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Chapter 1

Introduction

1.1 Introduction

In this thesis we study the modified gravity theory and their late-time cosmo-
logical consequences. We concentrate on the disformal gravity theory. We also

investigate and review some of the related theories.

The modified gravity theories are still alive. It is alternative descriptions
of gravity to the standard Einstein’s General Relativity (GR). The latter is
very beautiful theory that is based on minimal assumptions and fits perfectly
to the experimental data [1]. There are still some good reasons in studying the
modified gravity such as the dark sector of universe e.g. dark matters and dark
energy, the cosmological constant problems , etc. Furthermore, modified gravity
models with non-minimal coupling between scalar matter and gravity such as

Starobinsky model gains recent observational support [2, 3].

1.2 Cosmology from General Relativity

In General Relativity(GR) the dynamics of the gravitational field g, (x) in
the presence of matter-energy contents are governed by the Einstein’s field
equation(EFE)

R, —(1/2)Rguy + A gy =81GT),. (1.1)
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This equation can be derived from applying Hamilton principle to the Einstein-

Hilbert action plus the matter action

— 1 4. /

The cosmological constant, A, is typically omitted from equations before the
discovery of the cosmic speed-up in 1998. The cosmological considerations based
on GR can be started by Friedmann-Lematre-Robertson-Walker (FLRW)

metric
dr?

T T drdQ| (1.3)

ds* = —dt* + a*(t) [

where £k = +1,—1,0 for closed, open, and flat universe, respectively, dQ =
df? +sin? dp?, t is the cosmic time. The scale factor, a(t) is an only dynamical

variable in this metric. By direct calculations we then obtain the Einstein

((2)+%) - (L1
Gij = —9ij (2; + <Z>2 + :2> : (1.5)

By using EFE (1.1) with the matter described by the perfect fluid e.g. the

tensor, G,

Goo

energy-momentum tensor
_[ p O
Tﬂ” - |: 0 i P :| ’ (]‘6)
which obeys the covariant conservation law
vV, T =0. (1.7)

The equations (1.4),(1.5) and (1.7) respectively give us the three fundamental

equations of cosmology

L\ 2
a 81G E A
() = 3 aty o (18)
a 4G A
- = == = 1.
u 3 (p+3p)+ 5, (1.9)
p + 3H(p+p)=0 , (1.10)

where p and p are the energy density and pressure of the matter. They are
the Friedmann equation, Raychaudhuri equation and conservation equation, re-

spectively. We will always setting k = 0, this is according to observations and
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da/dt

inflationary model, and H := % =~

. There are only two independent equa-
tions from the three. In order to solved the three unknowns a(t), p(t), and p(¢)

we need another independent equation namely the equation of state

p=wp , (1.11)

where w is called the equation of state parameter. It has different value
for different type of matter content. For dust or non-relativistic matter their
pressure is very small compared to their energy(p) so we have w = 0. For
relativistic particles, it move with velocity (v) closed to the speed of light (v ~ 1)
or radiation we can think of them as electromagnetic field so describe by the

energy-momentum tensor
1
Ti0" = 9 FouFpy — J0u Fap P’ (1.12)

which is traceless, g“”ﬂiM = 0 (we use the unit g9 = 1). From the traceless

property of energy-momentum tensor for radiations if we cast it as the perfect

fluid this condition reads —p + 3p = 0, so for radiations w = 1/3.

1.3 Dark Energy

From ACDM model the present epoch the universe is dominated by the cosmo-
logical constant [1], by equation (1.9) the universe will expand with acceleration
at late time as required by observational data . The another view is that A is an
effective quantity for describing accelerated universe. The underlying quantity
describes this phenomenon is another form of matter content called the dark
energy. The dynamics of the universe that describes by equation(1.9) in this
setting becomes
a G

C = (143 0. 1.13
. 5 Pac(l +3w) > (1.13)

Therefore, the dark energy can be described by perfect fluid with w < %1 (not
need to be a constant). The special case when w = —1 is corresponds for A,
because from equations(1.8)and (1.9) we can deduce that py = % = —pa, We
can also see another fact that dark energy has negative pressure contrary to the
ordinary (and dark) matter and radiation( p is always > 0).

Describing cosmic acceleration with A has some issues mainly the observed
and theoretical calculated value is very different in this scenario (~ 120 order of

magnitude). This is the cosmological constant problem. The another issue



8 CHAPTER 1. INTRODUCTION

with the constant A is the coincidence problem, why we live in a special time
which the energy density of matter and dark energy are in the same order of
magnitude (~ O(1)). This is because the very small value of A. Since py is
constant and time-independent so at the very early time of the universe this is
unnaturally very small compare to the density of the other type of matter.

To this end the dynamical dark energy models (for example quintessence,
three-form etc) has been proposed to try to solved these problems. The dark
energy is described by the scalar field , ¢ , adding to the model by modifying
the action (1.2)

1
S=15a /d‘*:c,/—g (R—(1/2)V,.¢V*d — V(9)) + Sm. (1.14)
with equation of state

_ _X-V(9)

W =py/py = X1V
. 1.15
18-V (19

302+ V(9)

where X = —0,¢00%¢p/2. The observed quantities predicted by this model are

very sensitive with a potentials and many forms of the potential have been
studied. Many of them are good for describing dynamics of the universe in infla-
tionary phase and late time acceleration. But they still have internal problems
and so far we do not have completely consistent theory of this kind.

Instead of using the canonical form of the Lagrangian for the scalar field,

one may consider the general form

m2
S = %/d"tx\/—igR—k/d‘Lx\/jg(Pw,X) +£m(ga57¢))v (1'16)

This model is called the k-essence and may give the solution to the coincidence

problem.

1.4 Modified Gravity & Scalar-Tensor Theories

From the previous section the another way to described the cosmic acceleration

is modifying Einstein’s general relativity. The main paradigm is that GR may

be the only an approximately correct limit of the more fundamental theory.
Studying modified gravity theories may be leads to more natural explana-

tions for the early universe, the cosmic acceleration, dark sector of the universe,
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and may be suit for setting up to quantum theory of gravity.
In GR the action of the theory is the Einstein-Hilbert plus the matter action
1
SGR = SE-H + Sm = T~ / d4x\/ _g(R - 2A) + S’m- (117)

By varying an action with respect to the metric field(§g#”) and by using Hamil-
ton principle(6Sgr = 0) lead us to the Einstein field equation(EFE)

1
R, — §gle +Ag = 81GTy,,, (1.18)
1 Agu
R, — 5gWR = 871G (T + gwlé ),
= 87G(Ty + Tp), (1.19)

where T}, := %gfﬁ. The Einstein-Hilbert action is not the only one that

can describe the geometric and kinematic part according to the available exper-
imental data. It is the simplest one. For more general f(R)-gravity the action
can be expressed as

1
Sy = 167G

/ d'z/=gf(R) + S (1.20)
M
The variation of this action yields the equation of motion
1 leg
F'(R)R,, — §ng(R) + 99"V, Vo f' (R) =V, V., f(R) = 8rGT,,, (1.21)

which equivalent to

Ry = ot =816 (gt = oo [ S (RE ) = F(R) + (90 - 9,90 1) )

= 87G Ty + Tu™).

(1.22)
The equation (1.22) gives the correct limit to EFE(1.18)(with A = 0) when
f(R) — R, and we call T;™ the curvature fluid energy-momentum ten-
sor. Hence, by generalizing the Einstein-Hilbert action we obtain the field’s
equation that can be recasts as Einstein-Hilbert action plus dark-energy-like
fluid. This type of modified gravity is called f(R)-gravity . It is a prototype
of modified gravity theories. Many forms of the functions f have been studied.
Nevertheless non of them is physically or mathematically complete, mainly, be-
cause the field’s equation(1.21) is fourth order in the metric, this leading to the
Ostrogradsky instability. This instability occurs in the model which con-

tains the terms with more than second order in time derivatives of the degrees
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of freedom ( in this case g,,). Indeed, by Lovelock theorem the Einstein-
Hilbert lagrangian of GR (f(R) = R) is the only a non-degenerated one that
can gives equation of motion with the order less than or equal to 2. To avoid the
Ostrogradsky instability the Lagrangian of f(R) gravity must be degenerated
one.

Instead of generalized the form of an action, we can modified Einstein’s
gravity by adding special degrees of freedom . The simplest one is a scalar
field and the simplest model of this kind is the Brans-Dicke theory

Spp = ; /M d'zy/~g {(bR B %Vﬂ¢v“¢ = V(9)| + Sm,

167G (1.23)

= / d*z/=g[Lep + Lm)],
M

where w is the free parameter of theory. We can drop out G and adopt 1/¢
as a varying gravitational constant. This action is in Jordan frame (the frame
which the energy-momentum tensor covariantly conserved, V,T"" = 0, so, the
particles follow the geodesics. In this frame the Ricci scalar in the Lagrangian
density can be multiplied by some function of the degrees of freedom. In contrary
the Einstein frame is the frame which the action is linear in Ricci scalar). In
Jordan frame we can view a scalar field as a field coupling with gravity not
the matter fields. Transforming this action to Einstein frame can be done by a

suitable conformal transformation( precisely, Weyl transformation, for this case

Guv — g;w = ng,uu- (124)

The formula for conformal transformations between the metric can transform

the action in eq. (1.23) to Einstein’s frame
4 ([ R le o .
Spp = " dz\/—g oG §Vu<ﬂv e—Ulp)+ Ly | , (1.25)

2w+3
167G

with un-coupled matter is equivalent to GR with a scalar field coupling to the

where ¢ = In¢. We can interpret this result that Brans-Dicke theory
matter (a coupling term is in im) modulo some suitable conformal mapping of

the metric.
Furthermore, It can be shown that f(R)-gravity conformally equivalent to
Brans-Dicke theory , and so GR coupling minimally with a scalar field by suit-

able conformal mapping and redefinition of a scalar field.
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As we have shown by examples above, the conformal transformation is impor-
tants in scalar-tensor theory. Jacob Bekenstein[8] suggest that the most general
mapping between the metric involving one scalar field and preserve diffeomor-
phisms is the disformal transformations. Study disformal related theories might
gives us insights into gravitational theory. We will discuss this topic in Chapter
3

1.5 Outline & Motivations of this Thesis

The most general scalar-tensor theory which provides equations of motion up to
second order and hence free from Ostrogradsky instability is Horndeski theory.
In the modern approach, the Horndeski theory can be viewed as the generalized
Galileon. By generalizing the Galileon theory to the curved space-time we obtain
the equivalent theory of Horndeski theory which is the most general scalar-tensor
theory with one scalar field in four dimensions which provides the second-order
equations of motion.

