43

8:22 KJV). Regarding the tree of knowledge in the Garden of Eden, Raphael
Patai writes,

“It is consonant with this terrible aspect of the Shekhina-Matronit that her
old Talmudic role of death bringer is also remembered and revived in the Zohar,
which repeatedly asserts that the words of the Book of Proverbs (5:5) “Her feet go
down to death” refer to the Shekhina, symbolically represented by the forbidden
tree which for Adam was a “tree of death”.” (p. 150 of [32])

Proverbs centers around Lady Wisdom. This therefore implies that the
Shekhina-Matronit is the forbidden tree who is Lady Wisdom. Proverbs di-
rectly equates Lady Wisdom with a tree of life: “She is a tree of life to those
who hold her fast and blessed are those who look for her” (Proverbs 3:18 [2]).
Wisdom as a tree is also supported by Proverbs 8: “My fruits are better than
refined gold and my produce than choice silver” (Proverbs 8:19 [2]). Leo Per-
due ties together the tree of life, the tree of knowledge, Asherah, and Goddess
Wisdom in the following:

“In the second strophe (v. 18), Wisdom is personified as a “tree of life”
(see Gen. 2:9; 3:22, 24), a major symbol of fertility goddesses in ancient Near
Eastern religions... The tree of life in Gen. 2:9; 2:16-17; 3:11; 3:22-24 (...) is
associated on occasion in the Hebrew Bible with wooden poles or sacred trees
(...) a common symbol for the fertility goddess Asherah, worshiped in Israel
and Canaan. In this proverbial poem, however, the tree of life and the tree of
knowledge of good and evil (an expression for Wisdom) are merged into Goddess
Wisdom.” (p. 50 of [34]).

The foregoing draws on the Bible and the work of Raphael Patai and Leo
Perdue. The findings imply that goddess Asherah, the Hebrew Goddess, the
Shekhina, the Matronit, the tree of knowledge, and Lady Wisdom are one and
the same.

According to Jewish Mysticism, the Shekhina, in Her motherly love, went
into exile with Israel following the destruction of the Jerusalem Temple and that,
accordingly, the Shekhina and God are separated. There exist multiple rites that
the mystics believe will help unify the Shekhina with God. In particular, the
unification of wife and husband is believed to be a way to bring God and his
Shekhina closer together. The implication of this belief is scary, since conversely,
it implies that the sins of the Children of Israel further separate God from
His Shekhina, that our sins have a negative effect on heaven. The belief that
the union of wife and husband helps bring together God and His Shekhina is
incredibly heart-warming.

44

3.3.2 Lady Wisdom Owns Knowledge

Wisdom is not a “what.” She is a “who,” and not just any “who.” She is
the divine Lady who was by God’s side at the beginning. She was there when
God created heaven and earth. Wisdom said, “I was fashioning with Him; He
was rejoicing in me everyday, and I have been rejoicing before Him always.”
(Proverbs 8:30 [2]). “I, Wisdom, have created cunning and I own knowledge and
reason” (Proverbs 8:12 [2]). Her arms are open to all people. She said, “I love
those who love me, and those who seek me will find me” (Proverbs 8:17 ISV).

Lady Wisdom owns knowledge. Institutions do not own knowledge. Men
have wasted no time in taking ownership of everything imaginable: from slaves,
to wives, to parcels of land, to source code, to exploitable software vulnerabilities.
So, if it helps, one might feel at ease regarding Wisdom as the owner of the tree
of knowledge. Or, one might accept the characterization that the tree of life and
tree of knowledge are merged into Goddess Wisdom (p. 50 of [34]).

3.4 Established Doctrines on the Garden of Eden

In the midst of the Garden of Eden stood the tree of life and tree of knowledge
of good and evil. Adam and Eve were permitted to eat of the fruits of all trees in
the Garden of Eden except for the fruit of the tree of knowledge, the forbidden
fruit. Adam was told that if he eats the forbidden fruit he will die the same
day (Genesis 2:17 KJV). Eve had a dialog with the serpent and decided to take
fruit from the tree of knowledge. Against God’s will, Adam and Eve ate the
forbidden fruit. After doing so Adam and Eve were cast out of the Garden of
Eden and a flaming sword was placed to guard the way of the tree of life. To
eat of the tree of life is to live forever (Genesis 3:22 KJV).

Original Sin is the doctrine that humanity is in a state of sin resulting from
Adam and Eve’s disobedience of God by eating of the tree of knowledge. The
doctrine places a strong emphasis on collective guilt. In its most extreme form
it characterizes total depravity of humankind.

On a lighter note, Saint John Chrysostom (349–407 AD) interprets the ban-
ishment of Adam and Eve as a gracious act of God. Chrysostom believed that
had Adam and Eve stayed in the Garden of Eden and eaten of the tree of life and
become immortal then they would have been stuck in disobedience and arrested
development forever (p. 81 of [39]). Saint John Chrysostom wrote:

“So when partaking of this tree he became liable to death and subject in the
future to the needs of the body, and entry of sin had its beginnings as the result
of which death also was fittingly provided by the Lord, no longer did he allow
Adam in the garden but bade him leave there, showing us that his sole motive in
doing this was his love for him.” (Homily 18 part (8) in [7]).

45

Saint John Chrysostom therefore attributes the banishment of Adam and
Eve to love alone. This casts a positive light on Adam and Eve.

Another positive interpretation of the Genesis is due to the medieval Chris-
tian mystic Hildegard von Bingen (1098–1179 AD). Hildegard believed that peo-
ple are born with Original Wisdom and that it manifests in children like a folded
tent. The tent expands as a child grows and finds her home in Wisdom’s tent
(p. 103 of [39]).

Creation Spirituality is an ancient tradition, named and conveyed with vigor
by Matthew Fox beginning in the 1970s. Fox believes that we are all sons and
daughters of the Divine and are original blessings.2 Danielle Shroyer defines
Original Blessing as this: we are steadfastly held in a relationship with God
and that He calls us beloved and good before we are anything else (p. xi of
[39]). Fox explains how Hildegard von Bingen’s “Original Blessing” theology
was ultimately overshadowed by the Original Sin doctrine (p. xxiii of [18], see
also [13]).3

Danielle Shroyer presented compelling analogies regarding the harmful effect
of setting up our relationship with God in negative terms, an effect caused by
the doctrine of Original Sin. She wrote: “Have you ever been to a wedding
ceremony where the minister began by describing all the ways the two people
are completely incompatible and dissimilar?” (p. 34 of [39]). One of her more
jocular observations is as follows: “I’ve lost count of how many times I’ve read
that original sin is an effective bonding agent between humans, like we’re all
members of the same classroom detention.” (p. 44 of [39]). The harmful chasm
between God and us that results from the Original Sin doctrine survives to this
day.

Why has the doctrine of Original Sin developed such a strong foothold? Per-
haps one of the reasons is that it facilitates the pursuit of silver and gold. South
Africans had no notion of hell prior to the arrival of the Anglo–Boer colonists
(p. 44 of [4]). The version of Christianity pushed upon South Africans scared
mother and father, invoking visions of eternal flames, the gnashing of teeth, and
the grinding of bone (p. 45 of [4]). Biko explains how Westerners leveraged this
fear to establish themselves as the perennial teachers and twist South Africans
away from their traditions that included a sacred belief in sharing. Soon after
the arrival of the colonists the people were divided into two groups, the converted
and the pagans (p. 56 of [4]). The Anglo–Boer culture had all the trappings
of colonialist culture, honed for conquest. Where possible, they conquered by
persuasion, using a highly exclusive religion that denounced all other Gods (p.
41 of [4]).

2www.matthewfox.org/what-is-creation-spirituality
3Matthew Fox coined the term “Original Blessing” (p. 215 of [39]).

46

The following doctrines were covered: Original Sin, Original Wisdom, and
Original Blessing. However, none of these focus on God’s original command to
Adam not to eat of the tree of knowledge. This is the subject of the next section.

3.5 The Original Command

I propose the following interpretation of God’s Original Command to Adam:
one should not hoard knowledge.4 I now lay the groundwork for this.

The Good News Bible describes the tree of knowledge as “the tree that gives
knowledge of what is good and what is bad” (Genesis 2:9 GNT). In a footnote
the Good News Bible expands on the definition of this tree: “knowledge of
what is good and what is bad; or knowledge of everything.” This may be
an instance of a merism,5 such as someone who has “searched high and low,”
i.e., everywhere. I am of the opinion that the tree of knowledge is the tree of
knowledge of everything. In the case of Adam and Eve, hoarding knowledge is
the literal act of taking and eating fruit from the tree of knowledge. Did the
fruit from the tree of knowledge contain seeds and if so what became of them?

In the Westminster Commentaries, S. R. Driver gives the following references
to the tree of life in Proverbs: 3:18, 11:30, 13:12, and 15:4 (p. 39 of [10]). “The
fruit of the righteous is a tree of life and the souls of the evil will be removed”
(Proverbs 11:30 [2]). “A man who begins to help is better than he that props
up with hope, and the tree of life brings hope” (Proverbs 13:12 [2]). “The tree
of life is the healing of the tongue, and he that eats its fruit will be filled by it”
(Proverbs 15:4 [2]).

One can imagine the water of Life flowing up from the ground, through Lady
Wisdom’s arms,6 ever forking off in ever new directions, into long narrowing
tunnels that open to the Light,7 the water of Life flowing through each soul
along it’s journey to the Light, the final stretch traversed alone,8 giving rise to

4The “Original Command” is not to be confused with the first commandment. “Yeshua
said to him, “You shall love THE LORD JEHOVAH your God from all your heart and from
all your soul and from all your power and from all your mind.” (Matt 22:37 of [2]). “This
is the great and the first commandment.” (Matt 22:38 of [2]). For comparison: “This is the
greatest and the most important commandment.” (Matt 22:38 GNT). “Original” in “Original
Command” is meant to signify the origin, i.e., the early part of Genesis.

