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Abstract This paper introduces probability multi-valued

neutrosophic sets (PMVNSs) based on multi-valued neu-

trosophic sets and probability distribution. PMVNS can

serve as a reliable tool to depict uncertain, incomplete,

inconsistent and hesitant decision-making information and

reflect the distribution characteristics of all provided

evaluation values. This paper focuses on developing an

innovative method to address multi-criteria group decision-

making (MCGDM) problems in which the weight infor-

mation is completely unknown and the evaluation values

taking the form of probability multi-valued neutrosophic

numbers (PMVNNs). First, the definition of PMVNSs is

described. Second, an extended convex combination

operation of PMVNNs is defined, and the probability

multi-valued neutrosophic number weighted average

operator is proposed. Moreover, two cross-entropy mea-

sures for PMVNNs are presented, and a novel qualitative

flexible multiple criteria method (QUALIFLEX) is devel-

oped. Subsequently, an innovative MCGDM approach is

established by incorporating the proposed aggregation

operator and the developed QUALIFLEX method. Finally,

an illustrative example concerning logistics outsourcing is

provided to demonstrate the proposed method, and its

feasibility and validity are further verified by comparison

with other existing methods.

Keywords Multi-criteria group decision-making �
Probability multi-valued neutrosophic sets � Cross-
entropy � QUALIFLEX

1 Introduction

To deal with fuzzy information, Zadeh [1] proposed

fuzzy sets (FSs), which are now considered to be useful

tools in the context of decision-making problems [2].

However, in some cases, the membership degree alone

cannot precisely describe the information in decision-

making problems. In order to address this issue, Ata-

nassov [3] introduced intuitionistic fuzzy sets (IFSs),

which measure both membership degree and non-mem-

bership degree. Since their introduction, IFSs have been

researched in great detail, and some extensions of IFSs

have been developed and applied to multi-criteria deci-

sion-making (MCDM) problems [4–6]. Torra and Nar-

ukawa [7] first introduced hesitant fuzzy sets (HFSs), an

extension of traditional fuzzy sets that permit the

membership degree of an element to be a set of several

possible values in ½0; 1�, and whose main purpose is to

model the uncertainty produced by human doubt when

eliciting information [8]. The information measures for

HFSs have been studied in depth, including distance and

similarity measures [9], correlation coefficients [10],

entropy and cross-entropy [11].

Although the FSs theory has been developed and gen-

eralized, it cannot handle all types of uncertainties in real-

life problems, especially those of inconsistent and incom-

plete information. For example, when several experts are

asked for their comments about a given statement, some

experts may have a consensus on the possibility that the

statement is true is 0.6, some experts may have a consensus

on the possibility that it is false is 0.4, and the others may

have a consensus on the possibility that it is indeterminate

is 0.3. Such kinds of issues cannot be appropriately dealt

with using IFSs and HFSs. Thus, some new set theories are

needed.
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Smarandache [12, 13] proposed neutrosophic logic and

neutrosophic sets (NSs). An NS employs the functions of

truth, indeterminacy and falsity to depict decision-making

information and considers the truth-membership degree,

indeterminacy-membership degree and falsity-membership

degree simultaneously. NSs can effectively deal with

incomplete, imprecise and inconsistent information, and

they are more flexible and applicable than IFSs and HFSs

in decision-making problems. For the aforesaid example,

the experts’ comment can be presented as xð0:6; 0:4; 0:3Þ
resort to NS. Nevertheless, NSs are hard to apply in

practical problems since the values of the functions with

respect to truth, indeterminacy and falsity lie in �0�; 1þ½. In
view of this, a series of particular cases of NSs were

introduced, including single-valued neutrosophic sets

(SVNSs) [12, 14, 46, 49], interval neutrosophic sets (INSs)

[15–18, 36, 39, 43, 47, 48], neutrosophic soft sets [19–22],

neutrosophic refined sets [23–25, 45], bipolar neutrosophic

sets (BNSs) [26, 27, 42], neutrosophic linguistic sets

[28, 29, 64] and neutrosophic graphs [30–35]. Subse-

quently, studies of these particular sets have focused on

defining operations and aggregation operators [36–38],

distance measures [39, 40], similarity measures [41, 42],

correlation coefficients [43–45], entropy and cross-entropy

measures [46–48] and subsethood measures [49] to address

decision-making problems. In addition, Ye [50] introduced

simplified neutrosophic sets (SNSs), which can be repre-

sented using three discrete real numbers in ½0; 1�, and the

corresponding aggregation operators of SNSs were pro-

posed. The similarity measures of SNSs were proposed by

Ye [51]. The operations and comparison method of SNSs

were improved by Peng et al. [38], and the cross-entropy

measurements of SNNs were proposed by Wu et al. [52].

In some real-life situations, the truth-membership

degree, indeterminacy-membership degree and falsity-

membership degree in SNSs may be represented by several

possible values due to the hesitance of experts. For the

preceding example, some experts may estimate the possi-

bility that the statement is true is 0.5, 0.6 or 0.7, some

experts may estimate the possibility that it is false is 0.4 or

0.5, and the others may estimate the possibility that it is

indeterminate is 0.2 or 0.3. Such issues cannot be properly

solved using SNNs. Under these circumstances, Wang and

Li [53] and Ye [54] introduced multi-valued neutrosophic

sets (MVNSs) and single-valued neutrosophic hesitant

fuzzy sets (SVNHFSs), respectively, based on NSs and

HFSs. Actually, both MVNSs and SVNHFSs are charac-

terized by truth-membership, indeterminacy-membership

and falsity-membership functions that have a set of crisp

values in ½0; 1�, and there is no distinction between MVNSs

and SVNHFSs. In the above example, the experts’ com-

ment can be described as f0:5; 0:6; 0:7g; f0:4; 0:5g;h

f0:2; 0:3gi by means of MVNSs. In recent years, MVNSs

have been studied deeply, and the corresponding MCDM

methods have been developed and applied in various fields.

Peng et al. [55] defined the Einstein operations for MVNSs

and proposed the multi-valued neutrosophic power

weighted average (MVNPWA) and multi-valued neutro-

sophic power weighted geometric (MVNPWG) aggrega-

tion operators. Liu et al. [56] proposed a series of

Bonferroni mean (BM) aggregation operators for MVNSs.

Ji et al. [57] defined the normalized projection measure-

ment for MVNSs, and a projection-based TODIM method

was developed to deal with personnel selection problems.

Peng et al. [58] proposed an extended Elimination and

Choice Translating Reality (ELECTRE) method to address

MCDM problems under MVNSs environment. Peng et al.

[59] proposed a multi-valued neutrosophic qualitative

flexible multiple criteria method (QUALIFLEX) based on

the likelihood of MVNSs to solve MCDM problems.

Nevertheless, in the current studies in regard to MVNSs,

all possible values in specific part in a MVNN have equal

weight and importance. It is quite apparent that it is not in

conformity to the reality. In practice, some experts may

prefer some of the possible values in practical decision-

making problems, and different possible values in specific

part in a MVNN may have inconsistent weights or

importance degrees. In the preceding example, more

experts may prefer 0.6 in the truth-membership degree and

0.5 in the indeterminacy-membership degree, as well as 0.2

in the falsity-membership degree. To deal with such kinds

of issues, the characteristics of all possible values must be

reflected and the difference among them need to be iden-

tified, creating an opportunity to utilize the probability

distribution. Therefore, this paper proposes the concept of

probability multi-valued neutrosophic sets (PMVNSs) by

integrating MVNSs and probability distribution. PMVNS

includes not only several possible values in the truth-

membership degree, indeterminacy-membership degree

and falsity-membership degree, but also the associated

probabilistic information, which can be interpreted as

importance degree, probability, weight, belief degree and

so on. In the aforementioned example, experts have dif-

ferent preferences for distinct possible values in specific

part in f0:5; 0:6; 0:7g; f0:4; 0:5g; f0:2; 0:3gh i, and the cor-

responding probabilities or weights for these possible val-

ues can be obtained according to their distribution. Assume

that the weights for 0.5, 0.6 and 0.7 in the truth-member-

ship degree are 0.2, 0.5 and 0.3, respectively; the weights

for 0.4 and 0.5 in the indeterminacy-membership degree

are 0.3 and 0.6, respectively; the weights for 0.2 and 0.3 in

the falsity-membership degree are 0.5 and 0.2, respec-

tively. Therefore, the evaluation value can be described as

f0:5ð0:2Þ; 0:6ð0:5Þ; 0:7ð0:3Þg; f0:4ð0:3Þ; 0:5ð0:6Þg;h f0:2
ð0:5Þ; 0:3ð0:2Þgi using PMVNN.
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Based on the analyses above, the primary motivations

for this paper can be summarized as follows:

1. In view of the existing drawback of MVNSs that the

different characteristics of all possible values in

MVNSs cannot be distinguished and identified, this

paper introduces probability distribution to character-

ize these possible values and proposes PMVNSs to

facilitate the description of information.

2. In order to establish applicable and valid models to

address decision-making problems with probability

multi-valued neutrosophic information, this paper

defines the aggregation operator and cross-entropy

measures for PMVNNs and proposes a novel TOPSIS-

based QUALIFLEX method, as well as integrates them

to develop a comprehensive MCGDM method based

on PMVNNs.

To do this, the rest part of this paper is organized as

follows. In Sect. 2, some concepts, such as NSs, SNSs and

MVNSs, are reviewed briefly. In Sect. 3, the concept of

PMVNSs is defined, and the operation and aggregation

operator for PMVNNs are proposed. In Sect. 4, two cross-

entropy measures of PMVNNs are proposed, and a novel

QUALIFLEX method is developed. In Sect. 5, the pro-

posed aggregation operator and developed QUALIFLEX

method are combined to establish an innovative MCGDM

method. In Sect. 6, an illustrative example is used to verify

the validity of the proposed approach, and the comparison

analysis is conducted. Finally, the conclusion is drawn in

Sect. 7.

2 Preliminaries

In this section, the definitions of NSs, SNSs and MVNSs

will be introduced, all of which are necessary to the sub-

sequent analysis.

2.1 NSs and SNSs

Definition 1 [13] Let X be a space of points (objects)

with a generic element in X, denoted by x. Then an NS A in

X is characterized by a truth-membership function TAðxÞ,
an indeterminacy-membership function IAðxÞ and a falsity-

membership function FAðxÞ. For each point x in X,

TAðxÞ 2�0�; 1þ½, IAðxÞ 2�0�; 1þ½ and FAðxÞ 2�0�; 1þ½.
There is no restriction on the sum of TAðxÞ, IAðxÞ and

FAðxÞ, then 0� � sup TAðxÞþsup IAðxÞ þ sup FAðxÞ� 3þ.

In fact, NSs are difficult to be applied in practical

problems. To remove this shortcoming, the NSs of non-

standard intervals are reduced into the SNSs of standard

intervals [12, 50].

Definition 2 [50] Let X be a space of points (objects)

with a generic element in X, denoted by x. Then an NS A in

X is characterized by TAðxÞ, IAðxÞ and FAðxÞ, which are

single subintervals/subsets in the real standard ½0; 1�; that
is, TAðxÞ : X ! ½0; 1�, IAðxÞ : X ! ½0; 1� and FAðxÞ :
X ! ½0; 1�. Thus, a simplification of A can be denoted by

A ¼ x; TAðxÞ; IAðxÞ;FAðxÞh i x 2 Xjf g, which is an SNS and

is a subclass of NSs. And the complement set of A is

denoted by Ac and defined as Ac ¼ x;FAðxÞ; IAðxÞ;hf
TAðxÞi x 2 Xj g. For convenience, a simplified neutrosophic

number (SNN) can be described as a ¼ TAðxÞ; IAðxÞ;h
FAðxÞi, and the set of all SNNs is presented as SNS.

2.2 Multi-valued neutrosophic sets

Definition 3 [53] Let X be a space of points (objects)

with a generic element in X, denoted by x. Then a MVNS A

in X is characterized by ~TAðxÞ, ~IAðxÞ and ~FAðxÞ in the form

of subset of ½0; 1� and can be expressed as:

A ¼ x; ~TAðxÞ; ~IAðxÞ; ~FAðxÞ
� �

x 2 Xj
� �

; ð1Þ

where ~TAðxÞ, ~IAðxÞ and ~FAðxÞ are three sets of discrete real
numbers in ½0; 1�, showing the truth-membership degree,

indeterminacy-membership degree and falsity-membership

degree, respectively, satisfying 0� g; n; s� 1 and 0� gþ þ
nþ þ sþ � 3 where g 2 ~TAðxÞ, n 2 ~IAðxÞ, s 2 ~FAðxÞ and

gþ ¼ sup ~TAðxÞ, nþ ¼ sup ~IAðxÞ, sþ ¼ sup ~FAðxÞ.

In addition, ~TAðxÞ; ~IAðxÞ; ~FAðxÞ
� �

, which is an element in

A, is a multi-valued neutrosophic number (MVNN). For

convenience, a MVNN is denoted as a ¼ ~TAðxÞ; ~IAðxÞ;
�

~FAðxÞi, and the set of all MVNNs is expressed as MVNS.

3 Probability multi-valued neutrosophic sets
and its operation

In this section, the concept of probability multi-valued

neutrosophic sets (PMVNSs) is proposed based on the

elicitation of MVNSs and probability distribution. Subse-

quently, an extended convex combination operation and an

aggregation operator for PMVNNs are developed.