The Galileon theory[10, 11] is the most general theory of one scalar field that
provides at most second order in the equations of motion[9, 7]. The generaliza-
tion of such model to the curved spacetime leads to the generalized galileon or
the Horndeski theory [5]. Recently, It has been found that there are a class of
theories of extend Horndeski which is a larger class of scalar-tensor theory which
the equations of motion possess higher-order derivatives but still free from ghost.
This follows from Hamiltonian analysis and counting degrees of freedom (dof).
This so-called the beyond Horndeski theory or GLPV theory[6, 18, 19] or
the doubly generalized Galileon(G?3) has the same number of dof of the original
Horndeski theory (3 dof). The even further generalization called XG? theory
are also exists [14].

These generalized class of the scalar-tensor theories up to XG? are related by
the generalized version of the conformal transformation called the disformal
transformation[8]. The Horndeski theory is closed under g,,, — C(¢)gu +
D(¢)¢u¢,. GLPV theory is closed under g,, = C(¢)gu + D(¢, X)¢p¢. XG?
theory also closed under such transformation in the unitary gauge[14]. For the
spatially covariant theory of gravity it is still unknown.

However, the study in [17] has shown that the Generalization of Horndeski

theory by the transformations g, — C(¢,X)gu or gu — C(¢,X)gu +
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D(¢, X)¢,¢, can also provide the second order equations of motion in the
proper way. So the result theories are free from Ostrogradski instability. But it
is still not clear that these transformations will lead us to more general theory
than those we have discussed above or how to relate them together. The mean-
ing of these ghost-freeness in general context are also not clear and the further
investigations is still needed.

In our work we discuss the disformal transformation in the form

Guv — Guv + D((ba X)(b#(bw (1'26)

By apply this transformation to the gravity part of the action (1.16) we obtain
(3.32)
Laist = G2(¢, X) + Ga(¢, X)R + Ga,x ((00)* — ¢ ™)
+ 9D x X((06)* ~ ¢ ™) +2XV*(3V,.D) + ¢,6"V*(7V,D)
(1.27)
Since the GLPV theory is closed under this transformation then the above
action still belongs to the GLPV class. This ensures us that our result action
not propagates any ghost degrees of freedom . But we still need to check it by
explicitly calculation and match the extra terms in the second line of the above
action to the beyond Horndeski terms in the GLPV action. In the worse case, if
these terms is beyond GLPV we need to check that they are still belong to the
XG?3 class. We will analyze these extra terms as far as possible to understand
them exactly.
Next, we will study the evolution of background universe to see weather
or not the purely kinetic part of the disformal scalar field can driven the cos-
mic acceleration as one might expected from the Galileon-like theories. This

investigation will be done in chapter 4



Chapter 2

Horndeski, and GLPV

2.1 Introduction

The accelerating expansion of the universe in the early time and today stimulates
the study of modified gravity with contains more degrees of freedom additional
to the standard general relativity. By investigated such theories lead us to
further general models, which have their own interesting. In theoretical side,
these studies can be done in their own right as the investigations on the structure

of the scalar-tensor and the related theories.

2.2 Galileon

Galileon field theory inspired by the decoupling limit of DGP theory can provide
cosmic acceleration. This is because in such limit the theory has the galileon
symmetry. The galileon field theory is the most general theory of a scalar field
in flat spacetime that contains such symmetry [10, 11].

The Lagrangian is generally given by

‘C(n) = T’ulmunul...ywﬁbyl o ) (21)

25 S 20

where T = T(¢,0¢) and T+ Hnvivn = Tupallvivnl) (completely anti-
symmetric in {1 ... p,} and {v; ..., } and symmetric under p; <= v;) . The

action is invariant under the Galileon symmetry

Gy = Ou+bu, ¢ = d+c (2.2)

in the curved space-time which is the Generalization from the Galileon symmetry

13
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in flat Minkowskian space-time
p— d+byxt +c . (2.3)

The first example of the Galileon theory in flat space-time is given by the

Lagrangian[12]

Gal,1 __ 1 Pl 4101.-.0D—n—1 Vn41 V1 Un
‘CN = '6 €V1~~~Vn+10'1~-0'D7n71¢ ¢#n+1¢p«1"’¢un’

(D—n-1)!
(2.4)
where N is a number of the scalar fields in the action. In any particular di-
mension, the maximum possible values of n is restricted by npax +1 = D =
the number of the indices of the Levi-Civita tensor,c and N = n + 2. For
example, in four-dimensional space-time the possible value of n are 0,1,2,3

(N =2,3,4,5) and the possible Lagrangians can be written as

£;}a1,1 — %6#161526361/1515263(#/1 ¢N1 , (25)
ﬁg;au _ %€H1H25152€V1V26152¢V2¢M2 o (2.6)
Ei;al,l _ %Emuzugéeyl V2y36¢u3 ¢u3 ¢/l;11 Zi ,/ (2.7)
£5Ga1,1 = éEMHZ’uSMl €vivavzvy ¢V4 ¢lt4 ,le Zi Zi ' (2'8)

We can obtain the equations of motion from the Lagrangians £ = L(¢, ¢, 00¢)

by Euler-Lagrange equations

8/3N 8/:N 8£N

EnE=E—-0,— +0,0,—=0 . 2.9
N a¢ H 8(725# H 3¢)uy ( )

This gives us the equations of motion
En = Nnlgltn . ghv-l =0 | (2.10)

explicitly,

E = 200, (2.11)
& = 3(06° - ¢2,), (2.12)
& = 40¢° -30¢47, +24;,), (2.13)
& = 5(0¢" —60¢%¢., + 305,005 +80¢¢5, —64,).  (2.14)

Thus we obtain the second order equations of motion. To generalized the flat

space-time galileon to the curved space-time we will use the Generalization
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Nuw — gu and 0, — V, to the Lagrangians and the Euler-Lagrange equa-
tions. From the Lagrangian £%*! in four dimensional curved space-time we
can calculate the equations of motion by using the Euler-Lagrange equations.

For example, starting with Efal’l, we can calculate

3£4 6£4 1. 1z
37(;5 =0 7% = 651 5;5Z3¢ 3¢ H2’ (215)
oL
= Valge) = “20LOSEeE — A0 o s, (216)
0~
a£4 1.--M3 AV3 vy v
W = 200080 du 0510 O (2.17)
Sv v E) o ggmemsagnt g, 5457) T 20750 B 01167 O
(8¢A) - [Ll...[l.g[ d) 'y¢,u3 (A1 + ¢ ¢#3’Y (A p1 P
120" 6, A0 By + 06,6307 01
+0 Gy ORI O + G, 030 0N (2.18)
Hence
854 8£4 A 8/54
&4 = — 2.19
— 4¢M1 ¢ALJJ + 10¢“‘3¢m”1u3¢ﬁ? — 2¢fua¢ﬂ3¢uzu2/ﬂ]m, (2.20)
)

= 4((O¢° - 30607, +26},,) — 5 Ruw¢"¢" 06 + 2Ruvapd” ¢" 0"
1 1
+2Ru 8" 9" b + S R 0 + V" Roudyd”
1
—5Valuwe¢'s”) =0, (2.21)

where [...] = nl[...]. In this case the equations of motion is third order in the
metric field due to the covariant differentiation of the Ricci tensor and scalar (the
last two terms). To remove these third order terms one may try to integrating

by part these third order terms
A AU

the boundary term the second order part

= =2V, (Gapd®¢’ ") —R(O¢du¢"” + 200" ¢y,) + 2Ry, (2046”6 + Ot ¢”).
(2.22)

If we do not want to ignore the boundary term we must adding the extra term to
the original action to canceled this boundary part of the equations of motion (the

same strategy of adding the GibbonsHawkingYork boundary term to Einstein-
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Hilbert action). After calculating the equations of motion this new extra term

in the action must yields the quantity

+ 2V, (Gapd®dP H). (2.23)
So we can see that
aﬁixtra o B
= Viu( 90 ) = +2V . (Gapg®d” d"). (2.24)
©w
This implies
LT = —Gopd®d’ o' o (2.25)

,1

. . . . Gal.l . .
Hence the covariantization version of £, % is given by

St = [ ato gL = [ty (07 6,0 0 - G0 00,).
(2.26)

and the final second order equations of motion of Efal’l then reads (2.21),(2.22)

& = (00" - 3066}, +20},) — 2R ¢"¢"06 + 3Rywasd” o ¢
1 1
+2Ru ¢! 6" 65 + 5 Rt 0765 = JR(O0000" + 20,0/ ¢0)}
=0 . (2.27)

The method of adding the suitable counter term to the action can be considered
in more general setting[6, 7, 9]. Such method leads us to the conclusion that

the covariant Galilean is equivalents to the Horndeski theory.

2.3 Horndeski

According to covariantization of Galileon theory considered in the previous sec-

tion, we then obtain the Horndeski action then consists of the following action

5
SH — /d4x\/—gZ£i, (2.28)
1=2

where
L = Gs(¢,Y)O9, (2.30)
LY = Gu(¢,Y)R — 2Gay (6,Y)(06* — ¢2,), (2.31)
L = G5(¢,Y)G ¢ + (1/3)Gsy (¢,Y)(0¢* — 30667, + 2(4,,)2.32)
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Note that theses Lagrangians are in the form of the coefficient functions of (¢, Y")
multiply with the second derivative of the scalar field, (VV¢), and/or multiply

with the general covariant quantities G, R. In anti-symmetric fashion, they

are
‘C2 - G2(¢a Y)a (2 33)
Ly = Gu(6,Y)(1/2)0L5 R — 2Gay (8, Y) 5450540, (2.35)
Ll = G5(¢,Y)(=1/4)85750 ReD 64 + (1/3)Gsy (6, V)60 by ¢5(2.36)

This form is more compact than the previous form since we use only €#"*7, €, 55, Rfjf ,h,
in the construction. This action is equivalents to many gravitational theories
[341] depends on the functions G2(¢,Y),G5(6,Y),G4(4,Y), and G5(¢,Y).