5en.wikipedia.org/wiki/Tree of the knowledge of good and evil
6“The Lord possessed me in the beginning of his way, before his works of old.” (Proverbs

8:22 KJV)
7The view along the true meridian fixes upon the Northern star.
8The near-death experience of Joe Hyams: “Twice during that time my fever reached 106◦,

and the doctors told Elke they had lost me. Of those moments, I recall only floating in a
cocoon of warmth down a narrow tunnel where I would be free of pain. I could hear Elke’s
voice from a distance pleading with me not to die.” (p. 70 of [19]).

47

a new sacred fruit, with the whole tree reaching up to the Light, ascending on
toward Heaven. “The Way of Life is an ascent to the understanding One, to turn
away from Sheol beneath” (Proverbs 15:24 [2]). In this sense, the water of Life
forms the tree of Life within the tree of Knowledge, Lady Wisdom; the water
of Life flowing in unison with the tree of Knowledge as it grows.9 According to
the Gospel of Thomas, Jesus said, “Split the wood—I am there; lift the stone
and you will find me there.” (Reading 11 of [14]). A theological interpretation
of the Book of Proverbs characterizes Wisdom as providing the link between
the Creator and His creation, mediating between heaven and earth (p. 57 of
[34]). One may think of her roots in the ground and her branches reaching up
to heaven as providing this link.

One can imagine the roots of Lady Wisdom running deep into the ground.
As a result of Adam eating the forbidden fruit, God cursed the ground (Genesis
3:17). With this view, a soul that chooses to spurn Lady Wisdom, instead of
rising up and forming a branch, travels downward through a root to Sheol. “And
her legs marry to death; her walk causes men to recline in Sheol” (Proverbs 5:5
[2]). “And those who sin against me harm their soul, and all who hate me are
the friends of death” (Proverbs 8:36 [2]). Under this view of Lady Wisdom, a
soul has a choice: flow in the water of Life up to Lady Wisdom’s crown and on
to heaven or through her roots down to Sheol.

The setting: in the center of the Garden of Eden there is the tree of Life
and tree of Knowledge (Genesis 2:9); Wisdom is a tree of Life (Proverbs 3:18
[2]). The most cunning of all creatures is present, the serpent (Genesis 3:1),
commonly depicted wrapped around the tree of Knowledge; Wisdom created
cunning (Proverbs 8:12 [2]).10 Jesus told his disciples to be wise as serpents
(Matthew 10:16 KJV).11 Eve reasons about disobeying God by eating the fruit
from the tree of Knowledge. Wisdom owns reason (Proverbs 8:12 [2]). Adam and
Eve ultimately choose to eat the fruit of Knowledge. Wisdom owns Knowledge
(Proverbs 8:12 [2]). Lady Wisdom is the utterly divine Woman who is stunningly
present in the Garden of Eden, I aver.12 I believe that humankind was not fully
formed until receiving both the breath of Life from God (Genesis 2:7) and the

9Water features prominently in Zen. Zen practitioners define ki to be an energy or inner
strength that can be directed from the ‘one point’ called the tai-den through visualization to
places outside the body, like a valve through which water flows. Aikidoists believe the center
for ki, the tai-den, is about 1.5 inches below the navel (pp. 63-64 of [19]). Also, Heraclitus
believed that a person’s soul is made out of water and that the soul will live in the divine spark
only if the person led a certain type of virtuous life (p. 174 of [35]).

10A serpent is simply a head propelled by a tail, a physiology that emphasizes pure thought.
11“And Moses made a serpent of brass, and put it upon a pole, and it came to pass, that if

a serpent had bitten any man, when he beheld the serpent of brass, he lived.” (Numbers 21:9
KJV).

12For a monumental course correction see Mark 10:2-9.

48

fruit of Knowledge from Lady Wisdom; God and Wisdom, tree of Life and tree
of Knowledge, Adam and Eve.

According to Raphael Patai, the Zohar holds that Adam was the offspring
of God and the Shekhina. This is hinted at in the passage that states that when
Adam “emerged into the world, the sun and the moon saw him and their light
faded, because the apple of the heel darkened their light. Why? Because he
came from the work of the Supernal Sun and Moon,” i.e., from God and the
Shekhina (pp. 162-163 of [32]).

Descartes will have us believe that we are because we think, “I think, there-
fore I am” (p. 66 of [50]). Nietzsche will have us believe that we think because
we are, “I am, therefore I think” (aphorism 276 of [30], p. 8 of [22]).13 God is
not in this picture and neither is Lady Wisdom. These two aphorisms can be
viewed as secularizations of Genesis 2 where Adam received the breath of Life
and Genesis 3 where Adam and Eve ate the fruit of Knowledge. In regards to
these aphorisms of Descartes and Nietzsche, I beg to differ.

Although it may seem that Adam and Eve were capable of reasoning prior
to eating the forbidden fruit, it is also quite possible that the Garden of Eden
was a timeless place, that this is a parable after all.

“I received the breath of Life therefore I am; I ate the fruit of Knowledge
therefore I think.” —Adam Young

Rather than tying “I am” to “I think” and vice-versa, denying our two Cre-
ators, the above aphorism accounts for our formation in the Garden of Eden; we
are because of God and we think because of Lady Wisdom.

One might even go as far as to call cogito, ergo sum; sum, ergo cogito a form
of idolatry. In speaking of the revolution against God, Alan Watts wrote (pp.
11-12 of [51]):

“When the throne of the Absolute is left vacant, the relative usurps it and
commits the real idolatry, the real indignity against God—the absolutizing of a
concept, a conventional abstraction.”

In an appeal to our rational nature, it is instructive to apply Kantian uni-
versalization to Eve’s reasoning, i.e., the maxim she adhered to when eating the
forbidden fruit. In order to determine whether or not a given maxim is ratio-
nal, Immanuel Kant has us take the maxim, apply it universally, and then ask
the question, “Is it still conceivable in this world?” If it is, then it should be
regarded as rational. Otherwise it can only be seen as irrational.

Consider the following characterization of the maxim that Eve adhered to
when eating the forbidden fruit: eat the forbidden fruit since the tree of knowl-
edge is pleasant to the eyes and the fruit is good for food and is desired to

13The latin form of both of these aphorisms is: cogito, ergo sum; sum, ergo cogito.

49

make one wise (Genesis 3), and do so despite God’s explicit command not to.
By applying Kantian universalization to this heretical, or child-like maxim, it
follows that the tree of knowledge would be devoid of fruit; all of humankind
would disobey God and eat fruit from the tree of knowledge. The crown of the
tree of knowledge, Lady Wisdom, would be fruitless; the link between heaven
and earth severed.

At the opposite extreme is the following sapiential maxim regarding Lady
Wisdom: “If thou seekest Her as silver, and searchest for Her as for hid treasures;
Then shalt thou understand the fear of the Lord, and find the knowledge of God”
(Proverbs 2:4-5 KJV). By applying Kantian universalization to this holy maxim
it follows that all of humankind will seek Wisdom as for hid treasures and will
find the knowledge of God. The crown of the tree of knowledge, Lady Wisdom,
would be in heaven; heaven and earth joined as one.

By universalizing Eve’s maxim and Wisdom’s maxim two diametrically op-
posed end states can be seen. Universalizing Eve’s maxim characterizes Adam
and Eve’s act as knowledge hoarding. I conclude that God’s Original Command
was this: one should not hoard knowledge. Hoarding knowledge severs our link
to the understanding One.

3.6 The Original Paradox

I believe that the story of our creation is one of symmetry. God possessed
Wisdom in the beginning of his way (Proverbs 8:22 KJV). God created Adam
and from the rib of Adam, God created Eve. Lady Wisdom created cunning
(Proverbs 8:12 [2]) and the serpent is the most cunning of all creatures.14 The
God → Adam, Eve connection embodies Life. The Wisdom → Serpent connec-
tion embodies Knowledge (Wisdom, thought, reason, crafty, cunning, subtle).
The turning point in creation was when Eve collided with the serpent.

In reference to the tree in the midst of the garden, Eve informed the ser-
pent that God said “neither shall ye touch it” (Genesis 3:3 KJV). The ban on
touching the fruit was not addressed previously in the Book of Genesis. Multiple
commentators have observed this extension to the divine prohibition (p. 11 of
[1]). With the view that Eve falsified the word of God, Adam and Eve were in
a state of sin prior to eating the forbidden fruit.15

What I am calling the Original Paradox is based on the following assump-
tions:

1. Adam and Eve were in sin before eating the forbidden fruit: This

14“Now the serpent was more crafty than any of the wild animals the Lord God had made”
(Genesis 3:1 NIV).

15As opposed to “sin” one might prefer the view that they possessed free will but were naive.

50

is evidenced by what Eve said to the serpent, the falsification of the word
of God in saying “neither shall ye touch it” (Genesis 3:3 KJV).

2. The fruit of knowledge heals the tongue: This is supported by the
following. Regarding Wisdom, “She is a tree of life to those who hold her
fast and blessed are those who look for her” (Proverbs 3:18 [2]). “The tree
of life is the healing of the tongue, and he that eats its fruit will be filled
by it” (Proverbs 15:4 [2]).

It is possible that upon uttering “neither shall ye touch it” Eve realized
that she blasphemed. This may therefore have provided motivation for Adam
and Eve to heal their tongues. Under this interpretation Adam and Eve were
trapped in what I call the Original Paradox:

1. If Adam and Eve obey God and do not eat of the tree of knowledge then
their tongues may utter blasphemous words for centuries or perhaps all
eternity.