All the existing studies with respect to MVNNs in

decision-making problems assume that DMs have a con-

sensus on several possible values with equal weight and

importance for an evaluation. For example, to evaluate a

given object using MVNNs, suppose one DM provides

f0:3; 0:5g;h f0:4; 0:6g; f0:5gi, and the other provides

f0:5; 0:6g;h f0:4; 0:5g; f0:3gi, then the overall evaluation

values can be identified as f0:3; 0:5; 0:6g; f0:4; 0:5;h
0:6g; f0:3; 0:5gi according to the existing assumption.

Obviously, the value 0.5 in truth-membership degree and
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the value 0.4 in indeterminacy-membership degree pro-

vided by one of the two DMs are lost, and the difference

among these possible values in f0:3; 0:5; 0:6g=f0:4; 0:5;
0:6g=f0:3; 0:5g cannot be ascertained. There is no doubt

that this does not correspond to the reality and is lack of

applicability. In order to effectively apply MVNNs in

decision-making problems with multiple DMs, it is nec-

essary to explore more feasible and practical presentation

for DMs’ preferences. Therefore, we suggest utilizing

probability distribution to characterize all possible values

in MVNNs and developing probability multi-valued neu-

trosophic sets (PMVNSs) to facilitate the description of

information.

3.1 Probability multi-valued neutrosophic sets

Definition 4 Let X be a space of points (objects), with a

generic element in X denoted by x. A probability multi-

valued neutrosophic set (PMVNS) A in X can be defined

as

A ¼ x; TA PtðxÞð Þ; IA PiðxÞð Þ;FA Pf ðxÞ
� �� �

x 2 Xj
� �

; ð2Þ

where TA PtðxÞð Þ ¼ [t
j

A
2TA;p j

t2PtðxÞft
j
Aðp

j
t Þg is a set consisting

of all possible truth-membership degrees t
j
A 2 TA associ-

ated with the probability p
j
t 2 PtðxÞ, IA PiðxÞð Þ ¼

[ik
A
2IA;pki 2PiðxÞ fikAðpki Þg is a set consisting of all possible

indeterminacy-membership degrees ikA 2 IA associated with

the probability pki 2 PiðxÞ, and FA Pf ðxÞ
� �

¼ [f l
A
2FA;p

l
f
2Pf ðxÞ

ff lAðplf Þg is a set consisting of all possible falsity-mem-

bership degrees f lA 2 FA associated with the probability

plf 2 Pf ðxÞ, satisfying 0� t
j
A; i

k
A; f

l
A � 1, 0� t

jþ
A þ ikþA þ f lþA

� 3, 0� p
j
t ; p

k
i ; p

l
f � 1,

P#TA
j¼1 p

j
t � 1,

P#IA
k¼1 p

k
i � 1,

P#FA

l¼1 plf � 1, where t
jþ
A ¼ sup TAð Þ, ikþA ¼ sup IAð Þ and

f lþA ¼ sup FAð Þ, #TA, #IA and #FA are the number of all

elements in TA PtðxÞð Þ, IA PiðxÞð Þ and FA Pf ðxÞ
� �

, respec-

tively. The complement set of A is denoted by Ac and

defined as Ac¼ x;FA Pf ðxÞ
� �

; IA PiðxÞð Þ; TA PtðxÞð Þ
� ��

x 2 Xj g.

When X includes only one element, then the PMVNS A

is reduced to a probability multi-valued neutrosophic

number (PMVNN), denoting by TA PtðxÞð Þ; IA PiðxÞð Þ;h
FA Pf ðxÞ
� �

i. For convenience, a PMVNN can be described

as a ¼ TA Ptð Þ; IA Pið Þ;FA Pf

� �� �
, and the set of all

PMVNNs is presented as PMVNS. Moreover, when

p1t ¼ p2t ¼ � � � ¼ p
#TA
t , p1i ¼ p2i ¼ � � � ¼ p

#IA
i and

p1f ¼ p2f ¼ � � � ¼ p
#FA

f , then the PMVNS A is reduced to the

MVNS given in Definition 3. In particular, if #TA ¼ 1,

#IA ¼ 1, #FA ¼ 1 and p1t ¼ 1, p1i ¼ 1, p1f ¼ 1, then the

PMVNS A is degenerated to the SNS presented in Defini-

tion 2. Therefore, SNS and MVNS are all special cases of

PMVNN.

The probabilistic information associated with the pos-

sible values in PMVNNs can be interpreted as probability

degree, importance, weight, belief degree and so on. And

the probability multi-valued neutrosophic information can

be collected in various real-life decision-making problems.

Example 1 In a personnel selection problem, four vice

managers of human resources evaluate a candidate. They

need to express three kinds of degrees to which she/he

supports the candidate is capable for the position, and she/

he is not sure whether the candidate is qualified for the

position, as well as she/he deems the candidate is not

suitable for the position in the form of a real number, or

more than one due to hesitance. Therefore, MVNNs can be

employed to depict such evaluation information. Assume

that one provides f0:5; 0:6g; f0:3g; f0:4gh i, one provides

f0:6; 0:7g; f0:2; 0:3g; f0:2gh i, one provides f0:6; 0:7g;h
f0:1; 0:2g; f0:3gi, another provides f0:8g; f0:1g;h
f0:2; 0:3gi. Then, the overall evaluation information is

collected as f0:5; 0:6; 0:6; 0:6; 0:7; 0:7; 0:8g; f0:1; 0:1;h
0:2; 0:2; 0:3; 0:3g; f0:2; 0:2; 0:3; 0:3; 0:4gi without loss of

any original information. Therefore, the final evaluation

information taking the form of PMVNN can be identified

as f0:5ð0:14Þ; 0:6ð0:43Þ; 0:7ð0:29Þ; 0:8ð0:14Þg; f0:1ð0:33Þ;h
0:2ð0:33Þ; 0:3ð0:33Þg; f0:2ð0:4Þ; 0:3ð0:4Þ; 0:4ð0:2Þgi
according to the probability distribution.

For a PMVNN a ¼ TA Ptð Þ; IA Pið Þ;FA Pf

� �� �
, if

P#TA
j¼1 p

j
t ¼ 1, then the probability distribution of all pos-

sible truth-membership degrees is complete; if
P#TA

j¼1 p
j
t\1, then it is incomplete, and a normalized pro-

cess is needed so that p
j
t 2 PtðxÞ can be regarded as a

complete probability distribution. The above analysis for

indeterminacy-membership degree and falsity-membership

degree is identical.

Definition 5 Given a PMVNN a ¼ TA Ptð Þ; IA Pið Þ;h
FA Pf

� �
i with

P
pg\1; ðg ¼ t; i; f Þ, then the normalized

PMVNN ~a of a is defined as follows:

~a ¼ TA ~Pt

� �
; IA ~Pi

� �
;FA

~Pf

� �� �
; ð3Þ

where ~p j
t ¼ p

j
tP#TA

j¼1
p
j
t

2 ~Pt, ~pki ¼
pkiP#IA

k¼1
pk
i

2 ~Pi and ~plf ¼
pl
fP#FA

l¼1
pl
f

2 ~Pf .

3.2 Convex combination operation and aggregation

operator of PMVNNs

Delgado et al. [60] firstly defined the convex combination

of two linguistic terms. Subsequently, Wei et al. [61]
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applied the convex combination operation to hesitant

fuzzy linguistic term sets. Based on these extant studies

and the operations of MVNNs [53], we define an exten-

ded convex combination operation for PMVNNs in the

following.

Definition 6 Let /1 ¼ T1 Pt1ð Þ; I1 Pi1ð Þ;F1 Pf1

� �� �
and

/2 ¼ T2 Pt2ð Þ; I2 Pi2ð Þ;F2 Pf2

� �� �
be two arbitrary

PMVNNs, an extended convex combination operation of

/1, and /2 is defined as

where 0�x1;x2 � 1, and x1 þ x2 ¼ 1. It is quite appar-

ent that the result obtained by the above operation is also a

PMVNN.

3.3 The weighted average aggregation operator

with PMVNNs

Definition 7 Let /k ¼ T1 Pt1ð Þ; I1 Pi1ð Þ;F1 Pf1

� �� �
k ¼ð

1; 2; . . .; nÞ be a collection of PMVNNs, denoted by X, and
w ¼ ðw1;w2; . . .;wnÞ be the weight vector of

/k k ¼ 1; 2; . . .; nð Þ, with wk 2 ½0; 1� and
Pn

k¼1 wk ¼ 1.

Then, the probability multi-valued neutrosophic number

weighted average (PMVNNWA) operator is the mapping

PMVNNWA : Xn ! X and is defined as follows:

PMVNNWA /1;/2;...;/nð Þ
¼CCn xk;/k;k¼1;2;...;nð Þ

¼
Xn

kn¼1

xkn

 !

�
Pn�1

kn�1¼1xkn�1

Pn�1
kn�1¼1xkn�1

�
Pn�2

kn�2¼1xkn�2

Pn�1
kn�1¼1xkn�1

  

� ���
P2

k2¼1xk2
P3

k3¼1xk3

� x1
P2

k2¼1xk2

�/1�
x2

P2
k2¼1xk2

�/2

 !  

�� x3
P3

k3¼1xk3

�/3

!!!

� xnPn
kn¼1xkn

�/n

!

:

ð5Þ

Based on the extended convex combination operation of

PMVNNs given in Definition 6, the following result can be

obtained.

Theorem 1 Let /k ¼ T1 Pt1ð Þ; I1 Pi1ð Þ;F1 Pf1

� �� �
k ¼ð

1; 2; . . .; nÞ be a collection of PMVNNs, denoted by X, and
w ¼ ðw1;w2; . . .;wnÞ be the weight vector of

/k k ¼ 1; 2; . . .; nð Þ, with wk 2 ½0; 1� and
Pn

k¼1 wk ¼ 1.

Then, the aggregated value calculated by the PMVNNWA

operator is also a PMVNN, and

CC2 x1;/1;x2;/2ð Þ ¼ x1 � /1 � x2 � /2

¼ x1 þ x2ð Þ � x1

x1 þ x2

� /1 �
x2

x1 þ x2

� /2

� 	

¼ [t1 pt1ð Þ2T1 Pt1ð Þ;t2 pt2ð Þ2T2 Pt2ð Þ 1� 1� t1ð Þx1 1� t2ð Þx2

1� 1�t1ð Þx1ð Þx1pt1þ 1� 1�t2ð Þx2ð Þx2pt2
1� 1�t1ð Þx1þ1� 1�t2ð Þx2

P
t1 pt1ð Þ2T1 Pt1ð Þ

P
t2 pt2ð Þ2T2 Pt2ð Þ

1� 1�t1ð Þx1ð Þx1pt1þ 1� 1�t2ð Þx2ð Þx2pt2
1� 1�t1ð Þx1þ1� 1�t2ð Þx2

0

@

1

A

8
<

:

9
=

;
;

*

[i1 pi1ð Þ2I1 Pi1ð Þ;i2 pi2ð Þ2I2 Pi2ð Þ ix1

1 ix2

2

i
x1
1

x1pi1þi
x2
2

x2pi2

i
x1
1

þi
x2
2

P
i1 pi1ð Þ2I1 Pi1ð Þ

P
i2 pi2ð Þ2I2 Pi2ð Þ

i
x1
1

x1pi1þi
x2
2

x2pi2

i
x1
1

þi
x2
2

0

B@

1

CA

8
><

>:

9
>=

>;
;

[
f1 pf1ð Þ2F1 Pf1ð Þ;f2 pf 2ð Þ2F1 Pf 1ð Þ fx1

1 fx2

2

f
x1
1

x1pf1þf
x2
2

x2pf 2

f
x1
1

þf
x2
2

P
f1 pf 1ð Þ2F1 Pf1ð Þ

P

f2 pf2ð Þ2F2 Pf 2ð Þ
f
x1
1

x1pf1þf
x2
2

x2pf2

f
x1
1

þf
x2
2

0

BBB@

1

CCCA

8
>>><

>>>:

9
>>>=

>>>;

+

;

ð4Þ
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In the following, Theorem 1 will be proved by the

mathematical induction of n.