2.3.1 Horndeski theory in ADM formalism

The Lagrangian density of Horndeski theory in ADM variables and in the unitary

gauge fixing condition can be constructed by setting

1
¢ = ¢(t), and choosing n, = —yV ¢, wherey = N (2.37)

In ADM formalism, we foliate the spacetime continuum(M) to the equal-time
space-like hypersurfaces (¥X;) that change with time parameter. To do so, we
write the line element as

ds> = (=N%4 N°N,)dt* + qupdzdz®, (2.38)
—N2dt? + qup(dz® + Ndt)(dz® + NPdt). (2.39)

where NV is a lapse function and N¢ is a shift vector. The spacetime metric and

its inverse can be represents as

b
~N2 4+ N°N, N, o | wE 2
Juv = [ a } ;g =18 b (2.40)
" N, qab % q b _ NN];{

For the free particles free-falling in the spacetime (following the geodesic) their
world-lines define the time flows. We call a vector tangents to this flow at each
point a time-flow vector, t*. In their free-falling frames at particular point in
the space-time the metric field for describing the particle motion is the flat

Minkowsian metric adapted from metric for curved metric at that point space-
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Figure 2.1: Space-time foliation

time metric . The observer in such frame may expect that a particle will follow
the geodesic defined by the flat Minkowsian metric since she don’t feel grav-
itation, but, indeed the shift in position occurs since a particle really follows
the geodesic defined by general space-time metric. Such shifts occur when the
gravity is not uniform distribution, equivalently we can say such free falling
frame has inertia . Imagine that we are live inside the falling elevator in uni-
form gravitational field and place the ball at some height above the floor of
this elevator. The deviation of path of such ball will not be detected, but if so,
the non-uniformity of gravitational field was detected so the shifts in position
of this ball occurred. Such shifts are describe by the shift vector N#(z). At
each infinitesimal region the shift vector is a projection of the time vector as
shown in figure 2.1. Therefore we can associate the vector perpendicular to the

hypersurface with the time-flow and the shift vectors
Nnt =t — NF 1 3, (2.41)
where n* is a unit vector orthogonal to the hypersurface(%;)
guntn’ = —1, (2.42)
Gt N” =0, (2.43)

and we call N(z) the lapse function. It is dynamical and captures the deviation
of speed of the clock from the local Minkowsian sense cause by non-uniformity

of the gravitational field. The vector n* can be interpreted as the gradient of
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some scalar function that constant on each hypersurface. Such time function,
T(x), is usually defined via
ng = —NV,T. (2.44)

The Extrinsic Curvature

Any vector field in space-time can be decomposes in to the spatial and temporal

part by the help of the vector field, n*

v=—g(v,n)n + (v+ g(v,n)n). (2.45)
L I

We call the vector with g(v,n) = 0 spatial. For the covariant derivative this

space-time decomposition reads

Voo = —g(Vyv.m)n + (Vo + g(Vv,n)n). (2.46)

=K (u,v)n =Dyv

We call K(,-) (or K,,) the extrinsic curvature and D, (or D,) the spatial

covariant derivative

K(u,v) = —g(Vyu,n), (2.47)
Dy = Vyv+g(Vyv,n)n, (2.48)
Vv = Dyv+ K(u,v)n. (2.49)

Note that the projection of any vector to the hypersurface is given by

v = v+g(v,n)n, (2.50)
= (v = (08 +n,nt )", (2.51)
= ghv", (2.52)
where
gt = (65 + nyn*). (2.53)

We call ¢# the projection operator. By lowering the contravariant index we
obtain

Guv = Guv + NNy, - (2.54)
This is the induced metric on the hypersurface. It is a spatial object which we
need only three-dimensional coordinate for describe it. By appropriate coordi-

nate transformation, one can use only the spatial indices to describe it and we
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can write it as g5 which will be turned out to be equals to g,;. Note also that
from (2.42)

g(n,n) =n,n* = —1, (2.55)

we obtain the useful identity for ADM analysis reads

Vug(n,n)=0 = g¢g(Vun,n) =0, (2.56)
n*Vgne = 0. (2.57)

by applying the above identity (2.56) to the relation (2.48), one has
Vun = Dyn. (2.58)

This means V,n(= (u*Vang)dz?) is a spatial object. In the abstract index

notation (or equivalently in the coordinate basis), the equation (2.58) means

u'Vyn, = qutV,ng, (2.59)
= (0 +n"n,)u"V,na, (2.60)
= u'V,n, +0, (2.61)

the projection of this object is equals to itself so it is spatial and from (2.49) we

also have
K(u,n) = K(n,u) =0, or K,,n" =0, K,n" =0. (2.62)

This is because in the case of torsion-free, K, is symmetric. Therefore, both

slots of K(-,-) deal only with the spatial part of the vectors. Hence,

K(u,v) = K(uj,v))=—g(Vyv,n), (2.63)
= =V, 9(v),n) +g(v), Vo, n), (2.64)
0

= g('U + (U . n)nv v(u—i—(wn)n)n)a (265)
= g(v, Vu+(u.n)nn) + (v- n)g(m Vu+(u4n)nn) , (2.66)

= g(v,Vun) + (u-n)g(v, Von) + (v-n)g(n, Vyn)

0
+(v-n)(u-n)g(n, Van), (2.67)
0

K(u,v) = g(v,Vyn)+ (u-n)g(v,Vyn). (2.68)



2.3. HORNDESKI 21

In the coordinate basis we have

K. = K(0,,8,)=90,V,n"ds) +n,90,,n*Van®85), (2.69)
= V,nPgp +n,n Vinlg,s, (2.70)
= Vun, +n,n*Van,, (2.71)
K, = V., +nua, (2.72)

where a,(= n”V,a,) is a acceleration vector' which is related to the lapse
function, N(z), by the help of (2.44)

o = n'V,ung (2.73)
= 0V, (NV,T) (2.74)
= AV, NVLT — Nn*V (V. T) (2.75)
VoV, T
1 L 4 1
= lan V.N — Nn va(_ﬁnu) (2.76)
1 1
= Nnan“V#N — n*Van, + Nn"nﬂva(ﬁ) (2.77)
0
1 L 1 "
= lan V.N — N n,ValN (2.78)
—1
1 L 1
= 3 (VaN +nan"V,N) = Do (2.79)
a, = DyInN. (2.80)

The temporal and spatial part of V,n, in (2.72) can be inspected by by the

first index ,,
Vi, = Ky —npa, = (Vun, ) + (Vuny) L (2.81)
The equation (2.72) obviously equivalents to
K = q;Vany. (2.82)

Since the above quantity is spatial object then alternatively we can write it with

the additional projective operator

K, = qﬁq,’fvang. (2.83)

INote that the acceleration vector is a spatial object. It is in the form of Vyn(=
(u®Vang)dz?) (2.58).
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From this expression the geometric interpretation can be readily understood.
The extrinsic curvature tells us that how n* or how the orientations of the global
hypersurface change as they are embedded in the space-time. Computing the

Lie derivative of the induced metric
LnQuy = npay, +npa, +Vyn, +Vyn, = 2K, , (2.84)

leads us to the another form of the extrinsic curvature [35]

1
K = 5&ntu, (2.85)
1
= ﬁ(ftq — ENQ v - (2.86)
In ADM coordinate in which the line element iss given by equation(2.40)
.
Ko = ;50— Lna)a, (2.87)
1.
= W(Qab — DoNy — DbNa)~ (2.88)

ADM formalism

In this formalism we parametrize the spacetime to the space and time such that

h = {J;O,xl,xQ,ajB’} — {5;0,531,%2,533} = {t,xa}, (2.89)
or simply
= {t,x“}, (2.90)
which “=" actually means “equals to ... in ADM coordinate”. It is clearly that
dat
% - {1,0,070} =, NF— {O,N“}. (2.91)
Consequently, by (2.41) we have
1
n— {1, —N“}. 2.92
= (2.92)
We list here some useful identities,
y Oxt Ox¥
g,wt”t = guu@@ = goo , (2-93)
Guntn’ = guefeq =nop = —1. (2.94)

Where the last line ef] = n# because in Minkowskian sense

n! :={1,0,0,0} . (2.95)
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Therefore in general space-time view

nt = einl, (2.96)
= g =t (2.97)
From (2.93)
goo = gu(Nn*+ NH)(Nn”+ N”), (2.98)
— _N? 4 N,N¥=N?4 N,N°, (2.99)
guwt'NY = gu(Nn* 4+ NH)NY, (2.100)
gub%]\ﬂ’ = 0+ N,N°, (2.101)
cgw = N (2.102)

These give us the form of the metric in ADM coordinate represents as (2.40)

_ [—N2 + N°®N, Nb}
G = Na ab '

In order to find the inverse of this metric, we represent the relevant vectors by

the column vector
: 1
=0, =< [_}Va} . NH= [Z\(,’a} . (2.103)
0

The equation (2.40),(2.103) allow us to write

1
nt@n’ = Nz {_}Va} 1 —N?], (2.104)
1 1 —N?
= = [-N@ N“Nb} , (2.105)
g = ¢" —n* ®n", (2.106)

-1 N®

- q“"*m[i\fﬂ _NNY| (2.107)

o - [ ). e
o= [RNN NS L] =7 e
Nu = tu— N = [NV (2.110)
n,®n, = :]\62 8}, (2.111)

Qv = Guv +NpNy, (2112)



24 CHAPTER 2. HORNDESKI, AND GLPV
NoN¢ N,

P ) s

From (2.107) we need to know ¢"” for computing the inverse metric. This is

can be done from the requirement that

0 10 0
" wa=10 0 1 0| (=0 —0®0d), (2.114)
0001

and by observation that

a bl 10 0 0 07 . .
|:NZ((]]¢Y é\;b] {0 qbc} = [0 5(01_ ’ Where(ﬂzbqb = 6(17 (2115)
Aduv
one can realised that
0 O
wo_ ab| . 2.116
1 {0 q ”} (2.116)
Applying this result to (2.107), one obtains
0 0 1 [—1 N®
uy i
g — |:0 qab} + N2 |:Na —NaNb ’ (2117)
then the inverse metric in ADM coordinate reads
-1 N
Pr= B M
N2 q - T N2

The important part of ADM analysis is the Gauf-Codazzi equation which relates
the four-dimensional curvature to the three-dimensional one. The Riemann

(intrinsic) curvature tensor on the hypersurface is defined by
—*R%psA0a = (DgDo — DyDp)A,. (2.118)

This is directly implies

D,DgAoa = ¢InKysV,A; — Ko KR AN+ q)q500V,V ) Ag, (2.119)

= (DyDg = DgD,) A = (—KuoKj + Kpa ) Ax + 474545 (V4V, = V,V,) A,
= RNupAn = (“KuaKj + Kpo K)) AN — q)a5a5 R oypAx,  (2.120)
=3R=*R . s{¢*" = KuK" —K?+ql¢" R, (2.121)

but

R=g" 8\ R sy = (¢°°q) — 20" q)) R 5, (2.122)
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SO
SR = KK" — K?+ R+2nn"q)R*,,, (2.123)
= KuK" — K?+ R+ 2n°q][V,,V,n, (2.124)
= K, K" — K>+ R+2(V,(n"V,n") — K, K" —V ,(n"K) {20%5)
= R=3R+ K,, K" — K* -2V ,,(a" — n"K) (2.126)