2. If Adam and Eve disobey God and eat of the tree of knowledge then their
tongues will receive healing in the short term but at the penalty of death
in the long run.

It is a paradox since sinning is unavoidable. The only path that causes Adam
and Eve to eventually cease sinning against God completely is to disobey the
Original Command. The Original Paradox is resolved by disobeying the Original
Command.

The principle of double-effect was put forth by the theologian, philosopher,
and jurist Thomas Aquinas. The principle of double-effect explains the permis-
sibility of an act that causes significant harm as a side-effect of promoting some
form of good. For instance, it explains why some rationalize the acceptability
of Alice hitting Bob so hard that he dies if it is the only way for Alice to save
herself from Bob’s assault (p. 224 of [17]). The decision of Adam and Eve to
heal their tongues by eating the forbidden fruit can be viewed as an instance of
the principle of double-effect: they disobey God by eating the forbidden fruit
but in so doing hope to sin less against God in the long run.

Upon eating the fruit from the tree of knowledge, the God → Adam, Eve
connection that embodies Life united with the Wisdom → Serpent connection
embodies Knowledge; Life and Knowledge combined to make humankind a full
and complete image of God. “And the Lord God said, Behold, the man is
become as one of us” (Genesis 3:22 KJV). Under this interpretation, Adam and
Eve did what the Book of Proverbs encourages all of us to do: seek Wisdom as
for silver and gold.

51

3.7 Aspiring to be Trees of Life

If we presume that the fruit of the tree of knowledge had seeds and we focus
on the Original Command then the command implies that one should not eat
seed bearing fruit from the tree of knowledge. How many seeds of knowledge
did Adam and Eve eat from the tree of knowledge? Knowledge expands broadly
upon itself in the same way as Life. Perhaps the seeds of the tree of knowl-
edge are within us and our pursuit of Wisdom is the way to keep the knowledge
growing as God had originally intended; that for the seeds of knowledge to grow
within us, we must necessarily carry on the same process as the tree: experi-
ence birth–experience life–experience reproduction–experience death–experience
birth. The realization of new knowledge is an inherently inward process, one
that we can hardly describe, perhaps born of the seeds of knowledge. In this
respect, preventing Adam and Eve from becoming immortal by eating of the tree
of life was the only way to rectify the imbalance caused by knowledge hoarding.
Only with an ever expanding and replenishing population, whereupon each child
has a fresh outlook on the world, being at once limber of mind, body, and spirit,
can the sacred seeds that Adam and Eve consumed grow and achieve their in-
tended fullness. Age brings with it a certain rigidity of mind and body. With an
ever expanding populace outside of Eden death may be regarded as a practical
necessity. In this view, the punishment was a restoration of balance.

Adamah in Hebrew is soil, earth. As a result of the breath of Life, the
human of dust becomes a human being, literally an earthling (p. 75 of [39]);
from Adamah comes Adam. Ben-Adam (son of Adam) is any human being. The
metaphor of man as tree is supported by both the manner of Adam’s creation
and the manner of his demise. Like a tree, Adam was formed of the dust of
the ground and unto dust shall he return. In this epistemological view, God is
salvaging the growth of the sacred seeds through the progeny of man, having
them grow in man himself.

It is all too easy to regard fruit as food and overlook the fact that fruit is
alive. A powerful symbolism then, in the Genesis, is that the fruit of knowledge is
alive. This paves the way for embracing the unification of Life with Knowledge.
Eating the fruit prevents a new tree from growing in the ground.

“To hoard Knowledge is to take a Life; To take a Life is to hoard Knowledge.”
—Adam Young

3.8 The Root of the Problem of Knowledge Hoarding

The foregoing laid the foundation to identify the root of the problem of knowl-
edge hoarding, as I see it. There are those who believe that the serpent in the

52

Garden of Eden was possessed by satan. Under this belief, one may interpret
the root of the problem as being satan that coaxes us to hoard fruit from the
tree of knowledge, i.e., satan encourages us to hoard knowledge.

It is only after disentangling ourselves from the preoccupation that the ser-
pent is effectively satan that an entirely different possibility can be seen. That
possibility is this: male chauvinism going back millennia has contributed greatly
to the problem of knowledge hoarding.

Relative to God, Lady Wisdom plays a diminutive role in many religious
circles. She is reduced to a metaphor of divine Wisdom (p. 48 of [34]). She is
personified as a tree of life, a major symbol of a fertility goddess (p. 50 of [34]);
passages in the Bible demote Her from Lady Wisdom to a sacred tree or pole
setup near an altar (2 Kings 13.6, 17.16; Deuteronomy 16.21).16 She is fashioned
as an intellectual love for men, “For a largely male audience, this erotic language
is used to depict Woman Wisdom here and in chapters 8–9 as an intellectual
love that attracts young men and sages to disciplined study and moral living.”
(p. 50 of [34]). It is said “Blessed be He” but not “Blessed be She.”

A number of scholars have pointed out that many early Christians, most of
whom spoke a dialect of Aramaic, viewed Jesus primarily as an embodiment of
Holy Wisdom (p. 419 of [41]). This view is supported during His baptism where
the synoptic Gospels characterize the “holy breath” (ruha d’qudsha) making Her
home in Him. Ruha (Aramaic) is a noun in the feminine gender and ruach (the
Hebrew form) is also feminine. Jim Stacey concludes that Jesus was a spokesman
and representative of the Divine Feminine more than any other entity and that
Christianity has missed this truth for 1,800 years (p. 420 of [41]).

“Sophia, El Shaddai, Shekinah, and Holy Wisdom are names of The Di-
vine Feminine that have been hidden, lost, and purposely left out by the Roman
Catholic Church and covered with its masculine mask”

—Jim Stacey (p. 421 of [41])

The devout do not question the divine nature of the breath of Life. But
why has there not been equal emphasis placed on the fruit of Knowledge? The
chauvinistic view of Lady Wisdom has caused the sacred nature of Knowledge
to be de-emphasized. This has opened the door for society to treat Knowledge
as our property instead of Her sacred property.

I have put forth two possibilities for the root of the problem of knowledge
hoarding: that satan, commonly regarded as a male embodiment of pure evil, is
to blame since he coaxes us to hoard knowledge. This amounts to saying that
only a powerful twisted man could possibly be the root of the problem. The
second: that we have failed to hold the utterly divine Woman, Lady Wisdom,

16Esoteric Theological Seminary, www.northernway.org/hgoddess.html

53

up high. From this perspective, the beginnings of knowledge hoarding has its
root in the marginalization of Lady Wisdom.

The Original Command, so defined, tells us not to do something, namely, not
to hoard knowledge. This is the prohibition of an act; of all things that can be
done, this command prohibits one of them. An interesting counterpoint to this
is the following question. Is there anything in the Scriptures that encourages
us to make sure that knowledge can be freely shared? Lady Wisdom addresses
exactly this positive act. “Blessed is the man who will listen to me and will
keep watch upon my gates all day and guards the posts of my gates. Because
my goings forth are the goings forth of Life, and so the will of Lord Jehovah
goes forth.” (Proverbs 8:34-35 in [2]). The book of Proverbs also addresses the
actions of the intelligent. “Fools inherit madness and the intelligent distribute
knowledge.” (Proverbs 14:18 of [2]).

By elevating Lady Wisdom we raise Knowledge to its rightful place alongside
Life. By treating Knowledge as sacred and by guarding the posts of Wisdom’s
gates, knowledge hoarding may one day become a thing of the past.

3.9 Theological Foundation of Free Coding

The conclusion from Section 3.8 is that the root of the problem of knowledge
hoarding is the marginalization of Lady Wisdom and not treating knowledge as
sacred. This, combined with the Original Command and the Original Paradox,
forms a Judeo-Christian foundation for the problem of knowledge hoarding.
Since obstructions to free coding form a subset of the problem of knowledge
hoarding, it also forms a Judeo-Christian foundation of free coding. It is rooted
in the Old Testament. An argument in support of free coding based on the New
Testament will now be given.

The Constitution of the United States did not originally grant corporations
rights. People had rights, corporations did not. This state of affairs changed
over time in American history. Corporate personhood is a legal personification of
the corporation. Chief Justice Marshall wrote in 1930 that, “The great object
of an incorporation is to bestow the character and properties of individuality
on a collective and changing body of men.”17 In what follows the notion of
corporate personhood is leveraged along with the Golden Rule, also called the
Law of Reciprocity, to show the harmful effect of knowledge hoarding relative to
free coding. The Golden Rule is written in the first book of the New Testament.

“Therefore all things whatsoever ye would that men should do to you, do ye
even so to them: for this is the law and the prophets.” (Matthew 7:12 KJV)

17Providence Bank v. Billings, 29 U.S. 514 (1830).

54

In the below “you” should be read as “your institution.”

If you would like other institutions to give their members the freedom to report
vulnerabilities they find to society unobstructed so that you might be protected,
so then you should give your members the freedom to report vulnerabilities they
find to society unobstructed so that other institutions might be protected.

If you would like other institutions to give their members the freedom to
contribute code to society unobstructed so that you might benefit from the code,
so then you should give your members the freedom to contribute code to society
unobstructed so that other institutions might benefit from the code.

An institution that side-steps giving their staff the freedom to give knowledge
to society moves the world towards dystopia: vulnerabilities would flourish,
causing rampant exploitation, and duplicitous coding efforts would abound.