Proof

(1) When n ¼ 2, the following equation can be obtained

according to Definition 6,

PMVNNWA /1;/2; . . .;/nð Þ ¼ CCn xk;/k; k ¼ 1; 2; . . .; nð Þ

¼ [t1 pt1ð Þ2T1 Pt1ð Þ;t2 pt2ð Þ2T2 Pt2ð Þ;...;tn ptnð Þ2Tn Ptnð Þ 1�
Yn

j¼1

1� tj
� �xj

Pn

j¼1
1� 1�tjð Þxjð ÞxjptjPn

j¼1
1� 1�tjð Þxjð Þ

P
t1 pt1ð Þ2T1 Pt1ð Þ

P
t2 pt2ð Þ2T2 Pt2ð Þ � � �

P

tn ptnð Þ2Tn Ptnð Þ

Pn

j¼1
1� 1�tjð Þxjð ÞxjptjPn

j¼1
1� 1�tjð Þxjð Þ

0

BBB@

1

CCCA

8
>>><

>>>:

9
>>>=

>>>;

;

*

[i1 pi1ð Þ2I1 Pi1ð Þ;i2 pi2ð Þ2I2 Pi2ð Þ;...;in pinð Þ2In Pinð Þ
Yn

h¼1

ixh

h

Pn

h¼1
i
xh
h

xhpihPn

h¼1
i
xh
h

P
i1 pi1ð Þ2I1 Pi1ð Þ

P
i2 pi2ð Þ2I2 Pi2ð Þ � � �

P

in pinð Þ2In Pinð Þ

Pn

h¼1
i
xh
h

xhpihPn

h¼1
i
xh
h

0

BBB@

1

CCCA

8
>>><

>>>:

9
>>>=

>>>;

;

[
f1 pf1ð Þ2F1 Pf1ð Þ;f2 pf2ð Þ2F1 Pf1ð Þ;...;fn pfnð Þ2Fn Pfnð Þ

Yn

l¼1

fxl

l

Pn

l¼1
f
xl
l

xlpflPn

l¼1
f
xl
l

P
f1 pf1ð Þ2F1 Pf1ð Þ

P
f2 pf2ð Þ2F2 Pf2ð Þ � � �

P

fn pfnð Þ2Fn Pfnð Þ

Pn

l¼1
f
xl
l

xlpflPn

l¼1
f
xl
l

0

BBBB@

1

CCCCA

8
>>>><

>>>>:

9
>>>>=

>>>>;

+

:

ð6Þ

PMVNNWA /1;/2ð Þ ¼ CC2 x1;/1;x2;/2ð Þ ¼ x1 þ x2ð Þ � x1

x1 þ x2

� /1 �
x2

x1 þ x2

� /2

� 	

¼ [t1 pt1ð Þ2T1 Pt1ð Þ;t2 pt2ð Þ2T2 Pt2ð Þ 1� 1� t1ð Þx1 1� t2ð Þx2

1� 1�t1ð Þx1ð Þx1pt1þ 1� 1�t2ð Þx2ð Þx2pt2
1� 1�t1ð Þx1þ1� 1�t2ð Þx2

P
t1 pt1ð Þ2T1 Pt1ð Þ

P
t2 pt2ð Þ2T2 Pt2ð Þ

1� 1�t1ð Þx1ð Þx1pt1þ 1� 1�t2ð Þx2ð Þx2pt2
1� 1�t1ð Þx1þ1� 1�t2ð Þx2

0

@

1

A

8
<

:

9
=

;
;

*

[i1 pi1ð Þ2I1 Pi1ð Þ;i2 pi2ð Þ2I2 Pi2ð Þ ix1

1 ix2

2

i
x1
1

x1pi1þi
x2
2

x2pi2

i
x1
1

þi
x2
2

P
i1 pi1ð Þ2I1 Pi1ð Þ

P
i2 pi2ð Þ2I2 Pi2ð Þ

i
x1
1

x1pi1þi
x2
2

x2pi2

i
x1
1

þi
x2
2

0

B@

1

CA

8
><

>:

9
>=

>;
;

[
f1 pf1ð Þ2F1 Pf1ð Þ;f2 pf2ð Þ2F1 Pf1ð Þ fx1

1 fx2

2

f
x1
1

x1pf1þf
x2
2

x2pf2

f
x1
1

þf
x2
2

P
f1 pf1ð Þ2F1 Pf1ð Þ

P
f2 pf2ð Þ2F2 Pf2ð Þ

f
x1
1

x1pf1þf
x2
2

x2pf2

f
x1
1

þf
x2
2

0

B@

1

CA

8
><

>:

9
>=

>;

+

¼ [t1 pt1ð Þ2T1 Pt1ð Þ;t2 pt2ð Þ2T2 Pt2ð Þ 1�
Y2

j¼1

1� tj
� �xj

P2

j¼1
1� 1�tjð Þxjð Þxjptj

P2

j¼1
1� 1�tjð Þxjð Þ

P
t1 pt1ð Þ2T1 Pt1ð Þ

P
t2 pt2ð Þ2T2 Pt2ð Þ

P2

j¼1
1� 1�tjð Þxjð Þxjptj

P2

j¼1
1� 1�tjð Þxjð Þ

0

BBB@

1

CCCA

8
>>><

>>>:

9
>>>=

>>>;

;

*

[i1 pi1ð Þ2I1 Pi1ð Þ;i2 pi2ð Þ2I2 Pi2ð Þ
Y2

h¼1

ixh

h

P2

h¼1
i
xh
h

xhpihP2

h¼1
i
xh
h

P
i1 pi1ð Þ2I1 Pi1ð Þ

P
i2 pi2ð Þ2I2 Pi2ð Þ

P2

h¼1
i
xh
h

xhpihP2

h¼1
i
xh
h

0

BBB@

1

CCCA

8
>>><

>>>:

9
>>>=

>>>;

;

[
f1 pf1ð Þ2F1 Pf1ð Þ;f2 pf2ð Þ2F1 Pf1ð Þ

Y2

l¼1

fxl

l

P2

l¼1
f
xl
l

xlpflP2

l¼1
f
xl
l

P
f1 pf1ð Þ2F1 Pf1ð Þ

P
f2 pf2ð Þ2F2 Pf2ð Þ

P2

l¼1
f
xl
l

xlpflP2

l¼1
f
xl
l

0

BBB@

1

CCCA

8
>>><

>>>:

9
>>>=

>>>;

+

;
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That is, when n ¼ 2, Eq. (2) is true.
(2) If Eq. (6) holds for n ¼ g, then

Thus, when n ¼ gþ 1, the following result can be

computed.

That is, Eq. (6) also holds for n ¼ gþ 1. Therefore,

Eq. (6) is true for all n.

PMVNNWA /1;/2; . . .;/g

� �
¼ CCg xk;/k; k ¼ 1; 2; . . .; gð Þ

¼ [
t1 pt1ð Þ2T1 Pt1ð Þ;t2 pt2ð Þ2T2 Pt2ð Þ;...;tg ptgð Þ2Tg Ptgð Þ 1�

Yg

j¼1

1� tj
� �xj

Pg

j¼1
1� 1�tjð Þxjð ÞxjptjPg

j¼1
1� 1�tjð Þxjð Þ

P

t1 pt1ð Þ2T1 Pt1ð Þ

P

t2 pt2ð Þ2T2 Pt2ð Þ
� � �

P

tg ptgð Þ2Tg Ptgð Þ

Pg

j¼1
1� 1�tjð Þxjð ÞxjptjPg

j¼1
1� 1�tjð Þxjð Þ

0

BBBB@

1

CCCCA

8
>>>><

>>>>:

9
>>>>=

>>>>;

;

*

[
i1 pi1ð Þ2I1 Pi1ð Þ;i2 pi2ð Þ2I2 Pi2ð Þ;...;ig pigð Þ2Ig Pigð Þ

Yg

h¼1

ixh

h

Pg

h¼1
i
xh
h

xhpihPg

h¼1
i
xh
h

P
t1 pt1ð Þ2T1 Pt1ð Þ

P
t2 pt2ð Þ2T2 Pt2ð Þ � � �

P

tg ptgð Þ2Tg Ptgð Þ

Pg

j¼1
1� 1�tjð Þxjð ÞxjptjPg

j¼1
1� 1�tjð Þxjð Þ

0

BBBB@

1

CCCCA

8
>>>><

>>>>:

9
>>>>=

>>>>;

;

[
f1 pf1ð Þ2F1 Pf1ð Þ;f2 pf2ð Þ2F1 Pf1ð Þ;...;fg pfgð Þ2Fg Pfgð Þ

Yg

l¼1

fxl

l

Pg

l¼1
f
xl
l

xlpflPg

l¼1
f
xl
l

P
f1 pf1ð Þ2F1 Pf1ð Þ

P
f2 pf2ð Þ2F2 Pf2ð Þ � � �

P

fg pfgð Þ2Fg Pfgð Þ

Pg

l¼1
f
xl
l

xlpflPg

l¼1
f
xl
l

0

BBBB@

1

CCCCA

8
>>>><

>>>>:

9
>>>>=

>>>>;

+

:

PMVNNWA /1;/2; . . .;/g;/gþ1

� �
¼ CCgþ1 xk;/k; k ¼ 1; 2; . . .; gþ 1ð Þ

¼
Xgþ1

kgþ1¼1

xkgþ1

0

@

1

A�
Pg

kg¼1 xkg
Pgþ1

kgþ1¼1 xkgþ1

� CCg xk;/k; k ¼ 1; 2; . . .; gð Þ
� �

�
xkgþ1Pgþ1

kgþ1¼1 xkgþ1

� /gþ1

 !

¼ [
t1 pt1ð Þ2T1 Pt1ð Þ;...;tgþ1 ptgþ1ð Þ2Tgþ1 Ptgþ1ð Þ 1�

Ygþ1

j¼1

1� tj
� �xj

Pgþ1

j¼1
1� 1�tjð Þxjð Þxjptj

Pgþ1

j¼1
1� 1�tjð Þxjð Þ

P
t1 pt1ð Þ2T1 Pt1ð Þ � � �

P
tgþ1 ptgþ1ð Þ2Tgþ1 Ptgþ1ð Þ

Pgþ1

j¼1
1� 1�tjð Þxjð Þxjptj

Pgþ1

j¼1
1� 1�tjð Þxjð Þ

0

BBB@

1

CCCA

8
>>><

>>>:

9
>>>=

>>>;

;

*

[
i1 pi1ð Þ2I1 Pi1ð Þ;...;ig pigþ1ð Þ2Ig Pigþ1ð Þ

Ygþ1

h¼1

ixh

h

Pgþ1

h¼1
i
xh
h

xhpihPgþ1

h¼1
i
xh
h

P
i1 pi1ð Þ2I1 Pi1ð Þ � � �

P
ig pigþ1ð Þ2Ig Pigþ1ð Þ

Pgþ1

h¼1
i
xh
h

xhpihPgþ1

h¼1
i
xh
h

0

BBB@

1

CCCA

8
>>><

>>>:

9
>>>=

>>>;

;

[
f1 pf1ð Þ2F1 Pf1ð Þ;...;fgþ1 pfgþ1ð Þ2Fgþ1 Pfgþ1ð Þ

Ygþ1

l¼1

fxl

l

Pgþ1

l¼1
f
xl
l

xlpflPgþ1

l¼1
f
xl
l

P
f1 pf1ð Þ2F1 Pf1ð Þ � � �

P
fgþ1 pfgþ1ð Þ2Fgþ1 Pfgþ1ð Þ

Pgþ1

l¼1
f
xl
l

xlpflPgþ1

l¼1
f
xl
l
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4 TOPSIS-based QUALIFLEX method
with PMVNNs

In this section, the comparison method and cross-entropy

measures of PMVNNs are proposed. Subsequently, a novel

QUALIFLEX method is developed by incorporating the

proposed cross-entropy measures and the closeness coef-

ficient of TOPSIS.

4.1 The comparison method of PMVNNs

Definition 8 Let /1 ¼ T1 Pt1ð Þ; I1 Pi1ð Þ;F1 Pf1

� �� �
and

/2 ¼ T2 Pt2ð Þ; I2 Pi2ð Þ;F2 Pf2

� �� �
be two arbitrary

PMVNNs, all elements in Te Pteð Þ, Ie Pieð Þ and Fe Pf e
� �

ðe ¼
1; 2Þ be arranged in ascending order according to the values
of te � pte, ie � pie and fe � pf eðe ¼ 1; 2Þ, respectively. And
t
ðjÞ
e pteð Þ, iðjÞe pieð Þ and f

ðjÞ
e pf e
� �

ðe ¼ 1; 2Þ be referred to as the

j th value in Te Pteð Þ, Ie Pieð Þ and Fe Pf e
� �

ðe ¼ 1; 2Þ. Then,
the comparison method of PMVNNs is provided as

follows:

/1 �/2, if t
ðjÞ
1 pt1ð Þ� t

ðjÞ
2 pt2ð Þ and t

ð#T1Þ
1 pt1ð Þ�

t
ð#T2Þ
2 pt2ð Þ, i

ðkÞ
1 pi1ð Þ	 i

ðkÞ
2 pi2ð Þ and i

ð#I1Þ
1 pi1ð Þ	 i

ð#I2Þ
2 pi2ð Þ,

and f
ðlÞ
1 pf1
� �

	 f
ðlÞ
2 pf2
� �

and f
ð#F1Þ
1 pf1

� �
	 f

ð#F2Þ
2 pf2

� �
,

where j ¼ 1; 2; . . .; aT , k ¼ 1; 2; . . .; aI , l ¼ 1; 2; . . .; aF and

aT ¼ minð#T1;#T2Þ, aI ¼ minð#I1;#I2Þ, aF ¼
minð#F1; #F2Þ.

Although a complete ordering of all PMVNNs cannot be

determined based on Definition 8, it is sufficient to

demonstrate the following property of the proposed cross-

entropy of PMVNNs.

4.2 Cross-entropy of PMVNNs

Ye [46] firstly defined the cross-entropy of SNSs, but it is

questionable in some specific situations. To overcome this

drawback, Wu et al. [52] further proposed two effective

cross-entropy measures for SNSs. Based on the two

existing simplified neutrosophic cross-entropy measures,

the cross-entropy for PMVNNs is defined in the following.