This equation is useful for expressing the Einstein-Hilbert action to the ADM

variables. Consider equation (2.123), it can be recast as

R = KuK" — K?+ R+2nn° (8] + n'ny) R orp,
= KuK" — K?+ R+2n°nRps + 2n°nPn nyR* 5.,
0
1
Run'n” = o (*R- K., K" +K?*-R), (2.127)

where we use the symmetric property for the last term in second line. then
Guntn” = Ryntn” — %gwn“n”R,
= % (°R - KuwK" + K* - R) + éR,
Gntn’ = % (*R- K, K" +K?). (2.128)

This identity will be used later. The equation (2.120) also gives us the relation

for Riemann curvature tensor
S Ravp = —KuaKj+ KpaK) — qJq5a0 R orp, (2.129)
3R}\auﬁ = KVQK)\B - KQBK)\V + q)\qu(J5qaﬁR60"yp . (2130)

The equation (2.130) is called the Gauf-Codazzi equation. Starting from this

equation we can also derive the relation for Ricci tensor
_SRaﬂ = _qK 3R/\au[3 s (2131)
= fKMKg‘ + Ko K3 — (65 + n”nk)qugqu)‘aw, (2.132)

the second term in the parentheses then vanishes due to n”q} = 0, proceeding

the calculation yields

*Rag = KaKj — KKap+q)q540R" ovp » (2.133)
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= KanKj — KKag+ (6] +1"n,)0540 R 0vp (2.134)
= KKy — KKap + 0540 Rop + 45950 0 R 5y, (2.135)
*Rap = KaaKj — KKop+ (Rag)| + (n"ny R ayp)) - (2.136)

In the unitary gauge

In this gauge
ot z") = o(t) "= 1, (2.137)
1
Ny ==Yy, Y= Nad (2.138)
The minus sign in front of Y appears because ¢,, is time-like. Therefore ¢, ¢* <
0. Let us find the spatially geometric description corresponding for the second

derivatives of the scalar field

v,u,nu = —V;ﬁdhz - 'Y(b;Uh (2139)
73
REE S (2.140)
,.YS
SVun, = ,?y“(z,y — Youu- (2.141)
From (2.72)

vuny - Kul/ - nualja (2142)

3

Y
5 Yuby = ¥bur = Kyp =t (2.143)

1 ~2

¢;w = _§(K/yw - np,au) - ?Yu(bu (2144)

From (2.141) :

7

ntV,n, = a, = 5 'Y, hu + V2 b (2.145)
But
Y, =20 bp,. (2.146)
therefore we have
a, = —”;nkymu + V;YM, (2.147)

3

nya, = —lsrmmz) 1y 9.148
vy = B APuTy 2 uqsu‘ ( )
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Finally, we have

2 1 2
- %YH% = S+ %qﬁnnﬂny. (2.149)

Substituting of this result to (2.144) gives

1 2
Puv = _;(KMV — Nply — a#n,,) + %QS)\YATL#”V (2.150)

We also obtain

1 7

and by contracting both side of (2.150) we obtain

v a Y
_A/qs ¢/,LV = _TH + §TL>\’I7,HY)\,
72 A
a, = ?(Yu—i—n n,Yy),
0= Loy (2.152)
nw — 9 qp, A .

which means that %a# is a spatial part of Y},. Indeed, from (2.147) we can

notice that Y, can be decomposed in to (3+1)-style as

2
Y, = Ft Y Yam,,, (2.153)

where the first term is spatial part and the second term is temporal part.
The goal of the next derivation is to write the Horndeski action in terms of

the functions of ((b, Y(= ¢H¢”)) and the spatial quantities such as 3 Raped, > Rab, ° R, Kab, Gab-
It is useful to see how the basic building blocks of ADM formalism look like in

this gauge

6= 06(t) = 6. = {$,0,0,0},

_¢u _¢

= ) 07 07 0 )
v-=Y -Y }
_ [ =9 _ 0 0

ny = { _Y,o,o,o} =0 (2.154)

compare equation (2.154) with (2.109) we obtain

6, .1

¢
v—YN ’ ¥ N

(2.155)
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Rearrange it to the another form

1

which means that at each point in configuration space (¢,Y") we can find corre-

sponding point in (N, t)

(¢,Y) = (N, 1). (2.157)

We can write coefficient functions of Horndeski Lagrangians as a functions of
(N, t). Note also that

o= =" N-Y = —g"o, VY, (2.158)
= g% /V-Y, (2.159)

_ {\/%NQ, N_Q%} (2.160)

Back to the Horndeski Lagrangian, we classify it in to £, £ £H £H by the

power of VV¢ in each Lagrangian. Transforming these Lagrangian in to the
spatial geometric term may be mixed the power of VV¢. In such case we call
the Lagrangians are in the mized-form. If we rearrange the term with the same
number of power together in the same Lagrangian, we call the Lagrangians are
in the pure-form. The number of power of VV ¢ dimensionally equivalent to the

main spatial geometric quantities as the following

K, Ky ~ VV¢=#VVp=1, (2.161)
3Rabeds *Rap, R~ VV¢VVh = #VVe¢ =2, (2.162)

the first line concludes from (2.150), while the second line concludes from (2.130).
Therefore, our requirements is the new form of Lagrangians will be consist of
the quantities with dimensionally equivalent to (VV¢)™, and does not consist
of n, ~Ve¢ora, ~VoVVe¢ or Yy ~ VopVVe.

Let us consider the Horndeski Lagrangians. Since (2.29)

—?
' N2
is a function of (N,t) by default, so nothing to do with it. The next piece is
(2.30)

LI =Go(p,Y) = Go(o(t) ) = Ay(N,t) =: Go(N, 1),

L = G3(N,t)0g,



2.3. HORNDESKI 29

by using (2.151) we obtain
H 1 v A
[:3 - —;G?,K - ?G3¢ }/)\7 (2163)

which the first term is fit into the requirements but not for the second term
because the terms in the dimension of V¢ are appeared. Replacing the term
#*Yy by using (2.151) cannot cured this situation. We can try to integration by

parts to see what happens

L = V,(Cad") — VuGa o,
= Vu(Gs¢") - (G3¢¢u¢” + Gy, ¢”),
= V,.(G30") — (Gs¢Y + Gy Yo" )
200 2K
= V,(Gsot) — (G3¢Y +Gay[ - B ?]),
= V,.(G30") — (G3¢,Y + G3y2YOg + 7G3YK>

At this stage we have
I 2Y "
£3 = —G3¢.Y — —Gsy K — G3y2YOo + qul R (2.164)
Y
where the boundary term
VB, =V, (Gs¢"). (2.165)
Therefore, up to the boundary terms
2Y
L = —G3yY — 7G?,YK — G3y2YOg. (2.166)

The first two terms are in the required form but the last term is not (¢ =
—%K — quAYA). The strategy for get rid the last term is redefine the function

to be the another function plus the extra term

G3 = Fj3+ the extra term,
= Fy+ A (2.167)

We add the extra term because we hope that it may help in canceling the
unwanted piece. The Lagrangian then reads

2Y 2Y
ﬁ? = —F33Y — 7F3yK - A3¢Y - TABYK — (F3 + A3z)y2YOg. (2.168)
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We expect that these bad terms will be canceled out (or, at least, become another

good terms). If we guess that
2Y
.A3¢Y + TASYK + (Fg + A3)Y2YD¢ =0, (2169)
then we have

2y K A2
0 = Agg¥ + - Agy K+ (Fy + Ag)Y2Y( -0 %wn),
2V K

2Y 2Y
= AsY + TAgyK - Fyy =Y Fay ¢’ Y — TASYK — Y Ay 9*Ya,

2Y K
= AssY — Fyy + F3y ¢*Ya + Azy oYy,
2Y
(Vads)o = =-FayK =~ Fy 6V,

= —2YF3Y( - % + %(bAYA))

= —2YF3Y( - % - %2(15)\}//\)7
= —2Y I3y O,
= V(¥ By ) " + VB,
where the boundary term
VBl = V(= 2Y Fyy o). (2.170)

Finally, we obtain

As = 2Y Fay, (2.171)

which means if we redefine

|G3 = F3 +2Y Fyy (2.172)

then the Lagrangian, £, (2.168) becomes

2Y
LY = —F3,Y — 7FQ,YK, (2.173)
up to the boundary terms (2.165),(2.170)
VBl =V, (ngsﬂ). (2.174)

We are quite lucky because, indeed, there is no proper method for solving
these kind of problems, but integrating by parts and the using of (trial) auxiliary

function are the effective tools. We may observed that the redefinition of the co-
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efficient function in the term that contains Yy by ~ A(¢,Y)+2Y Ay (¢,Y),where
A(o,Y) is some auziliary function tends to simplify the problems, This is be-

cause

(A+2Y Ay Yo, = VH(g,A) + %A — AY. (2.175)

The Lagrangian now follows our requirements. But, the dimensions of VV¢ of
both terms are not the same such that the first term is zero, (#VV¢ = 0), while
the second is one, (#VV¢ = 1), so this Lagrangian is in the mized-form. Next,

consider

Ly =G4 R — 2G4y (06" — 47.,). (2.176)

By using (2.126), (2.151), (2.150)

K2
£l = Gy (R4 Ky K" — K2 =29, (a" = n"K) ) = 2Gay { (? + K@Yy

74 A 8 1 v 2 ’Y4 A ]
+1-0* Va0 Yg) . (?KWKM — ?a#a“ + L0 Yao Yﬁ)},

= Gi(*R+ K K™ = K* =2V, (a" — n"K))
K? 1 2
—2G.y (72 F K Yy — 3K K"+ ﬁaua“),
= Gi(*R+ KuWK"™ — K? =2V, (o - n"K))
2V Gy (K2 = K,WK“”) — 2G4y <’yK¢>‘Y)\ + 3auaﬂ),
72
= Gy (3R -2V, (a“ — n“K))
2 2
+(2Y Gay — Gy) <K2 - KWK’“’> . 2G4y( — Kn Yy + ?(%q;})ﬁ)a”),
=GR+ (2YGay — Ga) (K2 = K K™) = 2G4V, (0" — n'K)
—ZG4yY)\< — Kn* + qﬁ‘a“),
= Gi*R+ (2 Gay - Gi) (K2 = KuWK™) = V(2G4 (0" — nK))
—2G4yY)\( — Kn* + q;)a“ —at + n/\K> +2G4p0u (a“ — n“K),

where we have used (2.152) for the term aya*. The form of this Lagrangian

now becomes

£l = G R+ (2 Gay = Ga) (K = K K™ ) = 2V/=Y Gup K+ V,,BY, (2.177)
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where the boundary term
VB = =V, (2G4(a" — n*K)). (2.178)

Next, consider the last piece, LI, we will follow closely with [36]

L = G5(6,Y)Gpud™ + (1/3)Gsy (¢, Y) (06 — 30662, + 2(d)?).