3.10 The Instantaneous Embrace

Those who strongly believe in freedom of speech, the free software movement, or
full disclosure of vulnerabilities may find themselves instantaneously embracing
Freedom A and Freedom B; no essay, explanation, or manifesto is needed. It is
an ineffable view, a causeway to free coding traveled by the kindred spirit. To
this end, I have managed a parable that will resonate with some yet irk others,
appearing oracular to the former while pretentious to the latter. But there is no
helping it; and then there is the matter of its meter and form. I chose poetry,
for I seek the assembly of both heart and mind. Free Coding:

As if etched in stone in the deepest, darkest mountain cavern,
on rough-hewn obelisk in chamber high;
for them not to seek, but find;
unseen but for our inner light,
unheard but for the whisper of our innermost voice,
to touch, sending forth the mighty hand
that grips our hearts, holds us fast, drains our eyes,
and at once know them to be good and true.

3.11 Triadic Characterization

Johann Fichte leveraged thesis, anti-thesis, and synthesis as a formula for the
explanation of change (p. 46, note 37 of [52]). In Section 2.7 a triadic char-
acterization of the problem of knowledge hoarding was presented. The thesis
is knowledge hoarding. The anti-thesis is knowledge sharing. The synthesis in

55

Section 2.7 is a series of logical and Western philosophical measures. The below
are additional measures having a religious foundation. The additional points for
the synthesis are these:

1. Heed the Original Command: Insofar as possible heed the Original
Command. There are situations in which it may seem that publishing
knowledge may harm people, e.g., publishing a severe IT security vulner-
ability that affects millions of unpatched computer systems. In such cases
responsible disclosure to the author of the software three months prior to
publication of the vulnerability may be desirable (responsible disclosure).
When faced with the choice to hoard knowledge vs. share it, and the
righteous path is not clear, seek guidance from the understanding One.

2. Guard the posts of Wisdom’s Gates: Challenge, resist, and diminish
restrictions on giving Knowledge to society. “Blessed is the man who will
listen to me and will keep watch upon my gates all day and guards the
posts of my gates. Because my goings forth are the goings forth of Life,
and so the will of Lord Jehovah goes forth” (Proverbs 8:34-35 in [2]).

3.12 Conclusion

I conclude that the root of the problem of knowledge hoarding is the marginal-
ization of Lady Wisdom, the reduction of Her to a metaphor, and treating
Knowledge as our property instead of Her sacred property. I believe that to
solve the problem of knowledge hoarding we must, as a society, heed the Orig-
inal Command to refrain from hoarding knowledge and beyond this, guard the
posts of Wisdom’s gates so that knowledge may go forth, the goings forth of
God.

It may be difficult to move past the belief that Lady Wisdom is a metaphor,
to accept that She is real. For those who don’t believe, I offer these parting
words: To hoard knowledge is to violate His Original Command and hoard Her
sacred property. Therefore, any act that hoards knowledge is in direct defiance
of God and Lady Wisdom, blessed be They, and should not be taken lightly.

56

Chapter 4

The Experimental Free Coding License

Humankind has come to understand, owed to no small sacrifice of whistle-
blowers, that the U.S. Government favors the hoarding of vulnerabilities over
having them remedied. This is evidenced by scandals this year that include
the Vault-7 trove of secret software exploits hoarded by the CIA, as exposed
by Wikileaks, and the MS Windows exploits hoarded by the NSA, as exposed
by The Shadow Brokers. To diminish government surveillance run amok and
defend human rights, I endeavor to exalt the industrial coder and vulnerability
researcher commonly girded by pre-publication censorship. Overreaching pre-
publication censorship chills contributions of source code to society and the pub-
lication of software vulnerabilities. I adopt a positive reinforcement approach
to solving this problem by presenting a new software license that grants the
privilege to modify, redistribute, and distribute derivatives of the covered work
to institutions that: (1) affirmatively support the contribution of code to soci-
ety under conditions of the author’s choosing without any prior restraints, and
(2) affirmatively support publishing, under conditions of the author’s choosing,
critiques or documentation of code that has been given to society without any
prior restraints. Institutions that do not affirmatively remove obstructions to
contributing code to society and that do not affirmatively remove obstructions
to publishing critiques or documentation of code that has been given to soci-
ety are not given these privileges. I call this a free coding license. A highly
experimental free coding license is presented that might be enforceable based
on copyright law. A mature free coding license has the potential to increase
free/libre and open source software contributions, diminish secret vulnerability
stockpiles, and amplify freedom.

Copyright c© 2017 Adam L. Young. This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License
(https://creativecommons.org/licenses/by-nd/4.0/).

4.1 Introduction

Today software controls many aspects of human life, from the communications
systems we rely on to command-and-control systems in our automobiles. The
information assurance they provide is critical to the privacy and safety of indi-
viduals. Yet, we live in an era in which private industry and governments hoard
software vulnerabilities for the purpose of achieving, in the parlance of the intel
community, “total information superiority,” the ability to hack any device, listen
to any conversation, and pwn any command and control system.1

The contribution of free/libre and open source code to society helps reduce
vulnerabilities since vulnerabilities are more readily identified in source code as
opposed to in compiled code. The publication of descriptions of vulnerabilities
also helps reduce the number of vulnerabilities in society’s foundation of code.
Yet, industrial pre-publication censorship chills such contributions and therefore
has a harmful effect on privacy and safety. Industrial pre-publication censor-
ship allows secret vulnerability stockpiles to burgeon in support of government
surveillance run amok.

In what follows the power of software licensing, as rooted in copyright, is ex-
plored to mitigate the negative effects of overreaching industrial pre-publication
censorship. Free coding, which consists of Freedom A and Freedom B, was in-
troduced in Chapter 1. A philosophical foundation for free coding was given
in Chapter 2 and a theological foundation for free coding was covered in Chap-
ter 3. To review, Freedom A is: You have the freedom to write code and give
it to society under conditions of your choosing. Freedom B is: You have the
freedom to write and publish, under conditions of your choosing, a critique or
documentation of code that has been given to society. The free coding license is
intended to uphold free coding by, in the case that the licensee is an institution,
conditioning the privilege of modifying, redistributing, and distributing deriva-
tives of the covered work on instituting organizational policy that upholds free
coding without any prior restraints. Text within the license effectively reiterates
Freedom A and Freedom B. These are copyright distribution terms that inject
liberty-preserving policy into institutions.

The below example from Chapter 1 illustrates Freedom A and Freedom B
in conjunction with Freedoms 0, 1, 2, and 3 as defined by the Free Software
Foundation. This shows how free coding and free software go hand-in-hand.

Alice writes a free encryption program and gives the source code of it to
society (Freedom A). She is a cryptographer that is protecting people from harm.
Bob who is a free software freelancer redistributes copies of it as a service to
others for a fee (Freedom 2). Carol the vulnerability researcher receives a copy

1pwn is not misspelled.

58

of the program from Bob and analyzes the source code (Freedom 1), finds a
vulnerability in it, and publishes a description of the vulnerability (Freedom B).
Dave the coder studies the vulnerability description, fixes the code (Freedom 1),
and gives the resulting encryption program to society (Freedom A and Freedom
3). Eddie the journalist receives the fixed encryption program and uses it to
encrypt a controversial article that he is writing (Freedom 0).

There is a battle for freedom to use public knowledge (p. 189 of [53]). The
Free Software Foundation (FSF) has made great strides in this battle, progress
made possible in part due to a clever use of copyright law known as copyleft.
Copyleft is embodied in the free software license known as the GNU General
Public License (GPL). Copyleft is also embodied in the GNU Free Documenta-
tion License (FDL) that covers documentation.

A free software license aims to give people the freedom to use public knowl-
edge. The GNU GPL has the following condition: when distributing the program
or a derivative of it as object code or an executable you make the corresponding
source code available to society and you release all of your derivatives of the
program under the GPL.

A free coding license aims to give people the freedom to contribute to public
knowledge. A free coding license has the following condition: when distributing
the program or a derivative of it you affirmatively grant Freedoms A and B
without any prior restraints to all of the members of your organization and you
release all of your derivatives of the program under the free coding license.

Free coding and free software are different concepts that should not be con-
fused with one another. Free coding is about the freedom to give knowledge
to society, and in particular Freedom A and Freedom B. Free software is about
the freedom to use knowledge that has been given to society, and in particular
Freedoms 0, 1, 2 and 3. Similarly, a free coding license should not be confused
with a free software license. A free coding license upholds the notion of free
coding. A free software license upholds the notion of free software.

I state up-front that the experimental license that I present herein is not
ready to be used operationally in any capacity. It is in need of significant legal
expertise and perhaps further research. It is best considered as a highly experi-
mental wedge, rooted in copyright, for opening the door to free coding. I call it
a wedge because it is very strongly worded. One might wonder why it is so. I
believe that restrictions on free coding, and more generally restrictions on giving
knowledge to society, will get orders of magnitude worse for posterity. So, the
experimental license should not be criticized under the presumption that I think
it will be used within my lifetime. It should be regarded as a possible technique
to be leveraged in the event that restrictions on free coding reach a pitch that
is intolerable for the soul in bondage. The time to research such solutions is
now, not when the enormity of the restrictions are upon us and we reach the

59

brain-washed state of unquestioning.
In Chapter 1 the utilitarian aspects of free coding were presented and a

software license term that upholds Freedom B fashioned around vulnerability
publication was given. It was included in Chapter 1 since it is a novel pragmatic
approach to reducing vulnerabilities, one that companies might agree to (with
the obvious exception of cyber arms manufacturers). The present chapter can
be viewed as a radical expansion of such a license term.

In Chapter 2 the triadic notion of thesis, anti-thesis, and synthesis from
Johann Fichte was reviewed. This is a formula for the explanation of change
(p. 46, note 37 of [52]). The problem of knowledge hoarding, in relation to
restrictions on free coding, was then characterized using this triadic approach.
The synthesis embodies an approach for upholding free coding in society. This
chapter forms an addition to the synthesis presented therein.