Definition 9 Let /1 ¼ T1 Pt1ð Þ; I1 Pi1ð Þ;F1 Pf1

� �� �
and

/2 ¼ T2 Pt2ð Þ; I2 Pi2ð Þ;F2 Pf2

� �� �
be two arbitrary

PMVNNs, CE : PMVNN � PMVNN ! Rþ, then two

cross-entropy measures CE /1;/2ð Þ between /1 and /2 are

defined as follows:

which can signify the discrimination degree between /1

and /2. It is worth noting that CE1 /1;/2ð Þ and

CE2 /1;/2ð Þ are not symmetric in regard to their argu-

ments. Therefore, two symmetric discrimination informa-

tion measures for PMVNNs are defined as

CE

1 /1;/2ð Þ = CE1 /1;/2ð Þ þ CE1 /2;/1ð Þ; ð9Þ

CE

2 /1;/2ð Þ = CE2 /1;/2ð Þ þ CE2 /2;/1ð Þ: ð10Þ

Property 1 Let /1 ¼ T1 Pt1ð Þ; I1 Pi1ð Þ;F1 Pf1

� �� �
and

/2 ¼ T2 Pt2ð Þ; I2 Pi2ð Þ;F2 Pf2

� �� �
be two arbitrary

PMVNNs, all elements in Te Pteð Þ, Ie Pieð Þ and Fe Pf e
� �

ðe ¼
1; 2Þ be arranged in ascending order according to the

CE1 /1;/2ð Þ ¼ 1

#T1 �#T2

X

t1 pt1ð Þ2T1 Pt1ð Þ

X

t2 pt2ð Þ2T2 Pt2ð Þ
sinðt1pt1Þ � sinðt1pt1 � t2pt2Þ

þ 1

#I1 �#I2

X

i1 pi1ð Þ2I1 Pi1ð Þ

X

i2 pi2ð Þ2I2 Pi2ð Þ
sinði1pi1Þ � sinði1pi1 � i2pi2Þ

þ 1

#F1 �#F2

X

f1 pf 1ð Þ2F1 Pf 1ð Þ

X

f2 pf2ð Þ2F1 Pf1ð Þ
sinðf1pf1Þ � sinðf1pf1 � f2pf2Þ;

ð7Þ

CE2 /1;/2ð Þ ¼ 1

#T1 �#T2

X

t1 pt1ð Þ2T1 Pt1ð Þ

X

t2 pt2ð Þ2T2 Pt2ð Þ
tanðt1pt1Þ � tanðt1pt1 � t2pt2Þ

þ 1

#I1 �#I2

X

i1 pi1ð Þ2I1 Pi1ð Þ

X

i2 pi2ð Þ2I2 Pi2ð Þ
tanði1pi1Þ � tanði1pi1 � i2pi2Þ

þ 1

#F1 �#F2

X

f1 pf 1ð Þ2F1 Pf 1ð Þ

X

f2 pf2ð Þ2F1 Pf1ð Þ
tanðf1pf1Þ � tanðf1pf1 � f2pf2Þ;

ð8Þ
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values of te � pte, ie � pie and fe � pf e, respectively. And

t
ðjÞ
e pteð Þ, iðjÞe pieð Þ and f

ðjÞ
e pf e
� �

be referred to as the jth value

in Te Pteð Þ, Ie Pieð Þ and Fe Pf e

� �
. Then, the above cross-en-

tropy satisfy the following properties:

(1) CE

1 /1;/2ð Þ ¼ CE


1 /2;/1ð Þ and CE

2 /1;/2ð Þ¼ CE


2

/2;/1ð Þ.
(2) CE


1 /1;/2ð Þ ¼ CE

1 /c

1;/
c
2

� �
and CE


2 /1;/2ð Þ¼ CE

2

/c
1;/

c
2

� �
, where /c

1 and /
c
2 are the complement set of

/1 and /2, respectively.

(3) CE

1 /1;/2ð Þ	 0 and CE


2 /1;/2ð Þ	 0.

(4) The greater the difference between /1 and /2 is, the

greater CE

1 /1;/2ð Þ and CE


2 /1;/2ð Þ will be.

Proof Obviously, the cross-entropy measures described

in Definition 9 satisfy (1) and (2) of Property 1, and the

proofs of (3) and (4) of Property 1 are as follows.

(3) Firstly, it is necessary to analysis the following

functions:

f1ða; bÞ ¼ sin a� sinða� bÞ þ sin b� sinðb� aÞ
¼ ðsin a� sin bÞ � sinða� bÞ;

and f2ða; bÞ ¼ tan a� tanða� bÞ þ tan b� tanðb�
aÞ ¼ ðtan a� tan bÞ � tanða� bÞ, where a; b 2
½0; 1�. It is worth noting that whether a	 b or a� b,

the two inequalities f1ða; bÞ	 0 and f2ða; bÞ	 0

always hold.

Moreover, the following equations can be obtained:

Since 8 t1pt1; i1pi1; f1pf1; t2pt2;
�

i2pi2; f2pf2Þ 2 ½0; 1�,
CE


1 /1;ð /2Þ	 0 and CE

2 /1;/2ð Þ	 0 can be easily

obtained according to the property of f1ða; bÞ and f2ða; bÞ.

(4) For three PMVNNs /1 ¼ T1 Pt1ð Þ; I1 Pi1ð Þ;h
F1 Pf1

� �
i, /2 ¼ T2 Pt2ð Þ; I2 Pi2ð Þ;F2 Pf2

� �� �
and

/3 ¼ T3 Pt3ð Þ; I3 Pi3ð Þ;F3 Pf3

� �� �
, if /1 �/2 �/3,

then t
ðjÞ
1 pt1ð Þ� t

ðjÞ
2 pt2ð Þ� t

ðjÞ
3 pt3ð Þ and t

ð#T1Þ
1 pt1ð Þ�

t
ð#T2Þ
2 pt2ð Þ� t

ð#T3Þ
3 pt3ð Þ, iðkÞ1 pi1ð Þ	 i

ðkÞ
2 pi2ð Þ	 i

ðkÞ
3 pi3ð Þ

and i
ð#I1Þ
1 pi1ð Þ	 i

ð#I2Þ
2 pi2ð Þ	 i

ð#I3Þ
3 pi3ð Þ, f ðlÞ1 pf1

� �
	

f
ðlÞ
2 pf2
� �

	 f
ðlÞ
3 pf3
� �

and f
ð#F1Þ
1 pf1

� �
	 f

ð#F2Þ
2 pf2

� �
	

f
ð#F3Þ
3 pf3

� �
can be obtained according to Definition

8. Thus, the following inequalities are true,

sinðtðjÞ1 ðpt1ÞÞ� sinðtðjÞ2 ðpt2ÞÞ� sinðtðjÞ3 ðpt3ÞÞ
) 0� sinðtðjÞ2 ðpt2ÞÞ � sinðtðjÞ1 ðpt1ÞÞ� sinðtðjÞ3 ðpt3ÞÞ

� sinðtðjÞ1 ðpt1ÞÞ;

0� t
ðjÞ
2 ðpt2Þ � t

ðjÞ
1 ðpt1Þ� t

ðjÞ
3 ðpt3Þ � t

ðjÞ
1 ðpt1Þ� 1

) 0� sinðtðjÞ2 ðpt2Þ � t
ðjÞ
1 ðpt1ÞÞ� sinðtðjÞ3 ðpt3Þ

� ðtðjÞ1 ðpt1ÞÞ:

Then,

sinðtðjÞ1 ðpt1Þ � t
ðjÞ
2 ðpt2ÞÞðsinðtðjÞ1 ðpt1ÞÞ

� sinðtðjÞ2 ðpt2ÞÞÞ� sinððtðjÞ1 ðpt1Þ
� t

ðjÞ
3 ðpt3ÞÞðsinðtðjÞ1 ðpt1ÞÞ � sinðtðjÞ3 ðpt3ÞÞÞ:

And then,

CE

1 /1;/2ð Þ ¼ 1

#T1 �#T2

X

t1 pt1ð Þ2T1 Pt1ð Þ

X

t2 pt2ð Þ2T2 Pt2ð Þ
sinðt1pt1 � t2pt2Þ � sinðt1pt1Þ � sinðt2pt2Þð Þ

þ 1

#I1 �#I2

X

i1 pi1ð Þ2I1 Pi1ð Þ

X

i2 pi2ð Þ2I2 Pi2ð Þ
sinði1pi1 � i2pi2Þ � sinði1pi1Þ � sinði2pi2Þð Þ

þ 1

#F1 �#F2

X

f1 pf 1ð Þ2F1 Pf 1ð Þ

X

f2 pf2ð Þ2F2 Pf2ð Þ
sinðf1pf1 � f2pf2Þ � sinðf1pf1Þ � sinðf2pf2Þ

� �
;

and

CE

2 /1;/2ð Þ ¼ 1

#T1 �#T2

X

t1 pt1ð Þ2T1 Pt1ð Þ

X

t2 pt2ð Þ2T2 Pt2ð Þ
tanðt1pt1 � t2pt2Þ � tanðt1pt1Þ � tanðt2pt2Þð Þ

þ 1

#I1 �#I2

X

i1 pi1ð Þ2I1 Pi1ð Þ

X

i2 pi2ð Þ2I2 Pi2ð Þ
tanði1pi1 � i2pi2Þ � tanði1pi1Þ � tanði2pi2Þð Þ

þ 1

#F1 �#F2

X

f1 pf 1ð Þ2F1 Pf 1ð Þ

X

f2 pf2ð Þ2F2 Pf2ð Þ
tanðf1pf1 � f2pf2Þ � tanðf1pf1Þ � tanðf2pf2Þ

� �
:
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can also be obtained. Therefore, CE

1 /1;ð

/2Þ�CE

1 /1;/3ð Þ. The inequality CE


1 /2;/3ð Þ�
CE


1 /1;/3ð Þ can be proved in a similar way. The

same proof can also be provided for CE

2 /1;/2ð Þ.

4.3 TOPSIS-based QUALIFLEX method

with PMVNNs

In this subsection, a novel TOPSIS-based QUALIFLEX

method is developed based on the cross-entropy measures

of PMVNNs described in Definition 9.

The QUALIFLEX method, introduced by Paelinck [62],

is a useful outranking method for multi-criteria decision

analysis because of its flexibility with respect to ordinal

and cardinal information. The QUALIFLEX method

compares each pair of alternatives for all possible alter-

native permutations under each criterion and determines

the optimal permutation by searching for the maximal

value of permutation’ concordance/discordance index.

Taking into account a decision-making problem that

refers to n alternatives under m criteria. And the evaluation

value of alternative ajðj ¼ 1; 2; . . .; nÞ associated with cri-

terion ckðk ¼ 1; 2; . . .;mÞ is in the form of PMVNN,

denoting as rjk ¼ Tjk Ptð Þ; Ijk Pið Þ;Fjk Pf

� �� �
.

In order to ranking all alternatives, the positive ideal

solution (PIS) and negative ideal solution (NIS) are iden-

tified as aþ ¼ f1ð1Þg; f0ð0Þg; f0ð0Þgh i and

a� ¼ f0ð0Þg; f1ð1Þg; f1ð1Þgh i, respectively. The cross-

entropy between alternative ajðj ¼ 1; 2; . . .; nÞ and the PIS

aþ, expressed as CE
 aj; a
þ� �

, and the cross-entropy

between alternative ajðj ¼ 1; 2; . . .; nÞ and the NIS a�,

expressed as CE
 aj; a
�� �

; both of them can be computed

utilizing Eqs. (9) and (10). Therefore, the extended close-

ness coefficient of TOPSIS for a given alternative aj under

criterion ck is defined as

CCkðajÞ¼
CE
 aj; a

�� �

CE
 aj; a�
� �

þ CE
 aj; aþ
� � : ð11Þ

It is apparent that CCkðajÞ 2 ½0; 1�, and the bigger value

of CCkðajÞ indicates alternative aj is better.

In the following, the above extended closeness coeffi-

cient is employed to identify the concordance/discordance

index. For an alternative set A with n alternatives, then n!
permutations of the ranking for all alternatives exist. Let Pl

denotes the lth permutation, then

Pl ¼ ð. . .; aa; . . .; ab; . . .Þ; for l ¼ 1; 2; . . .; n!;

1

#T2

X

t2 pt2ð Þ2T2 Pt2ð Þ
sinðt1pt1 � t2pt2Þ � sinðt1pt1Þ � sinðt2pt2Þð Þ

� 1

#T3

X

t3 pt3ð Þ2T3 Pt3ð Þ
sinðt1pt1 � t3pt3Þ � sinðt1pt1Þ � sinðt3pt3Þð Þ:

Thus,

1

#T1 �#T2

X

t1 pt1ð Þ2T1 Pt1ð Þ

X

t2 pt2ð Þ2T2 Pt2ð Þ
sinðt1pt1 � t2pt2Þ � sinðt1pt1Þ � sinðt2pt2Þð Þ

� 1

#T1 �#T3

X

t1 pt1ð Þ2T1 Pt1ð Þ

X

t3 pt3ð Þ2T3 Pt3ð Þ
sinðt1pt1 � t3pt3Þ � sinðt1pt1Þ � sinðt3pt3Þð Þ:

In the same way,

1

#I1 �#I2

X

i1 pi1ð Þ2I1 Pi1ð Þ

X

i2 pi2ð Þ2I2 Pi2ð Þ
sinði1pi1 � i2pi2Þ � sinði1pi1Þ � sinði2pi2Þð Þ

� 1

#I1 �#I3

X

i1 pi1ð Þ2I1 Pi1ð Þ

X

i3 pi3ð Þ2I3 Pi3ð Þ
sinði1pi1 � i3pi3Þ � sinði1pi1Þ � sinði3pi3Þð Þ;

and

1

#F1 �#F2

X

f1 pf1ð Þ2F1 Pf1ð Þ

X

f2 pf 2ð Þ2F2 Pf 2ð Þ
sinðf1pf1 � f2pf2Þ � sinðf1pf1Þ � sinðf2pf2Þ

� �

� 1

#F1 �#F3

X

f1 pf1ð Þ2F1 Pf 1ð Þ

X

f3 pf3ð Þ2F3 Pf3ð Þ
sinðf1pf1 � f3pf3Þ � sinðf1pf1Þ � sinðf3pf3Þ

� �
;
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where aa; ab 2 A, and the alternative aa is ranked better

than or equal to ab. If aa and ab are ranked in the same

order within two preorders, then concordance exists. If aa
and ab have the same ranking, then ex aequo exists. If aa
and ab are counter-ranked in two preorders, then discor-

dance exists.