Consider the first term, using the integration by parts gives

G5 G " = V(G5 G ¢7) — Gsy G Y 9" — G5¢7_2Gwn“7(9,179)
=VH (G5 G,uu ¢y) - G5YG;J,VYH¢V
1 3 , ) (2.180)

= 2—7205(1,( R = K K" + K%),
where in the third line we have used the identity (2.128). Then, let us transform
the quantities inside the second term in the Lagrangian. These can be done by

the using of (2.150) and (2.151)

K A2 3
3 _ (> RPN
0o = (S + o)
K3 3 3 1
= —ﬁ—*K2¢AYA—*W‘O’K(¢AYA)2—§WG(¢*YA)3. (2.181)
O po = K Y, KopK — 2 a0 Ay,
bowd” = (5 +% gy {5k Naa + L),
= —{—3K Kogk? — —Kaua“ + VZK(MYQ)Q + 5KaﬁfcaﬁgwA
gl
= —aud"PYy + (¢Ay)} (2.182)
oLt = —T{K”K”Kp—wc }+ 2 6“Y,apa —% (6 Y3)2.183)

From (2.181), (2.182), and (2.183), we obtain

K 3 3
O¢® — 3D¢¢iy + 2(¢lw)3 = *? - §¢)\Y)\ (K2 — KaBKaB) =+ ﬁKKaﬁKaﬁ

2 6
- ?KLLKZKL) + - (Kl’fa”a“ - Kaﬂa") .
(2.184)
Then, at this step we have

1
L = ~GarGuY"s’ — 5 5Gs (°R - K K™ + K2)
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K? 3 2
(1/3)G5y{ -5 7¢AYA( KagKo‘ﬁ) oK KoK — KUK K]
+% (Kta"ay - K auat) } + V.84, (2.185)

where the boundary term
VILB?;(L = v# (G5 G/l,l/ ¢V) (2186)

Note that, the bad terms are the terms that contain Y),, ¢*(or n#), and a*(=
5 unA) As we have observed in the case of £, the coefficient function in
front of the Y, term will be redefined. In this case we try

F;
2V

Applying this only for the bad terms, the Lagrangian then look likes (up to the

Gsy = F5y + — (2.187)

boundary term)

L = —(Foy + 5 )G,WY”qb - 705(1,( R— K, K" +K2)
H(1/3)(Fsy + i){ ~ 36y, (K2 _K Kaﬂ) + 0 (K“a”a “Ka a”)}
2V 2 aB 73 v 13 12
K? 3 af BV P
+(1/3)G5Y{ 5+ oaK KagK —3KVKPKH} . (2.188)

We need to manipulate only the bad term, so we write

ci = eopH  BoLH (2.189)
1
& pH 3p pv 2
ct 33 Gss ("R~ K K™ + K?)
K3
+(1/3)G5y{ A3 S K KoK — —K“K”K”} (2.190)
S

F5 v F; A 2 ap
NG Y+ (1) By + 52| — S0 Wi (K2 - Ko ?)

6
—|—$ (Kﬁa”au - Kaua“> },

%Qﬁf—? = (F5y +

Fy 3
= —(Fov + )Gwyw 4 (1/3)(Fsy + 2Y){ el (K2 = Kapko?)

6 2
+— lQ quA (Kga” - Ka“)} :
g

F 3
= —(Fyy +3 )G,WY”QZ)” (1/3)(Esy + W){ — S0 (K2 _ K(,ﬁKaﬁ)

Jr%Y)\ (Kﬁ‘a”fKa )},
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_ F . F 1
— _(F5Y+§)YM'GMV¢V—(F5Y+§)Y“'{§¢H<K2—KaﬁKaﬁ)

1
— (Kuwa” ~ Ka,)}, (2.191)
5
By using

(Ay + %)w P =vrADD) + %Y“ED —AODy —Dager, (2.192)

where [P = ‘something’. In this case A = F5 and P = —F5GW¢”— %F5(K2—
Ko KoP) + %(Kwa” — K a,). The equation (2.191) now becomes

I U 7= F
Ll = (=BG’ - %F5(K2 — KopKP) + 75(K,Wa” - Kay))

2 Ly,u
_ F5( — qublfy# — QSIT

(0% 1 v
; (K = Kag K)o Y (K = Ka,))
0é
2

Fs (= G = K - KogK*®) = LVHR? — KapK™?)

“w
+EV“(KWa” - Ka,) — K(Kﬂua” — Kau))
o1 2
—( — G’ p s — %¢Mﬁ5¢(f{2 - KaﬁKaﬂ)) : (2.193)
= V.BY, +A+B+C, (2.194)

where the boundary terms

. . F
Vb, = V(=BG — LB~ KaaK™) + (K = K ).

(2.195)
while A = %Y“ m,B = fA(ED)”, and C = fﬂjA%b”. Consider
_ VT (bi n 2 afl
C = —(—Gud"o"Fry — S0 Fog(K? — KagK™7)), (2.196)
1 1 5
= (Gumin? = S(K? = Kag KP) ) P,
- i (1(3}2 O G Y CIIEY KO‘B)
P22 h gt T g Rasf )
1 -
C = —F°R 2.1
272 5¢ ) (2.197)

which is in a good form. Next, we will consider the more complicate piece of

the Lagrangian

A2 2
A+B = B (%qub”w n ¢HY“%(K2 — KoK =2V (K 0’ — K a,,)

+&
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U¢

+G 9" + 7(K2 — KopK°P) + %V“(KQ — K,sK%)

2

1 "
— VI (Kpa” — Kap)+ 25 (Kua” — Kay)).
5
-&

In the first term, we will use(2.147), gY“ =at + gnkYMb”, then

A+ B
O
+G "t + 7¢

1
_ _\UM v __
v (Ka Ka#)),

F, 3
_ _75 ( — G + %QS)‘Y,\GWTL“TL” +Gn’a" +n,Y"
O¢ apy M a
—y (K2 = KapK*) + St VH(K? = KapK®?))

+VH( K a” — Ka“)) .

~ 3 2
Fy({a + Zn Vao" }Grud” + 0,0 T (K2 = KagKF)

(K? — KopK®P) + %"W(K? — K,pK%)

35

(2.198)

(2.199)

,_Y2
Z(K2 — KpK°P)

(2.200)

The first three terms look similar to G, K*¥, (2.150). Therefore, we may need

some relations around this quantity. From equation (2.136), we have

‘R K" = Ry K" + 10 Ry K" — KK, + k5,

Which implies

1
G K" = R, K" — KR

(2.201)

1
= PR K" —n’n° Ry K" + KK, — ki, — SKR.

Replacing the extrinsic curvature On the left-hand side of the above equation

by (2.150 )
3
K, = —vo"" + %QSAY)\TL“HV + nta” +n"ak.
Finally, we obtain

3
- ’YGNV¢W + %(bAY/\Gm,n”n” + Gm,n“a” + Guuaun”
1

=R K" — Ry pyenn’ K" + KK, — K;, — =KR.

2
Use this identity for the first three terms and use (2.151)

'}’3
— 306 = K + L',

(2.202)

(2.203)

(2.204)
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for the ¢ term of the equation (2.200). It now becomes

A+B =

3
where °G,,,

F. 1
— 2 (=Guna” + R K" = Ryponn” K" + KK}, — Ki, — KR
7 —R,,n*a”
2 1 1 3
Y (K2 = KapK7) + (5K° = SKKG) +3 M3 (K2 — KogKP)
& -&
n v
+ VK = KagK™) + V(K e — Kau)) : (2.205)
B Bpnt'a? + 2Ry K — By K + KK, — K
_7 — fywntat + "Ry — ppret' M +§ pr — P
1 1
+§K3 - 5K(?’R + K, K" — K? =2V, (a" — n* K))
n « 1%

+ VK = KagK™) + V(K e — Kau)) : (2.206)
FE) v PO TV 3 v 3 3 " I
,7(7 Rynta” — Ryupon’n? K" 4+ 3G, KM — K3 + K® + KV ,(a" — n* K)

n « v
+VHK? = Kap KO) + V(K e — Ka#)) (2.207)

= 3R, — %qw}R. Next, we will take care about the terms with

covariant derivative

A+B =

F

—75 <3GWK’“’ — Ry nta” — Ryppenfn? KM — Kﬁu + K3

+KV,a" — Kn'V,K — K2V, nk + "7” 2{KVFK — K*PV" K51
KS

0"V Ky + K V0" = KV a, — 0, V'K, (2.208)

F
—75 (BGWK’“’ - Rynta” — Ryppenfn? KM — KZ’V

—nLK“HV“Ka +d'V*K,, + K,,,V*a" —a,VFK ) . 2.209
/ B / / t

We will try to modify the second and the third terms in more simple form. For

the second term

L 1} L (e} «
R, n" = R0 = VoV,n% -V, V,ne,

VoK —nya®) — V, K,
= V.KS—n,Vaa® —a*Van, — V, K. (2.210)
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Therefore,
R, n"a" = a"V, K] —a%a"Van, —a"V, K,
= a"V. K} - Kya,a®—a”V, K. (2.211)
For the third term

R,upl/anp = Vl/van,u - vavvn/u
= V(K —neay) — V(K —nuay),
= VK, —a,Vyne —nsVya, — VoK, +1,Vsa, + a,2212)

Then

Ryupvoen’n® =n’V, Koy—aun’Vone+Vy,a,—n° Ve K,,4+nn,Vea,+n°a,Ven, .
0

(2.213)
Hence, the third term reads
Rypponn’ K" = n"K"V, K, + K" Vy,a, —n"K"V.K,, +n°K"a,Vn,,
K" a,a,

= VYV, (K"n"K,,) =V, K" n" Ky —V,n"KM"K,,

0 0 _K3

+K"'Vya, —n’KM'"V.K,, + K"a,a,,
Ruppenn’ K" = —K., + K"V,a, —n’K"V,K,, + K" a,a,. (2.214)
Substitution of (2.211) and (2.214) into (2.209) yields
A+B = f% (PG K" + [~ a* VoK + Kava,a® + a"V, K]
+[K}, — K"'Vya, +n" K"V oK, — K" aya,
— K3, — 0, KOV K s + 0" VP Ky + K, VP — a#V“(Q)Zlf))
A+B = —% SG KM (2.216)

From the equations (2.186), (2.189), (2.190), (2.194), (2.195), (2.197) and (2.216),
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we can conclude that

~ 1 1 1 N
L = Y E K (3R,W ~ 5w 33) — S (Y)2Gsy K+ 5Y (Gss — Fog) 'R
1
+ §YG5¢( K? - K, K")+V B,
(2.217)
where
K=[K =6 KhKEKD = K? — 3KK}, +2K3,, (2.218)

and the boundary terms

" " 2
V,.BY =V, BY 4V, B = V“((Gg,—F5)G#V¢”—q;—“F5(K2—KagK“B)+75(KWa”—Kau)).