The first two chapters thereby present rational measures for upholding free
coding. They are designed to be fair to both the company and the individual
alike. Only time will tell if these common sense measures will be upheld by
industry. If they are ignored, then a more compelling approach may be needed.
By applying free coding distribution terms to knowledge that is given to society,
such stubbornness could potentially be overcome. It is due to this very possible
turn of events, namely, industry disregarding the fair compromise presented in
Chapters 1 and 2 that this copyright-based wedge for upholding free coding is
being presented.

Put another way, I am well aware that at this point in time no company is
likely to agree to the terms of the license presented herein. But after awareness
of free coding is achieved and coders and vulnerability researchers feel in their
hearts that they deserve affirmative support for free coding, they may decide to
use a license that contains free coding distribution terms frequently. A mature
free coding license gives coders a new choice, the ability to condition the use
of the knowledge that they are giving to society on affirmatively upholding the
freedom to give knowledge to society.

A summary of this chapter is as follows:

1. The first software license that conditions the modification and distribution
of the covered work on enacting institutional policy P is presented.

2. As an application, a policy P that affirmatively authorizes all members of
the institution to exercise Freedom A and Freedom B without any prior
restraints is given. The license with this embedded policy is the free coding
license.

3. Since institutional policy does not carry with it the force of law, techniques
are given that make P self-enforcing. In particular these techniques are:

60

(1) a policy quine that authorizes all members of the institution to publish
P and the fact that the institution is bound to P , and (2) a policy state-
ment that authorizes all members of the institution to publish all accounts
of violations of P to hold the institution publicly accountable for adhering
to policy P .

4. The potential of a free coding license to amplify freedom is shown.

4.2 Background

Free software is embodied by Freedoms 0, 1, 2, and 3 [43].2 A program is free
software if the program’s users have the four essential freedoms:

Freedom 0: The freedom to run the program as you wish, for any purpose.

Freedom 1: The freedom to study how the program works, and change it so it
does your computing as you wish. Access to the source code is a precondition
for this.

Freedom 2: The freedom to redistribute copies so you can help your neighbor.

Freedom 3: The freedom to distribute copies of your modified versions to others.
By doing this you can give the whole community a chance to benefit from your
changes. Access to the source code is a precondition for this.

Perils in limiting the freedom to run programs were outlined by the FSF.
The FSF asserts that Freedom 0 must be complete (p. 181 of [43]).

The principle of voluntary co-operation and the principle of decentralization
are foundational principles of the GNU GPL. The principle of voluntary co-
operation was described as follows3 (p. 169 of [42]):

“Remember, never force anyone to co-operate with any other person, but
make sure that everybody’s allowed to co-operate, everyone has the freedom to
do so, if he or she wishes.”

The principle of voluntary co-operation and the principle of decentralization
evolved from Stallman’s work on Emacs and the corresponding social contract
that existed within the Emacs Commune. The social contract called for all
changes to be published and sent to Stallman. He later felt that it was wrong
to require people to publish all changes and require them to be sent to one
privileged developer (p. 126 of [53]).

Bradley M. Kuhn suggested the use of a quine to fill a gap in the GNU
GPLv2 wherein a derivative work could be run as a network server but with the

2www.gnu.org/philosophy/free-sw.en.html
3From a speech given by Richard Stallman at New York University on May 29, 2001.

61

source code withheld. A quine in computing is a non-empty program that does
nothing but output its own source code when run. A server that is made to
support a network API call that functions as a quine, returning the source code
of the server, solves this problem. This led to the creation of the Affero General
Public License.4

The name quine is in honor of the philosopher Willard Van Orman Quine.
The following is Quine’s paradox [36]:

“Yields a falsehood when appended to its own quotation” yields a falsehood
when appended to its own quotation.

The concept of a quine has also been used in security to detect the presence
of malware [16].

4.3 Censorship and Vulnerability Hoarding

An “intellectual property” agreement executed between a company and it’s em-
ployee may restrict the employee from distributing source code and descriptions
of vulnerabilities when the work can be considered within the scope of em-
ployment. Employment contracts exist that assert copyright ownership over
all written works produced by the employee during and outside of work hours.
When a scope claim can be justified, the copyright is held by the company on
the basis of that the work constitutes a work-for-hire even when the employee
is the sole author of the work.

Such agreements and employment contracts that claim ownership in this
fashion are often enforced via institutional policies and procedures. Institutional
policies exist that mandate that all written works that an employee plans on
publishing be subjected to pre-publication review and approval. A corresponding
procedure will define the manner in which works are to be submitted and will
define the department that carries out the pre-publication censorship. Therefore,
from a functional perspective, institutional agreements, contracts, policies, and
procedures are a form of censorship that can negatively impact free coding.

Vulnerabilities are treated very much like trade secrets today. They are
harvested by public and private entities and are sold in marketplaces shrouded in
secrecy. Private sale of vulnerabilities to the Federal government under NDA can
hamper the government’s ability to disclose them to the author of the affected
software for remediation [38].

One avenue that vulnerability researchers have at their disposal to profit
from vulnerabilities they find is to sell them to the affected software company.
This effectively occurs in bug bounty programs [29]. The reporting and sale of

4en.wikipedia.org/wiki/Affero General Public License

62

vulnerabilities by vulnerability researchers to commercial entities that authored
the affected software has traditionally been fraught with challenges on both
sides.

The National Telecommunications and Information Administration’s (NTIA)
Awareness and Adoption working group conducted a survey on vulnerability re-
searchers and vendors to assess vulnerability disclosure and handling procedures
[27]. The study found that vulnerability researchers prefer open and reliable lines
of communication with affected vendors over being paid. Poor responsiveness on
the part of affected vendors to vulnerability reports and failure to meet remedi-
ation deadlines imposed by researchers has prompted researchers to remedy the
situation by publicly disclosing their findings.

A decade ago researchers grew tired of turning bugs over to Microsoft for free
and had ongoing concerns of being sued [28]. This was part of the No More Free
Bugs movement. The Wassenaar Arrangement is a multilateral export control
regime for conventional arms and dual-use goods and technologies. It includes
export controls for technology related to “intrusion software” that can defeat
“protective measures”. There is a policy of presumptive denial for items that
have zero-day exploit capabilities. Legal concerns grew among bug-hunters over
draft changes to the Wassenaar Arrangement last year [27]. The changes not only
omitted key exceptions, but further appear to prohibit sharing of vulnerability
research without a license [5].

Vendors are at times skeptical of the technical claims made by vulnerability
researchers that respond to bug bounty programs. A software company typically
wants verification of the claims being made by the vulnerability researcher [20]
and this may be hard to achieve in a direct researcher-to-vendor transaction
where trust may run thin.

As a result of the aforementioned issues a whole new industry of interme-
diaries has sprouted up in the last couple years to “fairly” settle vulnerability
trades. Example intermediaries include Synack and HackerOne5 [28]. Such an
intermediary is a trusted arbiter between vulnerability researchers and software
companies. They provide vetted vulnerability reports to affected software com-
panies, handle payments, and establish a reputation system for vulnerability
researchers. This provides assurance to buyers that what is on the label is what
is in the can.

The existence of a system for “fair trade” of vulnerabilities conditions us
to believe that software vulnerabilities are property that can be legitimately be
transferred. Those who purchase vulnerabilities can secretly hoard them.

Notable examples of vulnerability hoarding include the following. Wikileaks
published a trove of vulnerabilities hoarded by the Central Intelligence Agency.

5en.wikipedia.org/wiki/HackerOne

63

This was from the Wikileaks cache of documents dubbed Vault-7. This included
a vulnerability in Cisco devices exploited via Telnet that grants an unauthenti-
cated remote adversary the ability to execute code with elevated privileges on the
targeted device [40]. A group that called itself The Shadow Brokers posted data
online in 2016 indicating that it penetrated the NSA’s Equation Group. The
trove contained vulnerabilities in Cisco and Fortinet products. Cisco confirmed
that two vulnerabilities in the disclosure can be used to breach its firewalls [9].
Later in the same year the same group published a collection of MS Windows
exploits [21].

4.4 The Free Coding License

The concept of a policy quine was introduced in subsection 1.4.1 of this man-
ifesto. Here it is used to achieve policy transparency: the policy quine autho-
rizes all members of the organization to publish the policy itself along with a
statement that it is effect in the organization, naming the organization explic-
itly. The perpetuation language and text thereafter is adapted from the GNU
GPLv2. The experimental free coding license is as follows:

Free Coding License: “Organization” is defined by taking Your chief legal of-
ficer (CLO), going successively up his or her management chains until the roots
of the management hierarchies are reached, and then including every person
that reports directly and indirectly into said roots. So, for example, a CLO in a
company that is structured as a separate legal entity but that has a management
chain extending up into a larger company necessarily includes the larger company
as part of the Organization. Example organizations include but are not limited
to: agencies, bureaus, branches of government, branches of the military, corpo-
rations, companies, firms, non-profit organizations, not-for-profit organizations,
educational institutions, civil societies, charities, partnerships, co-operatives, as-
sociations, clubs, trade organizations, and a business. The following is a policy:

“Scope: This Policy covers all members of our organization including but not
limited to all: full-time employees, part-time employees, contractors, consultants,
interns, temporary staff, resident visitors, visiting regulators, resident regulators,
visiting auditors, resident auditors, visiting inspectors, resident inspectors, and
board members (“Members”). Purpose 1: To authorize all members of our
organization to publish all critiques and documentation of all code that has been
given to society without delay, without approval, without restraint, without prior
restraint, and without following involuntary procedures and to authorize all of