Therefore, the concordance/discordance index

uk
l ðaa; abÞ for each pair of alternatives ðaa; abÞ ðaa; ab 2 AÞ

in regard to the criterion ck and the permutation Pl is

defined as follows:

uk
l ðaa; abÞ ¼ CC(aaÞ

� CC(abÞ¼
CE
 aa; a

�ð Þ
CE
 aa; a�ð Þ þ CE
 aa; aþð Þ

�
CE
 ab; a

�� �

CE
 ab; a�
� �

þ CE
 ab; aþ
� � ;

ð12Þ

where uk
l ðaa; abÞ 2 ½�1; 1�.

Based on the extended closeness coefficient comparison

method and the above concordance/discordance index, the

following three situations can be obtained.

1. If uk
l ðaa; abÞ[ 0, that is CC(aaÞ [CC(abÞ, then aa is

ranked better than ab under the criterion ck. Thus,

concordance exists between the extended closeness

coefficient-based ranking and the preorder of aa and ab
under the lth permutation Pl.

2. If uk
l ðaa; abÞ ¼ 0, that is CC(aaÞ = CC(abÞ, then aa and

ab have the same ranking under the criterion ck. Thus,

ex aequo exists between the extended closeness

coefficient-based ranking and the preorder of aa and

ab under the lth permutation Pl.

3. If uk
l ðaa; abÞ\0, that is CC(aaÞ \CC(abÞ, then ab is

ranked better than aa under the criterion ck. Thus,

discordance exists between the extended closeness

coefficient-based ranking and the preorder of aa and ab
under the lth permutation Pl.

Suppose that the weight of criterion ckðk ¼ 1; 2; . . .;mÞ
is wkðk ¼ 1; 2; . . .;mÞ, satisfying wk 2 ½0; 1� andPm

k¼1 wk ¼ 1, then, the weighted concordance/discordance

index uk
l ðaa; abÞ for each pair of alternatives ðaa; abÞ

ðaa; ab 2 AÞ with respect to the criterion ck and the per-

mutation Pl can be obtained based on Eq. (12) as follows:

ulðaa; abÞ ¼
Xm

k¼1

wku
k
l ðaa; abÞ

¼
Xm

k¼1

wk CC(aaÞ � CC(abÞ
� �

: ð13Þ

Moreover, the comprehensive concordance/discordance

index ul associated with the permutation Pl can be calcu-

lated as follows:

ul ¼
X

aa;ab2A

Xm

k¼1

wku
k
l ðaa; abÞ

¼
X

aa;ab2A

Xm

k¼1

wk CC(aaÞ � CC(abÞ
� �

: ð14Þ

According to the extended closeness coefficient-based

comparison method, we can conclude that the bigger ul is,

the more reliable the permutation Pl is. Therefore, the

optimal ranking P
 of all alternatives can be identified as

u
 ¼ max
n!

l¼1
ulf g: ð15Þ

5 A MCGDM method under PMVNNs
circumstance

In this section, two objective weight determination meth-

ods are established based on the cross-entropy measure-

ment of PMVNNs. Furthermore, a novel MCGDM method

is developed by combining the proposed aggregation

operator and TOPSIS-based QUALIFLEX method.

MCGDM problems with PMVNNs information consist

of a group of alternatives, denoted by A ¼ a1; a2; . . .; anf g.
Suppose C ¼ c1; c2; . . .; cmf g to be the set of criteria,

whose weight vector is w ¼ w1;w2; . . .;wmð Þ, satisfying

wk 2 ½0; 1� and
Pm

k¼1 wk ¼ 1; let D ¼ d1; d2; . . .; dq
� �

be a

finite set of decision-makers (DMs), whose weight vector is

v ¼ v1; v2; . . .; vq
� �

, satisfying vl 2 ½0; 1� and
Pq

l¼1 vl ¼ 1.

Then, for a DM dl l ¼ 1; 2; . . .; qð Þ, the evaluation infor-

mation of ai i ¼ 1; 2; . . .; nð Þ with respect to

cj j ¼ 1; 2; . . .;mð Þ is presented in the form of PMVNNs,

denoted by zljk ¼ T Pt
jkl


 �
; I Pi

jkl


 �
;F P

f
jkl


 �D E
, where

T Pt
jkl


 �
¼ [tjkl2T ;ptjkl2Pt

jkl
ftjklðptjklÞg, and tjkl indicates the

truth-membership degree that the alternative ai satisfies the

criterion cj, and ptjkl indicates the importance of the pro-

vided truth-membership degree tjkl; I Pi
jkl


 �
¼

[ijkl2I;pijkl2Pi
jkl
fijklðpijklÞg, and ijkl indicates the indeterminacy-

membership degree that the alternative ai satisfies the cri-

terion cj, and pijkl indicates the importance of the provided

indeterminacy-membership degree ijkl; F P
f
jkl


 �
¼

[
fjkl2F;pfjkl2P

f

jkl

ffjklðpfjklÞg, and fjkl indicates the falsity-mem-

bership degree that the alternative ai satisfies the criterion

cj, and p
f
jkl indicates the importance of the provided falsity-

membership degree fjkl. Finally, the decision matrix Rl ¼

zljk


 �

n�m
can be constructed.
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5.1 To determine the weights of criteria and DMs

The weights of DMs and criteria are important parameters

in MCGDM problems because they directly influence the

accuracy of the final results. In practical MCGDM prob-

lems, weight information is usually uncertain. Furthermore,

because DMs are selected from distinct backgrounds with

different degrees of expertise, they cannot be directly

endowed with arbitrary weights or equal weights. More-

over, because of the time pressure, problem complexity and

lack of knowledge, criteria weights also should not be

determined according to empirical values or subjectively

assigned in advance. As a result, for a practical MCGDM

problem, weights for DMs and criteria should be regarded

as unknown and to be determined.

According to the above discussion, two reliable models

are established, based on the proposed cross-entropy

measurement of PMVNNs, to objectively calculate the

unknown weights of DMs and criteria in the following.

In the evaluation process, different DMs may have dif-

ferent opinions on each criterion, and then the criteria in

different decision matrices should have different impor-

tance. In this way, the criteria weights wl ¼
wl
1;w

l
2; . . .;w

l
m

� �
in each decision matrix Rl ¼

zljk


 �

n�m
ðl ¼ 1; 2; . . .; qÞ should be determined, respec-

tively. If a MCDM problem features marked differences

between any two distinct alternatives’ evaluation values

under a given criterion cj, then cj plays a relatively

important role in the decision-making process; therefore, a

higher weight should be assigned to cj. In contrast, if a

criterion makes the evaluation values of all alternatives

appear to be similar, then this criterion plays a less

important role in the decision-making process and should

be assigned a low weight. Thus, taking into account the

viewpoint of sorting the alternatives, the proposed cross-

entropy measurement in Definition 9 can be employed to

distinguish different evaluation values under a given

criterion.

Therefore, for a decision matrix

Rl ¼ zljk


 �

n�m
ðl ¼ 1; 2; . . .; qÞ, an extended maximizing

deviation model can be established to derive the weights of

criteria as follows:

max Fl wl
k

� �
¼
Xm

k¼1

wl
k

Xn

j¼1

Xn

h¼1;h6¼j

CE
 zljk; z
l
hk


 �

s:t

Pm

k¼1

wl2
k ¼ 1

wl
k 	 0; k ¼ 1; 2; . . .;m; l ¼ 1; 2; . . .; q:

8
<

:

ðM-1Þ

where CE
 zljk; z
l
hk


 �
signify the cross-entropy measurement

between zljk and zlhk.

To deal with this model, the Lagrange function is con-

structed as

Fl wl
k; k

� �
¼
Xm

k¼1

wl
k

Xn

j¼1

Xn

h¼1;h 6¼j

CE
 zljk; z
l
hk


 �

þ k
2

Xm

k¼1

wl2
k � 1

 !

; ð16Þ

where k is the Lagrange multiplier. Then, the partial

derivatives of Fl wl; k
� �

can be calculated as follows:

oFl wl
k; k

� �

owl
k

¼
Xn

j¼1

Xn

h¼1;h 6¼j

CE
 zljk; z
l
hk


 �
þ kwl

k ¼ 0;

oFl wl
k; k

� �

ok
¼
Xm

k¼1

wl2
k � 1 ¼ 0:

8
>>>><

>>>>:

ð17Þ

By solving Eq. (17), the optimal weights of criteria can

be identified as

wl

k ¼

Pn
j¼1

Pn
h¼1;h 6¼j CE


 zljk; z
l
hk


 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

k¼1

Pn
j¼1

Pn
h¼1;h6¼j CE


 zljk; z
l
hk


 �
 �2
r : ð18Þ

To normalize wl

k ðl ¼ 1; 2; . . .; qÞ be a unit, the final

weights of criteria can be calculated as

wl
k¼

wl

kPm

k¼1 w
l

k

¼
Pn

j¼1

Pn
h¼1;h 6¼j CE


 zljk; z
l
hk


 �

Pm
k¼1

Pn
j¼1

Pn
h¼1;h 6¼j CE


 zljk; z
l
hk


 � :

ð19Þ

Motivated by the closeness coefficient of TOPSIS [63]

and the variation coefficient approach [64, 65], an objective

weight determination method for DMs can be developed

based on the proposed cross-entropy measurement in the

following.

1. Determine the PIS and NIS.

The PIS and NIS can be identified as zþ ¼
f1ð1Þg; f0ð0Þg; f0ð0Þgh i and z� ¼ f0ð0Þg; f1ð1Þg;h
f1ð1Þgi, respectively.

2. Calculate the overall weighted cross-entropy measure-

ment between zljk and zþ/z� in each decision matrix

Rl ¼ zljk


 �

n�m
ðl ¼ 1; 2; . . .; qÞ.

According to the cross-entropy of PMVNNs given in

Definition 9, the overall weighted cross-entropy mea-

surement between zljk and zþ/z� can be obtained as

follows:
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Clþ ¼
Xm

k¼1

wl
k

Xn

j¼1

CE
 zljk; z
þ


 �
 !

and

Cl� ¼
Xm

k¼1

wl
k

Xn

j¼1

CE
 zljk; z
�


 �
 !

:

ð20Þ

3. Determine the closeness degree of each DM.

According to the closeness coefficient of TOPSIS

method, the closeness degree of DM dl l ¼ 1; 2; . . .; qð Þ
can be calculated as follows:

ul ¼ Cl�

Clþ þ Cl� : ð21Þ

The larger the value of ul, the larger the closeness

degree of criteria values involved in decision matrix

Rl ¼ zljk


 �

n�m
ðl ¼ 1; 2; . . .; qÞ will be, and accordingly

the more precise the evaluation provided by DM dl,

which suggests DM dl provides less conflicting and

controversial information and acts a relatively impor-

tant role in decision-making procedure, and thus a

greater weight should be endowed with DM dl. The

above discussion is consistent with the main principle

of DMs weight determination.

4. Calculate the final weights of DMs.

The final weight of DM dl l ¼ 1; 2; . . .; qð Þ can be

obtained as

vl ¼
ul

Pq
l¼1 u

l
: ð22Þ

5.2 A MCGDM method based on PMVNNWA

operator and QUALIFLEX with PMVNNs

According to the above analysis, the proposed probability

multi-valued neutrosophic aggregation operator and TOP-

SIS-based QUALIFLEX method are integrated to develop

a MCGDM method, and its main procedure can be

described as follows:

Step 1 Normalize the evaluation information.

It is necessary to normalize all evaluation values to the

same magnitude grade to eliminate the influence of dif-

ferent dimensions in the operation process. The normal-

ization of decision matrix needs to consider the criteria

type and probability distribution simultaneously, and the

complement set and Eq. (3) can be employed as follows:

z0jkl ¼
T ~Pt

jkl


 �
; I ~Pi

jkl


 �
;F ~Pf

jkl


 �D E
; for benefit criterion ck

F ~Pf
jkl


 �
;I ~Pi

jkl


 �
;T ~Pt

jkl


 �D E
; for cost criterion ck

8
><

>:

ð23Þ

And the normalized decision matrix is expressed as

Rl0 ¼ z0jkl


 �

n�m
ðl ¼ 1; 2; . . .; qÞ.