(2.219)
In ADM coordinate and up to the boundary terms
~ 1 . 1 1 -
L8 = VY B K (*Ray = 500 *R) = 5(=Y)*2Goy K+ Y (Gog — Fg) *R
1
+ §YG5¢( K? — K, K™).
(2.220)

We will denote Horndeski Lagrangians in the final spatially covariant form differ
from their original form to remark that they are in ADM variables and in unitary
gauge. We list them below in the mixed-form

341

£f7nimed — (;27 (2.221)
H3+1 2Y
Lymimed = —FyY — TngK + V#Biﬂ (2.222)
3+1
Limieed = Q3R+ (2Y Gay — G4) (K2 - KWK’“') —2V-YGsK + V,BY, (2.223)
341 - 1 1 1 ~
Llmiea = /T Fy KM (SRW — 5w 3R) = 5 (Y)2Gav K+ 5Y (Gs — Fig) °R
1
+5Y Gyl K? — K, K") +V,BY, (2.224)

where G2, G3, G4, and G5 are the coefficient functions of the general covariant

Horndeski action, F3 and F} are given by

G3 F5 4+ 2Y Fsy,

- F
G = L —
5Y 5y + 5y
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The total boundary terms now becomes
VB =V, (B{‘ + B+ Bg) ,

1 1 -
= vﬂ( — ganl‘ — 204((1/‘L — nl‘K) — ;(G5 — F5)GMU’I’L —+ 27F5(K - KaBKaﬁ)

Fs )
+ 7(K,“,a - Kau)>.

(2.225)
Then the Horndeski Lagrangians in the pure-form(up to the boundary terms)
read
£§,3+1 = As(t, N), (2.226)
E?I)-I,B-‘rl = A4 (t N)K, (2.227)
£l o (K2 ) + By(t,N)3R, (2.228)
L3+t = (K3 — 2K K, K" + SKWK””K}J)

4 Bs(t, N) K" (SR#,, — (1/2)¢ 33), (2.229)

which equivalents to the form written in ADM coordinate

LT = Ay(t, N), (2.230)
LT = A3(t, N)K, (2.231)
L3 = Ayt N) (K2 - KabKab) + By(t,N)*R, (2.232)

LI = At N) (K3 — KKK + 3KabK”CK§)
+B5(t N)K (*Ray — (1/2)a * ). (2.233)

where the coefficient functions are given by

Ay =Gy —Y Fyy (2.234)
Az =2(=Y)3 2By — 2(=Y)Y2Gyy (2.235)
Ay =2YGay — Gy + %YGW, : (2.236)
By=Gy+ %Y(Gw ~ Fy) (2.237)
As = %(4/)3/2(;55/ (2.238)
Bs = —(=Y)'2F; . (2.239)

Please note that these six functions are not linearly independent. They are
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depend on four independent functions G, G3, G4, andGs.

24 GLPV

Relaxing of the conditions (2.234), (2.235), (2.236), (2.237), (2.238), and (2.239),
and respect A2, A3, Ay, As, By, and Bs as the independent functions gives us
a larger class of the healthy scalar-tensor theories called GLPV theory. The

Lagrangians then read

LGFPVATL = Ay(t, N), (2.240)
LGEPVSTL = Ag(t, N)K, (2.241)
LGLPVAHL o A4(t,N)<K2—KabK“b)+B4(t,N)3R, (2.242)
LOPVAEL = A (1 N) <K3 KK, K™ + 3KabeCKg)

4 Bs(t, N) K (3Rab — (1/2)qu 3R), (2.243)

Therefore, this theory emerges from the generalisation of Horndeski theory in
ADM variables with unitary gauge fixing. The general covariance version of the
theories in this class can be recovered by using the so called the Stueckelberg
trick which gives us the covariant version of GLPV.

The counting of degrees of freedom for GLPV theory has been done in [29].
In contrary to the standard GR, The Hamiltonian analysis for GLPV theory
gives us fourteen second class constraints. Therefore the number of phase space
degrees of freedom becomes 20 — 14 = 6 implies the number of physical dof is 3.
two of them describe gravity and the another one describes a scalar field. This
scalar dof can appears explicitly in the formulation by means of the Stueckelberg
trick as we will be shown below.

Since unitary gauge fixing condition breaks general covariance by introducing
time using the scalar field. To recover the full spacetime general covariance back,
one must do the reverse, introducing the scalar field (the Stueckelberg field) by
the helps of time parameter. Then, the Stueckelberg trick in our case is induced
by the mapping

t— . (2.244)

Therefore

pr— — =1, (2.245)
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and from (2.155), one has
Ny . (2.246)

Furthermore, for the tensorial quantities we deselected the preferred ADM coor-
dinate back to the general spacetime coordinate and the scalar quantities then
threat as the quantities associated to the scalar field induced by the mapping

(2.244).
For example,

n“—=nt = —yt. (2.247)
Gab — Qv = Guv + 7V budu (2.248)
1

= G~ 3 Pub, (2.249)
DoN+— D,N = q,V.N, (2.250)
= (0u+7°6 0u)Viul(r) (2.251)

_ 1 ¢ pu
= 5l Ty (2.252)
Kay = Ky = quVan, = (6, +7°0 0,)Va(—7¢0) (2.253)

—1 1
- ?{@W — 6V InY + 556" 9ud, Va In Y(R.254)
K =quK”—~¢""Ku = ¢""Ku, (2.255)
v —1 1 A
= g" [ﬁ{d’w — WV InY + 559 dugy In @}?5,6)
3
= —O¢-— %dﬁYx : (2.257)
= =L (qe_Lta
- = (D¢ A Y)A> : (2.258)
ag—a, = n'Vun,, (2.259)
1 1

= 596 VnY - SV, InY (2.260)

where the more complicate quantities in the GLPV Lagrangian *R and R,z
can be computed by using these quantities. By (2.244) and (2.246). Now, we

can proceeding in calculate the covariant form of the GLPV Lagrangians

LGEPVATE = Ay (1, N) — Ay(¢,Y) . (2.261)
By using (2.254), one has
3
LGVPVATE Z Ay Og — Ag%gﬁ’\Y,\ . (2.262)

Observing that
CyY, o' =V, (¢o"C) —COp — CyY , (2.263)
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we can redefine the second term in (2.262) as Agg = ~3y. Then we can write
LGEPVATE = _Agy0¢ — Cay ¢ Ya (2.264)

= —Agy0¢ — V,(¢"Cs) + Cs0¢ + CssY . (2.265)

= (—A3y+C3)0¢p 4 CssY — V. (6C3) . (2.266)

Ignoring the boundary term and using

3 ~
Ag% =Cyy = —A~ =2Y Cy, (2.267)

we obtain

LGPV = (G5 + 2V Cay)O¢ + Cs, Y- (2.268)
For L4, by using (2.127)
LGPV = Ay (K = K K ) 4 By (K K"~ K 4+ R+ 207n° R, )

= B4R+ (Ay— By) (K2 - KWKW) + 2Byt n? Ry . (2.269)

We will calculate the necessary quantities as the following

o 2
K? = (—106-Lo™a)
6
— 22062 + 706 65 + WZwYAgwaw (2.270)
= {06 +29°00 8 p+4(A - 9)°} . (2.271)
L[ (@ , ® PR S
K"K = 70w +20%00.0050" + ' 0u0,0000° ) (2272)
d e f
x {7 + 27200 6 + N G} (2.273)
ad ae af bd

— — —
_ WQ{M + 290 - A+ A9+ 220 - A (2.274)

be bf cd
+294 (Y A - A+ (A 9)?) = 294D - 9)2 + v (A - 9)2.275)

ce Cf
_274(A~¢)2+78Y2(A-¢)2} , (2.276)
= 72{<Z>ZV +29°0 A+ A (A ¢)2} : (2.277)

(2.278)
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where we have introduced a shorthand notation for using between the calcula-

tions such that

Au = ¢/JV¢V7 (2279)
O = dusd™. (2.280)
(2.281)

Note also that, 2A - ¢ =Y,,¢* and 4 A - A =Y, Y*#. Therefore
LELPYV = ByR+~2(As — B4){(Dq52 +27206 A - ¢+ 74 (A - ¢)D282)
~(62, +29°0 - D+ 4 (8- 9)) } + 297 Bug" 6" Ry
= BiR+7* (A4 —B4){D¢2 +29206 A - ¢ (2.283)
—g2, — 2721\ - A} + 292 By 6" Ry -

For the last term

7V Bad'¢" Ry, = 77 Bad” [V, V. ]0" (2.284)
= YV Byd"V,V, 0" — 2 By V, V0", (2.285)
= A-B. (2.286)
A = ¥ Buyd"V,V, " =V, [y’ Bs¢"V,0"] =V, (v* Bsd" )V, 8" (2.287)

Viu[v? Ba¢" Vo] — (Vuy?*)Bad” ol — v*(VuBa)d" ¢l — v Baglio),

V- [v? BsA] = Biy'Yud" ¢l —4° (Bay Yy + Bag ) 0”0 —7° Bagw ot
V- [v?* BiA] = By (Y - &) = *Bay (Y - &) — ¥*Bug(D - ¢) — v* By 67

pv o

V- [v? BiA] = 2By (A - A) = 29°Byy (A - A) — ¥’ Bug (L - ¢) —¥*Bs 67, -

(2.288)
Similarly, for the term B
B = ~’B,¢"V,(0¢), (2.289)
_ (2.290)

Then the equation (2.269) becomes

LGPV = ByR+97 (A — B){D¢? + 20206 A6 — 62, - 22 0+ A}

V- [v*Bs06¢ ¢] — 27" Ba(A - $)0¢ — 27°Bay (A - ¢)0¢ — v*Bay YO — 7> By0g* .

(2.291)
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1242 { —2B4y?A - AN = 2Bay (A - D) — Bag(D - ¢) — Bad2, +29*Ba(D - $)0¢

+2Biy (A )06 + BipYOp + BiOg? |

(2.292)
By comparing with the Galileon Lagrangian (2.8)
€ 1 E Vs V1 U2
L‘Sdl’l — ﬂemmuséeuluwg’é(b 3¢H3 ¢H1 ¢H2
= V(06" - 6p) = 20u0" $rad® + 206 G 86",
_ 2 2
= Y (@O¢* - ¢2,) —2(A-2)+ 206 (L 9) . (2.293)

It is quite stunning that the first bracket of (2.292) proportional to the the

Gal,1
£4

, we may use this clue to simplify our equation into the terms of galileon.