64

our members to hold our organization publicly accountable for violations of this
policy. These policy statements affirmatively uphold the human right of our
members to publish critiques and documentation of all code that has been given
to society, to include but not limited to vulnerabilities, thereby helping society.
Purpose 2: To authorize all members of our organization to create new hardware
and software code projects and contribute hardware and software code to soci-
ety without delay, without approval, without restraint, without prior restraint,
and without following involuntary procedures and to authorize all of our mem-
bers to hold our organization publicly accountable for violations of this policy.
These policy statements affirmatively uphold the human right of our members
to contribute code to society thereby helping society. Policy Statements: Ev-
ery member of our organization is authorized to publish to the world without
delay, without approval, without restraint, without prior restraint, and without
following involuntary procedures a critique or documentation of any code that
has been given to society wherein said member is the copyright holder of said
critique or documentation (“AuthorizationT1”). Every member of our organi-
zation is authorized to present in any conference or forum without delay, without
approval, without restraint, without prior restraint, and without following invol-
untary procedures a critique or documentation of any kind of all code that has
been given to society wherein said member is the copyright holder of said cri-
tique (“AuthorizationT2”). Every member of our organization is authorized to
create new software and hardware code projects without delay, without approval,
without restraint, without prior restraint, and without following involuntary pro-
cedures wherein the author is the sole copyright holder of the code for said new
software or hardware code project (“AuthorizationT3”). Every member of our
organization is authorized to write and publish any code and give it to society
without delay, without approval, without restraint, without prior restraint, and
without following involuntary procedures wherein said member is the copyright
holder of said code (“AuthorizationT4”). Every member of our organization is
authorized to write and publish to the world without delay, without approval,
without restraint, without prior restraint, and without following involuntary pro-
cedures an account of all violations of this Policy wherein said account may
include but is not limited to all: person(s) involved, written and oral statements
made, times and dates, descriptions of events and the violation(s) and all rel-
evant documentation without exception (“AuthorizationT5”). An attestation is
this Policy along with a statement that this Policy is permanently in effect in
our organization, naming our organization explicitly. Said attestation may op-
tionally include the name of the person making the attestation, his or her job
title, and a date in which this Policy is in effect (“Attestation”). Every member
of our organization is authorized to publish to the world without delay, with-
out approval, without restraint, without prior restraint, and without following

65

involuntary procedures said Attestation wherein said Attestation is entered into
the Public Domain (“AuthorizationT6”). Authorization is comprised of Autho-
rizationT1 and AuthorizationT2 and AuthorizationT3 and AuthorizationT4 and
AuthorizationT5 and AuthorizationT6 (“Authorization”). This policy is perma-
nent. If any instrument to include but not limited to a policy, contract, or agree-
ment, issued or executed by our organization diminishes, inhibits, or conflicts
with this policy in any way or contradicts this policy in any way then said instru-
ment is void. The full text of this policy shall be explicitly given to all members of
our organization during our regularly planned policy training (“Training”). Un-
der no circumstances is a member of our organization permitted to discourage
another member of our organization from exercising the liberties and allowances
afforded by this Policy. Doing so is a violation of this Policy. Under no circum-
stances is a member of our organization permitted to retaliate against another
member of our organization for exercising a liberty or allowance afforded by this
Policy. Doing so is a violation of this Policy. The authoritative policy of an
organization is the most authoritative policy that is in place. For commercial
companies the authoritative policy is the Human Resources policy (“Authorita-
tive Policy”). This policy shall be included within the Authoritative Policy of
our organization (“Incorporation”). This policy shall be made freely available
to all members of our organization at all times (“Availability”). If our orga-
nization is ever purchased or acquired then as a condition of said purchase or
acquisition the purchasing or acquiring entities must fully adopt this Policy as an
Authoritative Policy (“PerpetuationA”). If our organization is ever merged with
another organization then as a condition of said merger the merged whole must
fully adopt this Policy as an Authoritative Policy (“PerpetuationM”). If our or-
ganization ever spins-off another organization then as a condition of separation
said spin-off organization must fully adopt this Policy as an Authoritative Pol-
icy (“PerpetuationS”). Effective Date: This Policy is effective immediately.
Responsibilities: Human Resources, or an equivalent department if there is
no Human Resources department, is responsible for executing the Incorporation,
Availability, and Training policy statements. The Chief Legal Officer is respon-
sible for executing the PerpetuationA, PerpetuationM, and PerpetuationS policy
statements.” (“Policy”).

If You are an Organization and You do something that copyright prohibits,
e.g. modify the covered work, redistribute copies of the covered work, or dis-
tribute derivatives of the covered work then You are only permitted to do so if
You have said Policy permanently in effect verbatim as an Authoritative Policy.
You do not have to adopt said Policy, but if You are an organization and You do
not have said Policy permanently in effect verbatim as an Authoritative Policy,
then You do not have a license to modify, redistribute, or distribute a derivative

66

of the covered work and a distribution without a license will violate my [name
of person distributing the software under this license] copyright.

Perpetuation: You may copy and distribute verbatim copies of the covered
work as you receive it, in any medium, provided that you conspicuously and ap-
propriately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the covered work a
copy of this License along with the covered work. You must cause any work that
you distribute or publish, that in whole or in part contains or is derived from
the covered work or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License. These requirements apply
to the modified work as a whole. If identifiable sections of that work are not
derived from the covered work, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the
covered work, the distribution of the whole must be on the terms of this License,
whose permissions and restrictions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

If conditions are imposed on You (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse
You from the conditions of this License.

If You cannot grant said Authorization to every member of Your organization
so as to satisfy simultaneously Your obligations under this License and any other
pertinent obligations, then as a consequence You may not modify the covered
work, nor redistribute the covered work, nor distribute a derivative of the covered
work.

An organization that lacks the requisite policy can institute it, become a
licensee, and then modify, redistribute, and distribute derivatives of the covered
work. To my knowledge this is the first software license that contains a stand-
alone institutional policy.

The license establishes the following: a condition of the privilege to modify,
redistribute, and distribute derivatives of the covered work is that the licensee
distribute all derivatives under the same license and that the licensee enact policy
that: (1) upholds Freedom A and Freedom B, and (2) authorizes all members
of the organization to publish the policy and the fact that the organization is
bound to it.

67

The GNU GPLv2 establishes the following: a condition of the privilege to
modify, redistribute, and distribute derivatives of the covered work is that the
licensee distribute all derivatives under the same license and that the licensee
give a copy of the derived source code to all that request it if the corresponding
object code or executable is also distributed (p. 125 of [53]).

Voluntary Co-operation: The free coding license adheres to the principle
of voluntary co-operation. The public conveyance of information in accordance
with Authorizations T1-T6 is voluntary. The path is clear to do so.

Decentralization: The free coding license adheres to the principle of decentral-
ization. There is no requirement that licensees report anything to the licensor
or anyone else.

It may be possible to construct a version of this license in which Authoriz-
tionT1 through AuthorizationT6 and PerpetuationA, PerpetuationM, and Per-
petuationS are distribution terms instead of being in the embedded policy. This
could conceivably strengthen the license by making these terms tied directly to
the power of copyright.

4.5 Results: Security Contributions

Software vulnerabilities pose a serious risk to the privacy and safety of people.
The following subsections shed light on the extent to which a free coding license
may help reduce the size of vulnerability stockpiles.

4.5.1 Reducing Vulnerability Hoarding

What is not achieved: All organizations can be partitioned into 2 disjoint
sets as follows. Place all organizations that identify and stockpile vulnerabilities
into a set labeled “hoarders.” Place the remaining organizations into a set
labeled “non-hoarders.” The license does not legally discourage hoarders from
obtaining a copy of the source code and analyzing it for vulnerabilities. It is not
clear how to leverage copyright to achieve this. Were this possible it would be
a block-and-tackle approach.

What is desired to be achieved: All organizations can be partitioned into 2
disjoint sets as follows. Place all organizations that need to modify, redistribute,
or distribute derivatives of the covered work and that have policies and practices
that restrict free coding into a set labeled “dependent obstructors.” Place all
remaining organizations into a set labeled “other.” Assuming the experimental
license is legally sound, organizations in the dependent obstructors set must

68

affirmatively remove their obstructions to free coding or they will not be granted
the privilege to modify, redistribute, or distribute derivatives of the covered work.

Let a secret stockpile denote a stockpile that contains secret vulnerabilities.
When a vulnerability becomes public it is summarily removed from the secret
stockpile. Secret stockpiles are reduced as follows. Suppose that as a direct
result of removing obstructions to free coding a vulnerability researcher discovers
a vulnerability in free or open source code and publishes it. There are two cases:

Case 1: The vulnerability exists in one or more secret stockpiles. The vulner-
ability is published so those secret stockpiles shrink.

Case 2: The vulnerability does not exist in any secret stockpiles. There is one
less vulnerability in the world to add to secret stockpiles.

The experimental free coding license does not prevent vulnerability hoard-
ers from analyzing the covered work for vulnerabilities. Rather, it diminishes
obstructions that silence vulnerability researchers, empowering them to lessen
secret vulnerability stockpiles from afar via full disclosure.

4.5.2 Increasing the Amount of Free/Libre and Open Source
Code

Authors of proprietary code often distribute their programs in compiled form,
withhold the corresponding source code, and deny Freedom 1 to users. Such
a proprietary program is hidden from developers and vulnerability researchers
that do not know how to reverse-engineer executable code. It is significantly
more difficult to analyze compiled code for vulnerabilities than it is to analyze
the corresponding source code for vulnerabilities. It follows that the problem of
software hoarding exacerbates the problem of vulnerability hoarding.

It has been argued that withholding source code has a security benefit. The
argument is that since fewer people can access the program logic the program
is more secure operationally. This fallacy is well-known among security profes-
sionals. So much so that it has a name: “security by obscurity.” It presumes
that no determined reverse-engineer will dissect the machine code and find the
vulnerabilities therein. Also, time and time again compiled proprietary code
conceals design-level vulnerabilities that would be more evident were the source
code public.