Step 2 Determine the criteria weights in each decision

matrix Rl0 ¼ z0jkl


 �

n�m
ðl ¼ 1; 2; . . .; qÞ.

The criteria weights wl
kðk ¼ 1; 2; . . .;m; l ¼ 1; 2; . . .; qÞ

in each decision matrix Rl0 ¼ z0jkl


 �

n�m
ðl ¼ 1; 2; . . .; qÞ can

be obtained using model (M-1).

Step 3 Determine the weights associated to DMs.

The DMs weights vl l ¼ 1; 2; . . .; qð Þ can be obtained

using Eq. (22).

Step 4 Calculate the collective weights of criteria.

After obtaining the criteria weights wl
kðk ¼

1; 2; . . .;m; l ¼ 1; 2; . . .; qÞ in individual decision matrix

and the DM weights vl l ¼ 1; 2; . . .; qð Þ, the collective

weight of criteria wk k ¼ 1; 2; . . .;mð Þ can be calculated as

wk ¼
Xq

l¼1

wl
kvl: ð24Þ

Step 5 Obtain the collective evaluation information.

The individual evaluation values z0jkl can be aggregated

by utilizing the PMVNNWA operator, and the collective

evaluation matrix R ¼ zjk
� �

n�m
can be acquired.

Step 6 List all of the possible permutations for the

alternatives.

List n! permutations for the n alternatives, and the qth

permutation can be denoted by Pq.

Step 7 Obtain all of the concordance/discordance indices

for the pairwise alternatives under each criterion.

The concordance/discordance index uk
qðaa; abÞ for the

pairwise alternatives ðaa; abÞ ðaa; ab 2 AÞ under each cri-

terion ckðk ¼ 1; 2; . . .;mÞ can be obtained by using

Eq. (12), and the total concordance/discordance index

matrix can be constructed.

Step 8 Compute the comprehensive concordance/discor-

dance index.

The comprehensive concordance/discordance index uq

for each permutation Pq can be calculated using Eq. (14).

Step 9 Determine the final ranking of all alternatives.

The optimal ranking can be obtained using Eq. (15), and

then the final ranking of all alternatives can be determined.
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6 Illustrative example

In this section, an illustrative example in the form of

logistics outsourcing problem is provided in order to

highlight the applicability of the proposed method. Fur-

thermore, the method’s availability and strengths are con-

firmed through the comparative analysis with other existing

methods.

The following background is adapted from Wang et al.

[66]. Logistics has been taken seriously by lots of com-

panies due to its great influence on business operations.

More and more companies choose to outsource logistics to

third party logistics providers because of the numerous

advantages of logistics outsourcing, such as increased

competitiveness, professional services, improved perfor-

mance and reductions in cost. The selection of a third party

logistics provider is one of a business’ most important

decision-making projects. Numerous companies plan to

implement logistics outsourcing to improve operational

efficiency and lower costs.

ABC Machinery Manufacturing Co., Ltd. is a medium-

sized automotive component manufacturer in China that is

mainly involved in the exploitation, manufacture and sale of

automotive components and mechanical products. The com-

pany’s management team has decided to select a third party

logistics provider for logistics outsourcing. A professional

team was formed to assist in decision-making, consisting of a

general manager, a logistics manager and a production

manager, denoted by d1; d2; d3f g, whose weight vector is

v ¼ v1; v2; v3ð Þ. Initially, information on some logistics pro-

viders was collected. After preliminary filtrating, many

unqualified alternatives were weeded out, and four potential

logistics providers remained, denoted by a1; a2; a3; a4f g. The
professional team chose the following four criteria to evaluate

these alternatives: c1, information and equipment systems; c2,

service; c3, quality; c4, relationship. The weight vector of the

four criteria is w ¼ w1;w2;w3;w4ð Þ. The weights of criteria
and DMs are completely unknown. Moreover, the evaluation

information can be collected in the form of PMVNNs in

Tables 1, 2 and 3.

6.1 An illustration of the proposed method

The main procedures for evaluating the four logistics

providers can be summarized in the following steps. Let

CE
 /1;/2ð Þ ¼ CE

1 /1;/2ð Þ, here.

Table 1 Decision matrix of d1

c1 c2

a1 f0:4ð0:6Þ; 0:6ð0:2Þg; f0:4ð0:6Þg; f0:3ð0:4Þ; 0:4ð0:5Þgh i f0:3ð0:4Þ; 0:6ð0:4Þg; f0:5ð0:5Þ; 0:6ð0:4Þg; f0:3ð0:4Þgh i
a2 f0:5ð0:4Þ; 0:6ð0:3Þg; f0:4ð0:2Þ; 0:6ð0:5Þg; f0:3ð0:4Þgh i f0:6ð0:5Þg; f0:4ð0:3Þ; 0:6ð0:5Þg; f0:4ð0:6Þ; 0:6ð0:3Þgh i
a3 f0:5ð0:7Þg; f0:4ð0:3Þ; 0:5ð0:4Þg; f0:4ð0:3Þ; 0:6ð0:5Þgh i f0:4ð0:5Þ; 0:6ð0:5Þg; f0:5ð0:6Þg; f0:4ð0:4Þ; 0:5ð0:4Þgh i
a4 f0:5ð0:3Þg; f0:2ð0:1Þ; 0:4ð0:5Þ; 0:6ð0:2Þg; f0:5ð0:7Þgh i f0:6ð0:5Þg; f0:4ð0:5Þ; 0:6ð0:5Þg; f0:5ð0:3Þ; 0:6ð0:5Þgh i

c3 c4

a1 f0:7ð0:5Þ; 0:8ð0:5Þg; f0:3ð0:5Þ; 0:4ð0:4Þg; f0:5ð0:6Þgh i f0:5ð0:4Þ; 0:7ð0:6Þg; f0:3ð0:5Þ; 0:5ð0:4Þg; f0:5ð0:4Þgh i
a2 f0:7ð0:3Þ; 0:8ð0:5Þg; f0:4ð0:6Þg; f0:4ð0:5Þ; 0:6ð0:4Þgh i f0:6ð0:4Þ; 0:8ð0:4Þg; f0:4ð0:2Þ; 0:6ð0:5Þg; f0:5ð0:3Þgh i
a3 f0:6ð0:5Þg; f0:4ð0:5Þ; 0:5ð0:3Þg; f0:4ð0:5Þ; 0:6ð0:4Þgh i f0:6ð0:5Þg; f0:5ð0:4Þ; 0:6ð0:4Þg; f0:5ð0:6Þ; 0:6ð0:4Þgh i
a4 f0:6ð0:3Þ; 0:8ð0:5Þg; f0:4ð0:6Þg; f0:5ð0:3Þ; 0:6ð0:5Þgh i f0:6ð0:5Þ; 0:8ð0:4Þg; f0:4ð0:6Þg; f0:4ð0:5Þ; 0:5ð0:4Þgh i

Table 2 Decision matrix of d2

c1 c2

a1 f0:6ð0:5Þg; f0:4ð0:2Þ; 0:6ð0:6Þg; f0:4ð0:6Þ; 0:6ð0:2Þgh i f0:5ð0:4Þ; 0:7ð0:4Þg; f0:6ð0:4Þg; f0:4ð0:6Þ; 0:5ð0:4Þgh i
a2 f0:3ð0:4Þg; f0:5ð0:4Þg; f0:2ð0:2Þ; 0:4ð0:5Þ; 0:6ð0:3Þgh i f0:5ð0:6Þg; f0:6ð0:4Þg; f0:5ð0:3Þ; 0:6ð0:4Þ; 0:7ð0:2Þgh i
a3 f0:4ð0:6Þ; 0:6ð0:2Þg; f0:6ð0:3Þg; f0:5ð0:4Þ; 0:6ð0:5Þgh i f0:6ð0:4Þ; 0:8ð0:4Þg; f0:5ð0:3Þ; 0:7ð0:5Þg; f0:5ð0:4Þgh i
a4 f0:5ð0:4Þ; 0:6ð0:4Þg; f0:5ð0:3Þg; f0:3ð0:4Þ; 0:6ð0:5Þgh i f0:7ð0:5Þg; f0:5ð0:6Þ; 0:6ð0:3Þg; f0:5ð0:6Þgh i

c3 c4

a1 f0:5ð0:3Þ; 0:6ð0:5Þg; f0:4ð0:4Þ; 0:6ð0:6Þg; f0:3ð0:6Þgh i f0:6ð0:6Þg; f0:3ð0:5Þg; f0:4ð0:4Þ; 0:5ð0:3Þ; 0:6ð0:3Þgh i
a2 f0:5ð0:4Þ; 0:6ð0:3Þg; f0:5ð0:6Þ; 0:6ð0:3Þg; f0:5ð0:5Þgh i f0:5ð0:6Þ; 0:6ð0:4Þg; f0:4ð0:5Þ; 0:6ð0:3Þg; f0:3ð0:4Þgh i
a3 f0:5ð0:4Þ; 0:6ð0:5Þg; f0:5ð0:4Þ; 0:7ð0:5Þg; f0:5ð0:8Þgh i f0:4ð0:6Þ; 0:7ð0:4Þg; f0:3ð0:4Þ; 0:4ð0:6Þg; f0:5ð0:5Þgh i
a4 f0:5ð0:6Þg; f0:5ð0:5Þg; f0:4ð0:2Þ; 0:6ð0:5Þ; 0:7ð0:3Þgh i f0:5ð0:5Þ; 0:7ð0:5Þg; f0:5ð0:4Þg; f0:4ð0:6Þ; 0:6ð0:3Þgh i
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Step 1 Normalize the evaluation information.

Taking into account all of the criteria are the benefit type

and some incomplete probability distribution exists in the

provided evaluation values, then the decision matrices need

to be normalized using Eq. (3). Because of the space lim-

itation, the normalized decision matrices are omitted here.

Step 2 Determine the criteria weights in each decision

matrix Rl0 ¼ z0jkl


 �

n�m
ðl ¼ 1; 2; 3Þ.

Using Eqs. (18) and (19), the criteria weights in each

decision matrix can be obtained, as shown in Table 4.

Step 3 Determine the weights associated to DMs.

According to the procedures of determining DMs

weights described in Sect. 5, the weight for DMs can be

obtained as vl ¼ 0:3539; 0:3204; 0:3257ð Þ.

Step 4 Calculate the collective weights of criteria.

Based on the acquired criteria weights wl
kðk ¼

1; 2; 3; 4; l ¼ 1; 2; 3Þ in individual decision matrix and the

DM weights vl l ¼ 1; 2; 3ð Þ, the collective weight vector of

criteria can be calculated using Eq. (24) as

wk ¼ 0:2242; 0:2628; 0:2184; 0:2946ð Þ.

Step 5 Obtain the collective evaluation information.

The evaluation information provided by individual DM

can be aggregated by utilizing the PMVNNWA operator,

and the comprehensive evaluation information can be

acquired, as shown in Table 5.

Step 6 List all of the possible permutations for the

alternatives.

Because four alternatives are provided, 4! ¼ 24 permu-

tations can be listed in the following, where Pq represents

the qth permutation.

P1 ¼ ða1; a2; a3; a4Þ; P2 ¼ ða1; a2; a4; a3Þ;
P3 ¼ ða1; a3; a2; a4Þ; P4 ¼ ða1; a3; a4; a2Þ;
P5 ¼ ða1; a4; a2; a3Þ;
P6 ¼ ða1; a4; a3; a2Þ; P7 ¼ ða2; a1; a3; a4Þ;
P8 ¼ ða2; a1; a4; a3Þ; P9 ¼ ða2; a3; a1; a4Þ;
P10 ¼ ða2; a3; a4; a1Þ;
P11 ¼ ða2; a4; a1; a3Þ; P12 ¼ ða2; a4; a3; a1Þ;
P13 ¼ ða3; a1; a2; a4Þ; P14 ¼ ða3; a1; a4; a2Þ;
P15 ¼ ða3; a2; a1; a4Þ;
P16 ¼ ða3; a2; a4; a1Þ; P17 ¼ ða3; a4; a1; a2Þ
P18 ¼ ða3; a4; a2; a1Þ; P19 ¼ ða4; a1; a2; a3Þ;
P20 ¼ ða4; a1; a3; a2Þ;
P21 ¼ ða4; a2; a1; a3Þ; P22 ¼ ða4; a2; a3; a1Þ;
P23 ¼ ða4; a3; a1; a2Þ and P24 ¼ ða4; a3; a2; a1Þ:

Step 7 Obtain all of the concordance/discordance indices

for the pairwise alternatives under each criterion.

By using Eq. (12), the concordance/discordance index

uk
qðaa; abÞ for the pairwise alternatives ðaa; abÞ ðaa; ab 2

fa1; a2; a3; a4gÞ under each criterion ckðk ¼ 1; 2; 3; 4Þ can

be obtained, and the total concordance/discordance indices

are shown in Table 6.

Step 8 Compute the comprehensive concordance/discor-

dance index.