The equation (2.292) becomes so far

GLPV
L

By R+~* (A — By) L3 + 274{34 L9 L2V Byy (A - A) — 2Y By (A - ¢)06

Y Bag (D - ¢) — B4¢,Y2D¢} : (2.204)
By R+~ (Ay — By)LI™ + 274{34 LYY Y By £97Y — (02 — ¢2,)Y*Bay
Y Bug(D - ¢) — B4¢Y2Dq§} , (2.295)
BiR+ (As+ B4y—2 2YB4Y)LZ(LZ,1 — 2By (09 - ¢;2w) —22Buy(A - 9)

—2B,,0¢ . (2.296)

The last two terms then read

—29°Bug(D - ¢) = 2Bag0¢ = —29°Bagd¢'9” — 2By ,(2.297)

= —’ByyY,¢” —2By06 . (2.298)

For the first term we will use the trick (2.263). Therefore, we must define

Cay =72 Byy, orCy = / 7% Byg dY, (2.299)

which implies (up to the boundary term)

—29°Bug(A - ¢) —2B1y0¢ = —Cuy Y9! —2B4p 06,

= —{—04 Dd) — C4¢ Y} — 2’)/7204y|:|¢
= COuY + (Cy+2YChy)06 . (2.300)

Substitute this last piece into the equation (2.296), we have

GLPV
L

(A4 + By — 2YB4y)

BiR+ %

Ly — 2By (0¢* - ¢2,)
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+C4¢Y + (Cy +2YCyy )00 + VMB;)LHAL . (2.301)

This is the covariant form of the Lagrangian £{*"V. Next, we will consider

LEEPY in the covariant form, start with the spatially covariant form (2.243) in

the general coordinate
LGPV = A5 (K* = 2K K K + 3K, KK )
+ Bs K (*Ryy — (1/2)q0 *R)
We will calculate the covariant form of the first three terms as the following
K = —y(0p+4%(0 - 6)) v (06" +20°00(8 - ) + 14 (8- 9)?) |

= (06" +3y206%(A - 6) + 37'T0(D - 6)2 +1°(8 - 9)*) (2:302)
KEKaK® +— KK"K,,,
= (0 +%L9) (6 +20AA - 2) +4A - 9))
= (0063, +20°06(A - 2) + 7' D68 - 6)° + 72 62, (A )

F2/1 (D B)(D - 6) +45(0 - 0)) (2.303)

K K™ = 4° (%mm R AYRASE ek R R @) P VAW VAR

2 0u(0- O) + 70 0™ (A - ) +9°9, 6°(A - 6)° 477 6, (A )

(2.304)
LKW KL = = { ok 4000 4]
= (B 9" 0+ 3730 O 4) + 39 (A B)(B - 9) +1°(D - 9)*) .
(2.305)

Then the combination of the first three terms in term of the scalar field reads
K* - 2KK,, K" + 3K, K" K" = [K]” - 2[K] [K?] + 3 [K?] ,
= —7* (06" + 392 06% (A - 6) + 37" To(D - 6)2 + 75D ¢)° — 300 62,
—67206(A - 2) = 37" 0(L - 9)? = 372 6, (& - 9) — 67" (D - D)L - 9)
30D ¢) 4207 4 67%(6- O A) + 67 (- A)(A - 6) + 29%(A - 6)°) |
(2.306)
— A5 (YD¢3 —3Y O §2, +2Y 3, — 3(A - )02
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+3(2 - 9)0%5 —6(6- O+ £) +609 (5 A) ) |

1,1 v
= LI = =P eapr5 0 budL ) D)

— A <K3 — 3K, K"K + ngK;K;f)

, 1
+B5 (K" * Ry, — 5 K°R) |

— A <K3 — 3K, K"K + 2K5K;Kg)

(2.307)
(2.308)

(2.309)

1
+Bs (K‘“’Kﬁ“[(w — K K"K, + K" Ry, + Kun®ngR’ 0, — K K, K"

2
1, 1 ,
+5KP = SRK — K Rynin”)
2 2
Ly = A (K3 — 3K, K"K + 2K5K;K;j) (= .4)
3 1
+Bs (K" KooK — K K K™+ §K3> (= )
+Bs (Km,nan/gRBMm, — KRWn“n”) (= 2)
+Bs KM G, (= 2) (2.311)
P = Bs({ - Kb, + K" V0, - n K"V, Ky + K" a0, )
—{K n’V"'K,, + KVta, — Kn°V,K + Kn°ntV,a,
+K n”auvgn“}) : (2.312)
73
= —Bsv¢ G + Bsn,a, G* + Bsny,a, G* + B5?¢)‘Y)\nun,,G‘“’ ,
(2.313)

3
1
= —Bsy6,,G" + 2Bs R, nta” + Bg,%qS*YA{RWn“n” + 3R} (2.314)

72 ,YS
= —BsvuG" + 2BSanM(7YV — ?n’\YAqS”)
7 1
+B5 5 0" Va{Ruwn''n” + SR}, (2.315)

1
= (Bs¢du + BsyYu) 16, G" + 535731@@@” +92BsR,,,n"Y"

ol 7°
=Bs 5 0" VaRun''n” + - Bs* YR, (2.316)

(2.310)



24. GLPV 47

3 1
2 = BsyY,16,G" +3Bss6,0,G" + Bs o (R Y8 — SRY 65
3 B 3
~*BsRuu¢Y" = Bs - 6" A Ryunn” + = 6" VAR, (2:317)

3 3
= BsyY,16,G"™ + Bspduh, G — B%RWY%" - Bs%asAYARWn“n“ :

= BBYYH'YQSVGMV + ’YB5¢¢;L¢VGMV - BS’YR,uuaH‘bV ) (2'318)
where we have used
2 o A
ay = ?Yy‘ — ?n Y)\(ﬁu . (2319)
Then, we will define
é5y = —B5y’y . (2320)
Hence, we have so far
2 = —GsyY,0,G" — GspYudG* + Gsgdud, G
+’YB5¢¢M¢VG;W + BSR}LVCLMTLU ) (2321)
= —Vu(G5)0,G" + Gs54Gd!d” +1Bs5sG e’ + BsR,aln”
YLD G Gy + (Gsg + v Bsg) Gud"d” + Bs (0" Vo K& — Kopa’a® — a”V,K)
(2.322)
P+2 = Bs( =K+ K"Vya, -7 K"V, Ky + Kt
—Kn’V"K,, — KVta, + Kn°V,K — Kn°n"Vsa, — Kn’a,V,n"
+a"Vo K, — Ky na"a” — a”V,,K) + G5¢GW¢”"
+(Gsg +VBsg) Gt d” (2.323)
—1In'V (K" Ku)  +KK.,VFn®
= Bs(— Kp, + Vu(K™a,) “n? KMV Ky “Kn? VIR,
-n*(Ka,)+ Kn°V,K —Kn°n"V,a, — Kn"auvgn“)
In°V.K? 0
+G56Gud™ + (Gsg +7Bsg) Gt o’ (2.324)
u 1 1
P+2 "L |By(~K3) |- V,Bs K"a, + 5 VoBs 1" K1 Ky, +| o Bs KK K1
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o 1 o2 1 3
+B5K Ko K" |+ V" B; Ka,, — 5 VoBsn K~ Bs K
+G54Gund™” 4 (Gsg + vBs) G d" " (2.325)
1 1
=~ AN = VuBs K"ay + Vo Bsn K" Ky, + V"' Bs Kay, — §VUB5n"K2
+G54Gd" + (Gsg + vVBss) G d™ " (2.326)
1 1
N+ P+ 2 = —V,Bs K"a, — V. Bsn’ K" K, + V" Bs Kay — 5V Bsn” K
+G54Gud"” + (Gsg + vBsg) G d" " (2.327)

0
/_/H ].
= ~BsyY,K"a, — Bsyo, K" a, + 3 Bsy Yon K" K,y

lp KM 4 BayYPa, K + Be, K — LBy Von® K
—1-5 56 Pon w + BsyY"a, K 4+ Bsgd*ay, — 5By Yon

1 s N

_§B5¢¢anJK2 + G54G " + (Gsg + vBsg) G ¢, (2.328)

= Bay (= Kua,Yy + $Yon® KKy + Yra,K - 1Y,nK?)

=-S5

1 1
+B5¢ <§¢anUKMVK,uV - §¢angK2>
+G5Gud" + (Gsg + 1Bs) Gt d” (2.329)
using the Stueckelberg’s trick for this part
1 1
S Ky Yy = 5Yon K" Kyy = Y¥a, K + §Y(,n"K2 : (2.330)

(" + AU - )" + Y H A + 7 AF) (VAL + AN A 9)dy) 28,

3 (20) 87 V(6 +207(D - ) +71(8 - 9)?)

=200 (VD + 7D - ) ¢u) (=100 =72 (L - 9))

—2 (280)¢7 (709 +7°(8 - 9))°, (2.331)
=27 ((6- O+ 8) +7%(L - ) (A 8) +74(L - 9) (A 6)* +75(A - )Y (A - 9)
F2(D B )+ DY (D B+ 72D O)(D - )+ (D B)(D - 6)?)
(D 9) (05, + 202D - A) +44(A - 9)?)

127 (8- 8) +9%(8 - 9)?) (Do + 4% )

(8- 9) (06 + 292 06(A - 8) + (8 - 6)?) | (2.332)
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Ls

28 [(w L0 B)+29%(A - )(A - A) + 294D - 6)F =741 - 6)?)