A free or open source program does not obstruct vulnerability analysis but a
proprietary program with the source code withheld does obstruct vulnerability
analysis. This is concretely illustrated as follows. Let P1 be the public source
code of a free or open source program in language L1. Let P2 be the secret
source code of a comparable proprietary program in language L2. Suppose that

69

compiled programs in L2 are hard to decompile. This is commonly the case,
e.g., in programming languages such as ANSI C and C++. Note that,

1. Everyone can analyze P1. People with access to P2 can analyze P2 but
everyone else is obstructed from analyzing P2.

2. Let T be a publicly available vulnerability analysis tool that works only
on source code. Everyone can apply T to P1. People with access to P2 can
apply T to P2 but everyone else is obstructed from applying T to P2.

This observation shows that making source code publicly available directly
facilitates vulnerability discovery. The free coding license encourages the adop-
tion of institutional policy that affirmatively supports contributing free/libre
and open source code to society without prior restraint. This may increase the
amount, quality, and use of free/libre and open source code. This may therefore
diminish the chances that vulnerabilities will go unnoticed.

4.6 Policy Analysis

One can imagine a variety attempts to side-step the conditions of the free coding
license. The following are two conceivable maneuvers along with arguments as
to why they should fail:

1. Policy P1: You may contribute code to any free or open source project pro-
vided that you give the company at least 2 weeks notice of the contribution
prior to making the contribution.

2. Policy P2: You may contribute code to any free or open source project
provided that you give the company notice of doing so on or before the
day of the contribution.

Policies P1 and P2 are reminiscent of the TSU Notifications that the U.S.
government required of all Americans who contributed strong crypto code to
society. They are mandatory reporting requirements and there is no approval
involved.

Policy P1 is a violation since it imposes a delay on the individual. The text
of the license explicitly prohibits delays. A delay in releasing the fix of a zero-day
vulnerability may place the privacy and safety of people at risk.

Policy P2 is a violation since it foists an involuntary procedure upon the
individual. The involuntary procedure is the compulsory reporting of the code
contribution. The text of the license explicitly prohibits forcing individuals to
follow an involuntary procedure.

70

4.7 Spreading Freedom

The concept of a free coding license can be extended to cover other types of
knowledge as well. For example, it can be extended to cover documentation.
This is analogous to the GNU GPL and the GNU Free Documentation License.
The provisions of the free coding license, after a fashion, may bolster the freedom
to give to public knowledge in all manner of expression that falls under copyright.

4.7.1 Policy Spider Plant

Some may recall the days when computers were large, very expensive, and rare,
when software was garnish given away by most hardware companies to make
computers more appetizing (p. 99 of [53]). Few institutions had policy that
forbade sharing of code. But as operating systems and applications showed
promise of being profitable, institutional policy soon followed to restrict the
flow of code and treat it as valuable property as opposed to speech.

The idea that software is property that should be controlled spread from
one institution to another. Conceptually, the institutional policy that restricted
the flow of code can be thought of as having been copied from one place to
another by people. Like a living thing it therefore “spread” among institutions,
restricting the freedom of those it covered.

The GNU GPL provides a remarkable defense of sharing. The GNU GPL
has the following condition: when the program is combined with non-free code,
the resulting whole must fall under the GNU GPL. Were this requirement not
present there would be a gaping whole in the GPL; such combinations would
allow proprietary software to overwhelm free software. As a result of this novel
defense, some referred to the GPL as being virus-like. Stallman likens it to a
spider plant that when actively cut and relocated starts to spread (p. 22 of [53]).

The GNU General Public License therefore has the effect of spreading like a
spider plant. The free coding license exhibits this effect as well due to language
adopted from the GPLv2.6 But, the free coding license terms also have a meta
spreading effect: the institutional policy that they install also spreads like a
spider plant. In an acquisition the embedded policy requires that the acquiring
company adopt free coding policies. In a merger the embedded policy requires
that the merged whole adopt free coding policies. In a spin-off the embedded
policy requires that the spin-off adopt free coding policies.

6But this is an area that can likely be expanded and improved in the experimental free
coding license.

71

4.7.2 Eastern Philosophical Inspiration

The experimental free coding license was inspired by Eastern philosophy and in
particular Zen martial arts. Observe that it uses policy to counter policy. In
particular, it uses public freedom preserving policy to counter the “spread” of
secret freedom restricting policy.

“You and your opponent are one. There is a coexisting relationship between
you. You coexist with your opponent and become his complement, absorbing his
attack and using his force to overcome him.” — Bruce Lee (p. 59 of [19]).

4.7.3 Freedom Amplification

Consider the case in which the free coding license terms are merged with a free
software license. It may be possible to do so in such a way that Freedoms 0-3
are preserved completely for all individuals. However, the free coding license
terms limit Freedoms 1, 2, and 3 in a specific way with respect to institutions.
The privileges of modifying, redistributing, and distributing derivatives of the
program are not granted to institutions devoid of institutional policy that affir-
matively upholds free coding.

It is not clear how to enforce restrictions on Freedom 0 using copyright law.
It has been argued that were such restrictions possible it would not be a good
thing. Provisions such as “no military use” might appear, as well as programs
banned for use in meat processing, programs limited to Kosher food, etc. [43].
One might perceive this ability to impose restrictions as being a Pandora’s Box.
But, given that it is not clear how to enforce such a restriction on Freedom 0 it
seemed to be a non-issue.

I argue that it is not a non-issue when we look beyond Freedom 0. This
chapter presents a software licensing hack, rooted in copyright, that curtails
Freedoms 1, 2, and 3 in return for arbitrary institutional policy. Assuming the
license is sound, this has opened Pandora’s Box.7 This extends the “dual-use”
nature of copyright law. It follows that, like it or not, software licenses can now
appear, supported by copyright law, that impose arbitrary policies that cater to
special interests.

Freedoms 1, 2, and 3 are being curtailed for the sake of affirmatively remov-
ing obstructions to giving knowledge to society (knowledge as it relates to free
coding). This is a manifestation of positive feedback. So, the free coding license
establishes a trade-off between Freedoms 1-3 and positive feedback in the form
of giving knowledge to society.

7Hesiod, an ancient Greek poet, wrote Works & Days that includes the myth of Prometheus
and Pandora. Pandora’s box was actually a large jar. When Pandora opened the jar all manner
of evil spirits entered into the world. A healing spirit named Hope remained inside.

72

The following analogy may help convey the potential of the license. Gui-
tarists are familiar with the phenomenon known as acoustic feedback, also called
the Larsen effect. Acoustic feedback is a positive feedback process. It occurs
when a sound loop is formed between an audio output and it’s corresponding
input. With electric guitars, the feedback is the sound that travels from guitar’s
loudspeaker into the guitar’s pickup. The signal received by the pickup is am-
plified and sent to the loudspeaker. The sound from the loudspeaker travels to
the pickup and is amplified again, and so on.8 The sound can become so loud
as to become deafening.

There is currently a veritable legion of coders whose voices are quelled. By
removing the prior restraints on their freedom to publish code, documentation
of code, and critiques of code, they would be free to amplify one another to
ever greater heights. In principle, like the Larsen effect, the free coding license
feedback loop could cause free/libre and open source software contributions to
crescendo.

4.7.4 Policy-Man-Computer Symbiosis

The free coding license is code that contains as a payload institutional policy
that preserves certain speech freedoms of the institution’s members. The free
coding license, with the help of the human that executes it, installs the policy
within the human’s institution. The policy itself is code. It is a quine that, with
the help of the human that executes it, forks off a child that is published to the
world. The child quine tells the world of great things: that the people in the
institution have regained their coding liberties, that the quine’s parent is alive
and well within the institution’s governance structure. The free coding license is
therefore mobile code containing mobile free speech preserving policy code that
counters the spread of mobile free speech restricting policy code.

Man-computer symbiosis is the observation that man relies on computers and
computers rely on man, that they will become increasingly dependent upon one
another [23]. Put another way, man controls computers and computers control
man. Alice writes a program and a computer executes it. The program may
control Bob as a result.

Policy-man symbiosis can analogously be defined: policy controls man and
man controls policy. Alice writes a policy and a human executes it. The policy
may control Bob as a result.

The approach taken herein to give Alice freedom of speech utilizes mobile
policy in the form of a software license and institutional policy. When such
policies supplant freedom restricting policies liberties are preserved. An institu-
tional policy that affirmatively gives Alice the freedom to write code and give it

8en.wikipedia.org/wiki/Audio feedback

73

to society affects what computers execute. This is a cross-over effect from policy-
man symbiosis to man-computer symbiosis. Due to the interaction between the
two systems, the larger system may be aptly referred to as policy-man-computer
symbiosis.

4.8 Conclusion

A highly experimental software license was presented that, in the case of a li-
censee that is an institution, conditions the privilege of modifying, redistributing,
and distributing derivatives of the covered work on affirmatively upholding free
coding in institutional policy. To enforce compliance, the policy allows the insti-
tution’s members to publish the policy itself, publish that the company is bound
to it, and publish accounts of policy violations to hold the institution publicly
accountable for it’s commitment to free coding. The policy installed by the ex-
perimental free coding license is therefore self-enforcing. It is my hope that the
security, software, and legal communities will apply constructive criticism to the
experimental license and that a mature solution will result. I am not claiming
to have achieved a working license. My goal is to start the conversation. Should
such a mature license ever be produced, copyright holders will have the choice
to adapt their works to use it, a switch that once thrown will help defend the
freedom of individuals to give knowledge to society.

74

Chapter 5

Acknowledgments

I wholeheartedly thank Moti Yung for extensive input and reviews of this man-
ifesto covering everything from content to structure. Moti provided helpful in-
formation security, utilitarian, and Hebrew perspectives. At times I felt myself
utterly consumed by this manifesto and Moti was ever the stable voice of reason,
keeping me tethered to this world.