Table 3 Decision matrix of d3

c1 c2

a1 f0:5ð0:4Þ; 0:7ð0:4Þg; f0:5ð0:6Þ; 0:7ð0:4Þg; f0:6ð0:3Þgh i f0:4ð0:6Þg; f0:6ð0:4Þ; 0:7ð0:3Þg; f0:5ð0:3Þ; 0:7ð0:6Þgh i
a2 f0:5ð0:4Þ; 0:6ð0:4Þg; f0:5ð0:4Þg; f0:4ð0:6Þ; 0:6ð0:4Þgh i f0:4ð0:5Þ; 0:5ð0:3Þg; f0:5ð0:5Þ; 0:6ð0:4Þg; f0:4ð0:6Þgh i
a3 f0:3ð0:4Þ; 0:5ð0:4Þg; f0:4ð0:4Þ; 0:5ð0:6Þg; f0:3ð0:4Þgh i f0:6ð0:4Þg; f0:5ð0:3Þg; f0:4ð0:5Þ; 0:5ð0:4Þgh i
a4 f0:4ð0:4Þ; 0:5ð0:6Þg; f0:4ð0:4Þg; f0:5ð0:4Þ; 0:6ð0:2Þgh i f0:5ð0:6Þ; 0:7ð0:4Þg; f0:4ð0:3Þg; f0:3ð0:4Þ; 0:5ð0:5Þgh i

c3 c4

a1 f0:4ð0:5Þg; f0:3ð0:4Þg; f0:3ð0:2Þ; 0:5ð0:5Þ; 0:6ð0:3Þgh i f0:3ð0:4Þ; 0:5ð0:6Þg; f0:7ð0:6Þg; f0:5ð0:4Þ; 0:6ð0:6Þgh i
a2 f0:7ð0:4Þg; f0:4ð0:6Þ; 0:7ð0:3Þg; f0:4ð0:5Þ; 0:5ð0:5Þgh i f0:4ð0:6Þg; f0:4ð0:5Þg; f0:4ð0:3Þ; 0:5ð0:5Þ; 0:6ð0:2Þgh i
a3 f0:4ð0:5Þ; 0:6ð0:5Þg; f0:4ð0:5Þg; f0:6ð0:4Þ; 0:8ð0:5Þgh i f0:4ð0:4Þ; 0:5ð0:4Þg; f0:5ð0:6Þg; f0:3ð0:5Þ; 0:5ð0:5Þgh i
a4 f0:6ð0:5Þ; 0:8ð0:5Þg; f0:4ð0:6Þ; 0:6ð0:4Þg; f0:5ð0:3Þgh i f0:8ð0:5Þg; f0:4ð0:5Þ; 0:6ð0:3Þ; 0:8ð0:2Þg; f0:3ð0:4Þgh i

Table 4 Criteria weights wl
kðk ¼ 1; 2; 3; 4; l ¼ 1; 2; 3Þ in each deci-

sion matrix

wl
1 wl

2 wl
3 wl

4

R1 0.2751 0.2730 0.2181 0.2338

R2 0.2255 0.3346 0.2033 0.2366

R3 0.1676 0.1810 0.2334 0.4180
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Table 5 Comprehensive evaluation information

c1

a1 f0:50ð0:3Þ; 0:57ð0:22Þ; 0:58ð0:27Þ; 0:64ð0:21Þg; f0:43ð0:25Þ; 0:48ð0:20Þ; 0:49ð0:30Þ; 0:55ð0:25Þg;h
f0:41ð0:27Þ; 0:47ð0:23Þ; 0:52ð0:23Þ; 0:46ð0:27Þgi

a2 f0:44ð0:27Þ; 0:49ð0:24Þ; 0:48ð0:26Þ; 0:52ð0:23Þg; f0:46ð0:47Þ; 0:53ð0:53Þg;h
f0:29ð0:18Þ; 0:33ð0:14Þ; 0:36ð0:20Þ; 0:41ð0:16Þg; 0:41ð0:18Þ; 0:47ð0:14Þgi

a3 f0:41ð0:30Þ; 0:48ð0:22Þ; 0:47ð0:27Þ; 0:53ð0:21Þg; f0:46ð0:23Þ; 0:49ð0:26Þ; 0:49ð0:24Þ; 0:53ð0:27Þgh
f0:39ð0:24Þ; 0:41ð0:25Þ; 0:48ð0:26Þ; 0:45ð0:25Þgi

a4 f0:47ð0:25Þ; 0:51ð0:24Þ; 0:50ð0:26Þ; 0:53ð0:25Þg; f0:34ð0:33Þ; 0:43ð0:35Þ; 0:50ð0:31Þg;h
f0:42ð0:28Þ; 0:45ð0:21Þ; 0:53ð0:29Þ; 0:56ð0:22Þgi

c2

a1 f0:40ð0:26Þ; 0:51ð0:25Þ; 0:49ð0:25Þ; 0:58ð0:24Þg; f0:56ð0:27Þ; 0:59ð0:24Þ; 0:60ð0:26Þ; 0:63ð0:23Þg;h
f0:39ð0:23Þ; 0:43ð0:29Þ; 0:42ð0:21Þ; 0:47ð0:27Þgi

a2 f0:51ð0:53Þ; 0:54ð0:47Þg;h f0:49ð0:25Þ; 0:52ð0:22Þ; 0:57ð0:28Þ; 0:60ð0:25Þg;
f0:43ð0:18Þ; 0:46ð0:18Þ; 0:48ð0:17Þ; 0:50ð0:16Þg; 0:53ð0:16Þ; 0:55ð0:15Þgi

a3 f0:54ð0:26Þ; 0:60ð0:25Þ; 0:63ð0:25Þ; 0:68ð0:24Þg;h f0:50ð0:48Þ; 0:56ð0:52Þg;
f0:43ð0:26Þ; 0:46ð0:24Þ; 0:46ð0:26Þ; 0:50ð0:24Þgi

a4 f0:61ð0:54Þ; 0:67ð0:46Þg;h f0:43ð0:27Þ; 0:50ð0:26Þ; 0:46ð0:24Þ; 0:53ð0:23Þg;
f0:42ð0:23Þ; 0:50ð0:24Þ; 0:45ð0:26Þ; 0:53ð0:27Þgi

c3

a1 f0:56ð0:24Þ; 0:62ð0:24Þ; 0:59ð0:26Þ; 0:64ð0:26Þg;h f0:33ð0:25Þ; 0:36ð0:24Þ; 0:37ð0:26Þ; 0:41ð0:25Þg;
f0:36ð0:33Þ; 0:42ð0:36Þ; 0:45ð0:31Þgi

a2 f0:65ð0:24Þ; 0:69ð0:27Þ; 0:67ð0:23Þ; 0:71ð0:26Þg;h f0:43ð0:31Þ; 0:52ð0:23Þ; 0:46ð0:27Þ; 0:55ð0:19Þg;
f0:43ð0:26Þ; 0:46ð0:25Þ; 0:50ð0:25Þ; 0:53ð0:24Þgi

a3 f0:51ð0:26Þ; 0:54ð0:26Þ; 0:57ð0:24Þ; 0:60ð0:24Þg;h f0:43ð0:26Þ; 0:46ð0:24Þ; 0:48ð0:26Þ; 0:52ð0:24Þg;
f0:49ð0:25Þ; 0:54ð0:26Þ; 0:57ð0:24Þ; 0:62ð0:25Þgi

a4 f0:57ð0:24Þ; 0:66ð0:28Þ; 0:66ð0:22Þ; 0:73ð0:26Þg;h f0:43ð0:54Þ; 0:49ð0:46Þg;
f0:47ð0:16Þ; 0:53ð0:17Þ; 0:56ð0:16Þ; 0:50ð0:17Þ; 0:57ð0:18Þ; 0:59ð0:17Þgi

c4

a1 f0:48ð0:47Þ; 0:57ð0:53Þg;h f0:40ð0:51Þ; 0:47ð0:49Þg;
f0:47ð0:16Þ; 0:50ð0:15Þ; 0:53ð0:15Þ; 0:49ð0:19Þg; 0:54ð0:18Þ; 0:56ð0:18Þgi

a2 f0:51ð0:27Þ; 0:62ð0:26Þ; 0:54ð0:24Þ; 0:64ð0:23Þg;h f0:40ð0:25Þ; 0:46ð0:28Þ; 0:46ð0:22Þ; 0:53ð0:25Þg;
f0:39ð0:34Þ; 0:42ð0:37Þ; 0:45ð0:30Þgi

a3 f0:48ð0:28Þ; 0:58ð0:23Þ; 0:51ð0:26Þ; 0:61ð0:23Þg;h f0:42ð0:25Þ; 0:45ð0:24Þ; 0:47ð0:26Þ; 0:50ð0:25Þg;
f0:42ð0:27Þ; 0:50ð0:26Þ; 0:45ð0:24Þ; 0:53ð0:23Þgi

a4 f0:66ð0:27Þ; 0:73ð0:24Þ; 0:71ð0:26Þ; 0:77ð0:24Þg;h f0:43ð0:38Þ; 0:49ð0:33Þ; 0:54ð0:29Þg;
f0:36ð0:27Þ; 0:41ð0:24Þ; 0:39ð0:26Þ; 0:45ð0:23Þgi
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Equation (14) can be employed to calculate the com-

prehensive concordance/discordance index uq for each

permutation Pq. For example, the comprehensive concor-

dance/discordance index u1 for the permutation P1 can be

obtained as

u1¼
X4

k¼1

wk uk
1ða1;a2Þþuk

1ða1;a3Þþuk
1ða1;a4Þþuk

1ða2;a3Þ
�

þuk
1ða2;a4Þþuk

1ða3;a4Þ
�

¼0:2242� 0:0429þ0:0113þ0:0171�0:0315�0:0257þ0:0058ð Þ
¼0:2628� �0:0886þ0:0353�0:1154þ0:1239�0:0268�0:1507ð Þ
¼0:2184� �0:0082þ0:0149þ0:0260þ0:0231þ0:0342þ0:0111ð Þ
¼0:2946� 0:0312þ0:0446þ0:0312þ0:0134�0:0001�0:0134ð Þ
¼�0:0003

And the comprehensive concordance/discordance

index for other permutations Pq can be obtained in the

same way.

u2 ¼ 0:0793; u3 ¼ �0:0693; u4 ¼ �0:0586;

u5 ¼ 0:0900; u6 ¼ 0:0211; u7 ¼ 0:0122; u8 ¼ 0:0918;

u9 ¼ �0:0443; u10 ¼ �0:0211; u11 ¼ 0:1150;

u12 ¼ 0:0586; u13 ¼ �0:1257; u14 ¼ �0:1150; u15 ¼ �0:1132;

u16 ¼ �0:0900; u17 ¼ �0:0918; u18 ¼ �0:0793;

u19 ¼ 0:1132; u20 ¼ 0:0443; u21 ¼ 0:1257; u22 ¼ 0:0693;

u23 ¼ �0:0122 and u24 ¼ 0:0003:

Step 9 Determine the final ranking of all alternatives.

By using Eq. (15), the optimal ranking can be obtained,

u
 ¼ max24l¼1 ulf g ¼ u21, and P
 ¼ P21 ¼ ða4; a2; a1;
a3Þ:

Therefore, the final ranking of all alternatives is identi-

fied as a4 � a2 � a1 � a3, with an optimum logistics pro-

vider a4.

Moreover, when CE
 /1;/2ð Þ ¼ CE

2 /1;/2ð Þ is used in

the above steps, the ranking result a4 � a2 � a1 � a3 can

also be obtained.

6.2 Comparative analysis and discussion

In order to further verify the feasibility and validity of the

proposed method, the following comparative studies are

conducted using other extant methods and the discussion is

based on the same illustrative example described above in

the context of MVNNs and SNNs.

In the method developed by Peng et al. [55], two

aggregation operators, including MVNPWA and

MVNPWG, are employed to fuse evaluation information,

and then the alternatives are ranked utilizing the score

function and accuracy function.

Wu et al.’s method [52] defined the simplified neutro-

sophic number prioritized weighted average (SNNPWA)

and simplified neutrosophic number prioritized weighted

geometric (SNNPWG) operators, and proposed two cross-

entropy measurements for SNNs. This method can be

adjusted to address MCGDM problems by using the pro-

posed operators to aggregate individual and comprehensive

evaluation values.

Peng et al.’s method [38] defined a novel operations and

provided a comparison method for SNNs after discussing

the drawbacks of the existing studies of SNNs, and then

several SNN aggregation operators were proposed to fuse

evaluation information, such as generalized simplified

neutrosophic number weighted average (GSNNWA)

operator and generalized simplified neutrosophic number

weighted geometric (GSNNWG) operator. Now, the above

illustrative example is addressed utilizing the three extant

methods.