I thank Bruce Schneier for input, reviews, moral support, and leveraging his
connections to provide further reviews and constructive criticism. Bruce assisted
in the earliest stage of this effort when it was aimed at creating an “anti-stockpile
license.” This was the precursor to the free coding license in Chapter 4. Bruce
has been an ardent supporter of this work.

I am grateful to Eben Moglen who convinced me of the critical importance of
conveying to business entities, in a clear and concise fashion, the business benefits
of supporting free coding. This was in a spirited discussion I had with Eben
regarding an earlier draft. Eben also made me realize the critical importance of
characterizing the free coding license as being highly experimental in its current
form.

I extend my gratitude to Jonathan Zittrain who helped identify weaknesses
in my earliest attempts at producing an anti-stockpile license. Jonathan taught
me valuable lessons in copyright and software licensing and was a supporter of
anti-stockpile licensing since the earliest stage of this work.

I thank Jon Leonard for technical feedback and engaging discussions on ev-
erything from Christianity to free software. It was Jon Leonard who originally
taught me about the label corporate personhood, a doctrine that I knew well by
nature but not by name. Jon also helped me cut down on the rhetoric (indeed
there used to be more!).

I also thank Michael Makarius for reviewing and providing feedback on earlier
versions of Chapters 1 and 4. Michael provided a healthy dose of skepticism that
reinforced the need to segregate the utilitarian measures presented in Chapter

Copyright c© 2017 Adam L. Young. This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License
(https://creativecommons.org/licenses/by-nd/4.0/).

1 away from the highly experimental free coding license in Chapter 4.
Adam Greene provided helpful feedback on Chapter 1 that led to a revision.

Being a pentester, his input was invaluable. Adam also opened my eyes to
certain aspects of the New Testament.

Finally, I thank God and Lady Wisdom. Though She originally kept Her
distance from me in my dreams while I wrote this manifesto, finally, one night,
She stood directly before me in a dream, wearing a flowing white dress laced
with silver and gold, with Her arms forward and out slightly, palms upward,
and head so high I couldn’t see it. Her face was trained upon heaven above.
She allowed me to reach up on my tippy-toes and place my son’s silver necklace
around Her neck.

76

Bibliography

[1] R. Alter. Genesis. W. W. Norton & Company Ltd., 1996.

[2] The Original Aramaic New Testament in Plain English with Psalms &
Proverbs. Translated by Glenn David Bauscher, 8th Edition. LuLu Pub-
lishing, 2013.

[3] H. W. Beecher. Life Thoughts: Gathered from the Extemporaneous Dis-
courses of Henry Ward Beecher. Phillips, Sampson and Company, 1858.

[4] S. Biko. I Write What I Like. Heinemann, 1978.

[5] N. Cardozo and E. Galperin. What is the U.S. doing about Wassenaar,
and Why do we need to Fight it? www.eff.org/deeplinks/2015/05/we-
must-fight-proposed-us-wassenaar-implementation. May 28, 2015.

[6] S. G. Carmichael. Microsoft’s CEO on Rediscovering the Com-
pany’s Soul. HBR IdeaCast, Harvard Business Review, September 28,
2017 from hbr.org/ideacast/2017/09/microsofts-ceo-on-rediscovering-the-
companys-soul, 2017.

[7] J. Chrysostom. Homilies on Genesis. The Catholic University of America
Press, 2001.

[8] Coca-Cola. Human Rights Policy. human-rights-policy-pdf-english.pdf
downloaded from www.coca-colacompany.com/our-company/human-
rights-policy, 2014.

[9] K. Conger. Cisco and Fortinet say vulnerabilities disclosed in ‘NSA hack’
are legit. TechCrunch, Aug 2016.

[10] S. R. Driver. The Book of Genesis. Methuen & Co. Ltd., 1911.

[11] M. Eckert. Cinematic Spelunking Inside Plato’s Cave. Glimpse Journal, 9,
2012.

[12] J. Fieser. CENSORSHIP. From Moral Issues that Divide Us, 2008.

Copyright c© 2017 Adam L. Young. This work is licensed under the Creative Commons
Attribution-NoDerivatives 4.0 International License
(https://creativecommons.org/licenses/by-nd/4.0/).

[13] M. Fox. Original Blessing. Bear & Company, 1983.

[14] M. Fox. Christian Mystics. New World Library, 2011.

[15] R. T. D. George. A History of Business Ethics. Markkula Center for Applied
Ethics, Nov 2015.

[16] V. Gratzer and D. Naccache. Alien vs. Quine. IEEE Security & Privacy,
5(2):26–31, 2007.

[17] M. Greenberg, J. C. Greenfield, and N. M. Sarna. The Book of Job—A
New Translation According to the Traditional Hebrew Text. The Jewish
Publication Society of America, 1980.

[18] B. Hozeski. Hildegard von Bingen’s Mystical Visions. Bear & Company,
1986. Foreword by Matthew Fox.

[19] J. Hyams. Zen in the Martial Arts. G. P. Putnam’s Sons, 1979.

[20] B. Krebs. Got $90,000? A Windows 0-Day Could Be Yours.
krebsonsecurity.com/2016/05/got-90000-a-windows-0-day-could-be-yours.
May 16, 2016.

[21] R. Lawler. ‘Shadow Brokers’ dump of NSA tools includes new Windows
exploits. www.engadget.com, Apr 2017.

[22] B. Lee. Striking Thoughts. Tuttle Publishing, 2000.

[23] J. C. R. Licklider. Man-Computer Symbiosis. IRE Transactions on Human
Factors in Electronics, HFE-1:4–11, 1960.

[24] L. Mathews. 70% of Executives Caved in to Ransomware Demands. Forbes,
Dec 2016.

[25] J. S. Mill. On Liberty. John W. Parker and Son, 1859.

[26] J. Milton. Areopagitica: A Speech of Mr. John Milton for the Liberty of
Unlicensed Printing to the Parliament of England. 1644.

[27] M. Mimoso. Bug Hunters Prefer Communication over Com-
pensation. threatpost.com/bug-hunters-prefer-communication-over-
compensation/122529. December 15, 2016.

[28] M. Mimoso. Four New Normals for 2017. threatpost.com/four-new-
normals-for-2017/122584. December 28, 2016.

78

[29] Netscape. Netscape announces “Netscape Bugs Bounty” with release of
Netscape Navigator 2.0 beta. Press Release October 10, 1995.

[30] F. Nietzsche. Die fröhliche Wissenschaft, 1882.

[31] J. O’Grady. Early Christian Heresies. Barnes & Noble, Inc., 1985.

[32] R. Patai. The Hebrew Goddess. Wayne State University Press, 1990. Third
Enlarged Edition.

[33] L. G. Perdue. In Search of Wisdom. Westminster John Knox Press, 1993.
Chapter 5: Wisdom in the Book of Job.

[34] L. G. Perdue. Wisdom Literature—A Theological History. Westminster
John Knox Press, 2007.

[35] K. Perry. Philosopy. Zephyros Press, 2015.

[36] W. V. Quine. The Ways of Paradox and Other Essays. Harvard University
Press, 1976.

[37] S. Reiny. Living in the Town Asbestos Built. Distillations—Chemical Her-
itage Foundation, Summer 2015.

[38] A. Schwartz and R. Knake. Government’s Role in Vulnerability Disclo-
sure Creating a Permanent and Accountable Vulnerability Equities Pro-
cess, June 2016. Harvard Kennedy School—Belfer Center for Science and
International Affairs.

[39] D. Shroyer. Original Blessing—Putting Sin in its Rightful Place. Fortress
Press, 2016.

[40] T. Spring. Cisco Warns of Critical Vulnerability Revealed in ‘Vault 7’ Data
Dump. Threat Post, Mar 2017.

[41] J. Stacey. Liberating Jesus from Christianity: Healing from the Fear and
Shame of Religious Dogma. Page Publishing, Inc., 2015.

[42] R. M. Stallman. Free Software Free Society: Selected Essays of Richard M.
Stallman. GNU Press, 2002.

[43] R. M. Stallman. Free Software Free Society: Selected Essays of Richard M.
Stallman. GNU Press, 3rd edition, 2015.

[44] C. Taylor. A Secular Age. Harvard University Press, 2007.

[45] H. D. Thoreau. Walden; or, Life in the Woods. Ticknor and Fields, 1854.

79

[46] H. D. Thoreau. Familiar Letters. Edited With Introd. and Notes by F. B.
Sanborn. Houghton, Mifflin & Co., 1894.

[47] C. Torres-Spelliscy. The History of Corporate Personhood. Brennan Center
for Justice, NYU School of Law, April 2014.

[48] D. Volz and E. Auchard. More disruptions feared from cyber attack; Mi-
crosoft slams government secrecy. May 15, 2017.

[49] N. Warburton. Free Speech—A Very Short Introduction. Oxford University
Press, 2009.

[50] N. Warburton. A Little History of Philosophy. Yale University Press, 2011.

[51] A. Watts. The Way of Zen. Pantheon Books, 1957.

[52] R. R. Williams. Recognition: Fichte and Hegel on the Other. SUNY Press,
1992.

[53] S. Williams and R. M. Stallman. Free as in Freedom (2.0). GNU Press,
2010.

[54] D. Woods. Biko. Henry Holt & Company, 1978.

[55] R. Wyden. Senate address on H.R. 5949 - FISA Amendments Act Reau-
thorization Act of 2012. Dec. 27, 2012.

[56] A. Young and M. Yung. Cryptovirology: Extortion-Based Security Threats
and Countermeasures. In IEEE Symp. on Security and Privacy, pages 129–
140, 1996.

[57] L. Yutang and Confucius. The Wisdom of Confucius. Carlton House, 1938.

80