First, PMVNNs should be transformed into MVNNs and

SNNs. To better retain the fuzziness of original informa-

tion, PMVNNs can be converted into MVNNs when mul-

tiplying the value of degree by its corresponding

probability. And SNNs can be obtained by calculating the

average values of all possible truth-membership, indeter-

minacy-membership and falsity-membership degrees in

MVNNs, respectively. Let a ¼ [ftaðptÞg;[fiaðpiÞg;h
[ffaðpf Þgi be a PMVNN, then ~a ¼ [fta � ptg;h [fia �

pig;[ffa � pf gi is a MVNN, and ~~a ¼
P

ta�pt

#ta
;




P
ia�pi

#ia
;

P
fa�pf

#fa
i is a SNN. For example, the PMVNN a ¼

f0:3ð0:4Þ; 0:5ð0:4Þg; f0:4ð0:4Þ; 0:5ð0:6Þg; f0:3ð0:4Þgh i can

Table 6 Concordance/discordance indices

c1 c2 c3 c4

uk
qða1; a2Þ 0.0429 -0.0886 -0.0082 0.0312

uk
qða1; a3Þ 0.0113 0.0353 0.0149 0.0446

uk
qða1; a4Þ 0.0171 -0.1154 0.0260 0.0312

uk
qða2; a1Þ -0.0429 0.0886 0.0082 -0.0312

uk
qða2; a3Þ -0.0315 0.1239 0.0231 0.0134

uk
qða2; a4Þ -0.0257 -0.0268 0.0342 -0.0001

uk
qða3; a1Þ -0.0113 -0.0353 -0.0149 -0.0446

uk
qða3; a2Þ 0.0315 -0.1239 -0.0231 -0.0134

uk
qða3; a4Þ 0.0058 -0.1507 0.0111 -0.0134

uk
qða4; a1Þ -0.0171 0.1154 -0.0260 -0.0312

uk
qða4; a2Þ 0.0257 0.0268 -0.0342 0.0001

uk
qða4; a3Þ -0.0058 0.1507 -0.0111 0.0134
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be transformed into the MVNN ~a ¼
f0:12; 0:20g; f0:16; 0:30g; f0:12gh i and the SNN
~~a ¼ 0:16; 0:23; 0:12h i.

The ranking results acquired utilizing different methods

are shown in Table 7.

As it is shown in Table 7, the ranking results derived

from the three extant methods are inconsistent with the

results obtained by the method proposed in this paper. The

main differences between the three extant methods and the

proposed method are summarized as follows.

First, Peng et al.’s method [55] employs MVNNs, Wu

et al.’s method [52] and Peng et al.’s method [38] use

SNNs to depict decision-making information, while the

proposed method introduces a new descriptor, that is,

PMVNNs, to present actual decision-making information.

Comparing with MVNNs and SNNs, PMVNNs can

characterize the features, such as probability degree,

importance, weight or belief degree, of all given possible

values according to the principle of probability distribu-

tion. Second, there are essential differences in operations

and aggregation operators between the three extant

methods and the proposed method. The operations of

MVNNs are defined based on the Einstein operations,

and the power aggregation operators are proposed to fuse

information in Ref. [55], and the operations of SNNs are

defined based on the Archimedean t-conorm and t-norm

in Ref. [38], as well as two prioritized aggregation

operators are proposed in Ref. [52], while the operations

of PMVNNs in this paper are defined based on the

convex combination operations and the corresponding

weighted average operator is developed to deal with

evaluation information. Third, the importance of criteria

and DMs is subjectively provided in advance in Refs.

[38, 55], and the criteria’ weights are determined by the

prioritized operator in Ref. [52], while the proposed

method construct two objective cross-entropy-based

models to calculate the optimal weights, which eliminates

DMs’ subjectivity and is greatly feasible and useful in

practical problems. Finally, there are essential difference

in determining the final ranking between the three extant

methods and the proposed method. Peng et al.’s method

[55] and [38] employed the score function and accuracy

function to compare different alternatives, while the

proposed method incorporates the cross-entropy mea-

surement and closeness coefficient of TOPSIS into the

QUALIFLEX method, and a novel ranking method is

developed to obtain the final alternatives’ ranking. When

comparing different alternatives presented by MVNNs or

PMVNNs, the ranking results obtained by the proposed

method using the cross-entropy measurement and domi-

nance theory are more convincing than the score function

and accuracy function because of the existence of hesi-

tant values. And compared with Wu et al.’s method [52],

which simply used the cross-entropy to determine the

final ranking, the proposed method is more comprehen-

sive and reliable because the QUALIFLEX method can

systematically compare the pairwise alternatives based on

the dominance theory.

Based on the above analysis, the advantages of the

proposed method are summarized as follows:

1. This paper introduces PMVNSs to represent DMs’

evaluation information. As an extension of SNNs and

MVNNs, PMVNSs are more capable of describing

uncertain, incomplete, inconsistent and hesitant deci-

sion-making information and reflecting the probabili-

ties, importance and weights of all provided values.

2. The proposed method integrates the aggregation oper-

ators and the TOPSIS-based QUALIFLEX method,

thereby establishing a robust and innovative model to

address MCGDM problems. After the individual

evaluation information is aggregated, the developed

QUALIFLEX method is used to rank all alternatives,

reducing the computational load required when only

the aggregation operators are employed to handle

MCGDM problems involved hesitant values. More-

over, compared with the score function and accuracy

function for PMVNSs, the ranking results obtained by

the novel TOPSIS-based QUALIFLEX method using

the dominance theory are more reliable.

3. This paper develops two objective cross-entropy-based

methods for DMs and criteria weights determination,

which eliminates the subjectivity existed in the weights

information are directly provided in advance. This is

Table 7 Rankings results

acquired utilizing different

methods

Methods Rankings results

Peng et al.’s method with the MVNPWA operator [55] a4 � a3 � a1 � a2

Peng et al.’s method with the MVNPWG operator [55] a4 � a3 � a2 � a1

Wu et al.’s method with the SNNPWA operator [52] a3 � a1 � a2 � a4

Wu et al.’s method with the SNNPWG operator [52] a3 � a2 � a1 � a4

Peng et al.’s method with the GSNNWA operator [38] a4 � a3 � a1 � a2

Peng et al.’s method with the GSNNWG operator [38] a4 � a3 � a1 � a2

The proposed method a4 � a2 � a1 � a3
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greatly useful in situation where weights information

cannot be identified explicitly and can guarantee the

accuracy of the final results to some extent.

4. Many factors involved in complicated MCGDM prob-

lems, such as the information description, information

fusion, information measurement, completely

unknown weight information and ranking principle,

are considered synthetically in the proposed method.

It is undeniable that some tedious calculations are

required when the proposed method is employed to address

decision-making problems with a large number of alter-

natives. Nevertheless, the computing workload can be

greatly reduced with the assistance of programming tools

such as MATLAB.

7 Conclusion

Taking into account the existing shortage of MVNSs, this

paper proposed the concept of PMVNSs by introducing

probability distribution to character the features of all pro-

vided values. Based on the related studies of convex com-

bination operations, the operation and the corresponding

aggregation operator for PMVNSs were proposed. More-

over, a novel TOPSIS-based QUALIFLEX method was

developed based on the cross-entropy measures of

PMVNSs. And then, an innovative MCGDM approach was

established. Finally, the feasibility and effectiveness of the

proposed method were tested through an illustrative exam-

ple of logistics outsourcing, and the comparative analysis

demonstrated that the proposed method can provide more

precise outcomes than other existing methods.

The main contributions of this research are summarized

as follows. First, MVNSs and probability distribution are

combined using PMVNSs, which can reliably depict the

uncertain, incomplete, inconsistent and hesitant decision-

making information and reflect the distribution character-

istics of all provided values. Second, two cross-entropy-

based methods are developed to objectively acquire the

weight information of DMs and criteria, which eliminates

DMs’ subjectivity and has great power to address practical

problems with undeterminable weight information. Finally,

an innovative method is established by integrating the

proposed aggregation operator and developed QUALI-

FLEX method, which not only reduces the workload of

calculation, but also successfully imposes the effective

ranking function of the QUALIFLEX method.

Future research will focus on applying the proposed

approach to more practical decision-making problems,

such as green product development and medical treatment

options selection. Moreover, we will consider conducting

some meaningful studies on the concept of neutrosophic

probability [67], which has some similar characteristics

with PMVNSs.
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49. Şahin R, Küçük A (2015) Subsethood measure for single valued

neutrosophic sets. J Intell Fuzzy Syst 29(2):525–530
50. Ye J (2014) A multicriteria decision-making method using

aggregation operators for simplified neutrosophic sets. J Intell

Fuzzy Syst 26(5):2459–2466

51. Ye J (2014) Vector similarity measures of simplified neutro-

sophic sets and their application in multicriteria decision making.

Int J Fuzzy Syst 16(2):204–211

52. Wu XH, Wang J, Peng JJ, Chen XH (2016) Cross-entropy and

prioritized aggregation operator with simplified neutrosophic sets

and their application in multi-criteria decision-making problems.

Int J Fuzzy Syst. doi:10.1007/s40815-016-0180-2

53. Wang JQ, Li XE (2015) TODIM method with multi-valued

neutrosophic sets. Control Decis 30(6):1139–1142

54. Ye J (2014) Multiple-attribute decision-making method under a

single-valued neutrosophic hesitant fuzzy environment. J Intell

Syst 24(1):23–36

55. Peng JJ, Wang JQ, Wu XH, Wang J, Chen XH (2015) Multi-

valued neutrosophic sets and power aggregation operators with

their applications in multi-criteria group decision-making prob-

lems. Int J Comput Intell Syst 8(2):345–363

56. Liu PD, Zhang LL, Liu X, Wang P (2016) Multi-valued neu-

trosophic number Bonferroni mean operators with their applica-

tions in multiple attribute group decision making. Int J Inf

Technol Decis Mak 15(5):1181–1210

57. Ji P, Zhang HY, Wang JQ (2016) A projection-based TODIM

method under multi-valued neutrosophic environments and its

application in personnel selection. Neural Comput Appl. doi:10.

1007/s00521-016-2436-z

58. Peng JJ, Wang JQ, Wu XH (2016) An extension of the ELEC-

TRE approach with multi-valued neutrosophic information.

Neural Comput Appl. doi:10.1007/s00521-016-2411-8

59. Peng JJ, Wang JQ, Yang WE (2017) A multi-valued neutrosophic

qualitative flexible approach based on likelihood for multi-crite-

ria decision-making problems. Int J Syst Sci 48(2):425–435

60. Delgado M, Verdegay JL, Vila MA (1993) On aggregation

operations of linguistic labels. Int J Intell Syst 8(3):351–370

61. Wei CP, Zhao N, Tang XJ (2014) Operators and comparisons of

hesitant fuzzy linguistic term sets. IEEE Trans Fuzzy Syst

22(3):575–585

62. Paelinck JHP (1978) Qualiflex: a flexible multiple-criteria

method. Econ Lett 1(3):193–197

63. Chen SJ, Hwang CL (1992) Fuzzy multiple attribute decision

making: methods and applications. Springer, Berlin

Neural Comput & Applic

123

http://dx.doi.org/10.1155/2015/232919
http://dx.doi.org/10.1007/s13042-015-0461-3
http://dx.doi.org/10.1007/s13042-015-0461-3
http://dx.doi.org/10.1007/s10726-016-9479-5
http://dx.doi.org/10.1007/s13042-016-0552-9
http://dx.doi.org/10.1007/s13042-016-0552-9
http://dx.doi.org/10.1007/s00521-016-2479-1
http://dx.doi.org/10.1007/s00521-016-2479-1
http://dx.doi.org/10.1007/s00521-015-2163-x
http://dx.doi.org/10.1007/s00521-015-2131-5
http://dx.doi.org/10.1007/s40815-016-0180-2
http://dx.doi.org/10.1007/s00521-016-2436-z
http://dx.doi.org/10.1007/s00521-016-2436-z
http://dx.doi.org/10.1007/s00521-016-2411-8


64. Tian ZP, Wang J, Wang JQ, Zhang HY (2016) An improved

MULTIMOORA approach for multi-criteria decision-making

based on interdependent inputs of simplified neutrosophic lin-

guistic information. Neural Comput Appl. doi:10.1007/s00521-

016-2378-5

65. Yu L, Lai KK (2011) A distance-based group decision-making

methodology for multi-person multi-criteria emergency decision

support. Decis Support Syst 51(2):307–315

66. Wang J, Wang JQ, Zhang HY (2016) A likelihood-based TODIM

approach based on multi-hesitant fuzzy linguistic information for

evaluation in logistics outsourcing. Comput Ind Eng 99:287–299

67. Smarandache F (2013) Introduction to neutrosophic measure,

neutrosophic integral, and neutrosophic Probability. Infinite

study, pp 1–140

Neural Comput & Applic

123

http://dx.doi.org/10.1007/s00521-016-2378-5
http://dx.doi.org/10.1007/s00521-016-2378-5

	Probability multi-valued neutrosophic sets and its application in multi-criteria group decision-making problems
	Abstract
	Introduction
	Preliminaries
	NSs and SNSs
	Multi-valued neutrosophic sets

	Probability multi-valued neutrosophic sets and its operation
	Probability multi-valued neutrosophic sets
	Convex combination operation and aggregation operator of PMVNNs
	The weighted average aggregation operator with PMVNNs

	TOPSIS-based QUALIFLEX method with PMVNNs
	The comparison method of PMVNNs
	Cross-entropy of PMVNNs
	TOPSIS-based QUALIFLEX method with PMVNNs

	A MCGDM method under PMVNNs circumstance
	To determine the weights of criteria and DMs
	A MCGDM method based on PMVNNWA operator and QUALIFLEX with PMVNNs

	Illustrative example
	An illustration of the proposed method
	Comparative analysis and discussion

	Conclusion
	Acknowledgements
	References