+(—§<A-¢>¢fw PO DD -6) — 17 (D - 6))
(A 8)06 =2 (A - A)(A - §) - 2D¢<A~¢>2774<A'¢>3)

1 1
(58 9)06% + (8- 9)°06 + 57°06") (2:333)
1
23((9 O &) = 55 $), — (5 &) Tp+ 3(A-6)Tg?) (2.334)
M+ N+ P+ 2, (2.335)
=77 A5 €07 €apysd” Bl 6305
1
420 Boy (60 1) = (8- 6)8%, — (8- 8)Tp + (8- 9) 047
1
il v _ K2
+30 Bos (K" K — K2)
+é5¢GW¢W + (é5¢> +vB5¢)G ot o” (2.336)
3
—As 7" L4 = Bey L-{ - L4 ¥ D6? + 3Y D03, — 2V 0}, |
B - .
257‘15 (K Ky = K2) + GG + (Gsg + 1 Bso) Gpudd” . (2.337)
1 a
(= A7 + 37°Bay ) £8° =52 (O6° — 3002, +2 4, )
1G5y
+%(K K- K2) 4+ (- /B5y 7dY+/i(vB5 JAY )G 6"
27 1324 ¢ dY ¢ 1224
+G5pG ™ (2.338)
=345 + (=Y)Bsy \ ~gat1 , 1~ 3 2 3
(Bt S (- +26)
+ 522 (K Km = K2) + [ (39° Bsg)AY G #6”
=J
+G5G oM . (2.339)

B

1
J = =% (K,WKW - KQ) + e / (v*Bsg)dY Gntn” (2.340)

2y
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B ” 1
= (R = K) + (5 [ (P Bag)aY ) (Rt 2Run i3

1
= — [ BsyyPdY 2.342
Ci = g [ Bray. (2342)
_ B5¢ v 2 o v
J = CoRt P (K K" = K2 ) 4205 Ry’ (2.343)
d
—4°Cs = +°B
ay v Us Y Dsé
47'Cs +v*Csy} = 7°Bsy,
2 B
205 + 5 Csy = =2
Y 2y
B
2—57"’ = 205 —2Y Csy ,
J = CsR+ (205 —2Y C’5y)<K,wK“” _ K2) + 205 Ryynin” (2.344)
LEEPVI = By R+ (By — Ag) (K K™ — K2) + 2By’ Ry,
— LYYV = By R— 2By (0¢° — ¢7,,) + (Ca + 2Y Cay )06
Bi+Ay—2YBy ..
HY Clag + =€ 00,07 60 2.345)
(2.346)

where Cy = [ Bygy?dY . Therefore

By ~ Cs,
By — Ay ~ 2C5—2YCsy ,
Ay~ —C5+2YCsy
Ai+By—2Y By ~ (=Cs+2YCsy)+Cs — 2V Chy
= 0,

J —s  Jcov — 05 R — QCSY(D¢2 — ¢,2“/) -+ (D5 —+ 2YD5Y)|:|¢ + Yl]?3¢3747)
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where

Ds = / Csgy?dY . (2.348)

- 1~
LR = GaGut + 3o (06 3006, +26,) + Co 1

—2C5y (0¢% — ¢2,) + (D5 + 2Y Dsy)0¢
Y B5Y + 3A5 Voo o ﬁ s
T3(_Y )y € €0 prs 0 BBl Bl . (2.349)

We have demonstrate the examples of derivations for the covariant form of
EgLPV,EP,GLPV, and EELPV

+Y D5, —

using the Stueckelberg trick. The covariant form

of LEEPV can be found in [19], it reads
LIEPY = As(9Y), (2.350)
LAY = (Cs+2Y Cay)g+YC sy, (2.351)
LGPV = BiR—2Biy(0¢* - 62,) + (C1 +2Y Cay) 0o

1Y Gyt A4Y_2 2B oo, 56,67 [ (2.352)

= B4R — 2By (0¢* — ¢7,,) + (Cs + 2Y Cay ) 0o

+Y Cugp + Fae" €5,5600° 6700 (2.353)
LETY = GsGue™ + %G‘g)y (Dd>3 —30¢ 47, +2 qsiy) +C5 R — 2Csy (O¢* — 62,)

+(Ds + 2Y D5y )¢

+Y D5y — We““”eamm%mf ér05 (2.354)

- 1 -
= GsGu¢™ + JGsy (D¢3 - 30667, +2 ¢fw) +C5 R — 2Csy (06 — ¢7,)
+(Ds + 2Y D5y )06

+Y Dsg + F5e""7 €050 ) 6305 (2.355)
N 1
Cs = g/vsAde, (2.356)
c, = / Bygy?dY (2.357)
— 1 3
Cs = e / BsgyldY (2.358)

Ds = / Csgy?dY (2.359)
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Gy = — / Bsy~dY | (2.360)
F, = B4+A4Y_22YB4Y, (2.361)
B, = W, (2.362)
and
—€P €350, 0 G100 = 053,90 B18Y

= Y(D¢2 - ¢;2u/) + 2¢M¢lw¢mx¢a - 2D¢ ¢uu¢“¢y )
= Y(O¢* - ¢7,) +2(A-A)—20¢ (A - ¢) .

— P s bud LDy = Shihidud Bl o085
= YO¢® - 3YOp¢2, +2Y 2, — 30,04 ¢" 0

+3¢uu¢u¢y¢iﬁ - 6¢M¢uu¢ya¢aﬁ¢6 + 6D¢ ¢H¢uu¢ya¢a .

= +YO¢® - 3YOe¢r, +2Y¢), — 3(A - ¢)0¢
+3(A - @)pos —6(- O~ A)+60¢ (A - A)

2.5 The Overall Constructions up to Gleyzes-
Langlois-Piazza-Vernizzi

In this section we will sum up the construction of the Scalar-Tensor theories up
to GLPV. We start with Horndeski theory which contains 4 arbitrary functions
G2, G35, G4 and G5 then we perform ADM analysis. We found that the set of re-
lations f ={(2.234),(2.235),(2.236),(2.237),(2.238),(2.239) } maps the Horndeski
coefficients to the coefficients Ay, Az, A4, A5, B4 and Bs of ADM-Horndeski ac-
tion (represented by the green arrows in Figure 2.2 ). This set of relations will
no longer be important at the later stage as we have relaxed it keep only the
form of the resulting action and it is now the GLPV action which is not fully in a
covariant form. We called it GLPV as the relaxed ADM-Horndeski, technically,
the coefficients of this action are differ from that of ADM-Horndeski although
we still manage to use the same names for them but keep in mind that they are
not related to Go,Gs, G4 and G5 anymore since we have thrown away f. We
show this structure in Figure 2.2.

Since GLPV action obtained from decomposition of the Horndeski action

into (3+1)-style with the unitary gauge they contain solely the non-covariant
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> A2
— | S
G o
As
s |7
. Ay
Relaxing f
= B,
/
Gs =
As
ADM-Horndeski
Horndeski Bs

Figure 2.2: The mapping of coefficients between Horndeski and ADM-Horndeski
Lagrangian

terms. By the Stueckelberg’s trick we can obtain the covariantized GLPV. Now,
the set of relations g1 = {( 2.356),(2.357),(2.358),(2.359),(2.360),(4.26),(2.362) }
(represented by orange arrows in Figure 2.3) is the transformations between the

coefficients of the both relevant forms of GLPV.

Consider equations (2.351),(2.351),(2.353) and (2.355) , by interchanging

their terms we then obtained the new form

LTV = A, Y)+Y(Cs+ Cu+ Ds), (2.363)
£V = ([Cs+ Ca+Ds] +2Y [Cs+ Cy+ D5, )0, (2.364)
LY = (Bs+Cs5)R—2(By+Cs), (0¢° - ¢7,)
e €5 b 80 8785 (2.365)
LEKPY = Gy Guo + 5Goy (068 30042, +243,)
FE5€ 7 €0py50° Db d) bl - (2.366)

It is more natural to rewrite

C3=C3+Cy+Ds . (2.367)

especially when we start from the GLPV action in the forn of Horndeski action
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A 1
A2\ /:—' 5
3y i

GLPV

As

\
[
=
-

\
VAN VAR

suLio} vIjxo snid I{SOPUIOL]

i
A4 [~ | :
j Fy _JI_
1
1 =
B /\/ e DS o Gs
2 2}
E 1
1 |
\ C- 1
A5 1 ° /‘I/ / F4
[~ / 1
N Ds 11 ]
/\ \/:' H-—-——-- N
Bs ol F5 | ! AN Fy
=== s
/
/
Covariant GLPV The compact form of Covariant GLPV

Figure 2.3: The mappings between a certain forms of GLPV theories.

plus the extra terms. Then the mappings from the original covariant form to

the form of Horndeski are

Gy = Ay+Y Csy, (2.368)
Gs = C3+2Y Csy , (2.369)
G, = Cs+ By, (2.370)
Gs = Gs, (2.371)
F, = Fy, (2.372)
F; = Fs. (2.373)

Therefore rearranging the terms of this covariant form we will obtain another
covariant forms. We can rearrange the terms to obtain GLPV action in the form
of Horndeski action plus another extra covariant terms. It can be done by the
transformation gs o go (mapping by the yellow arrows follow by the blue arrows
in Figure 2.3 ) where go = { (2.367) } and g3 = { (2.368), (2.369), (2.370),
(2.371), (2.372), (2.373) }

In order to transform back from GLPV as the Horndeski plus extra terms to

the covariantized GLPV, it is more natural to see the coefficients Cs + Cy + D5
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as the single function C3. This process is equivalents to performing g5 1 and

the resulting action is the covariantized GLPV in the compact form.
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Chapter 3

Disformal Gravity

3.1 Introduction

A certain class of scalar-tensor theories can be obtained by conformally trans-
form the metric in Einstein-Hilbert action. Therefore we can start from GR
and go to such scalar-tensor theories by conformal transformations. If there
is no ghost in such theories we may have some viable ST theories. Using the
ghost-free condition as a guiding principle Horndeski have shown that the most
general scalar-tensor action provides up to second-order equations of motion can
be obtained, the Horndeski theory. It turned out that this theory cannot be ob-
tained from Einstein-Hilbert action by means of conformal transformation but
the disformal one. The second-order equations of motion of theory guarantee the
ghost-free property but not vise-versa, the counter examples exist. Therefore
in this chapter we will transform the Einstein-Hilbert action by the disformal
transformation. We set the conformal factor equals to unity for simplicity. Then

the disformal metric reads

Juv = Guv + D(¢»X)¢,u¢ua (31)

3.2 Basic Quantities in Disformal Gravity

The disformal gravity is a theory of two metrics. In this section we will compute

some of the basic quantities in the form of the disformal metric. Firstly, we will
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compute the volume element of the disformal metric

~ ~ 1 v afpo~  ~  ~ =
g = detgu = 55“ V8 cabp 998Gy p9so (3.2)
1 1% « loa
= 55# 765 Be (Ag/wz + B¢u¢a)(AgVﬁ + B¢v¢ﬁ)(Agvp + B¢'y¢p)(Agéa + B¢6¢0)a
1 v afipo K
= < 102BP7 [ A g,109u 8970950 + 4AP Budagusgrpdss] »

‘ 1 vyd _afBpo
= A4g +4A3B15M e pe Qbu(lsaguﬁg'ypgém
1
= A4g + 4A3BE(* V *gfﬂyvé) (* V *g€aﬂpa)¢u¢a9uﬁg'ypgdm
1 vy _«
= A4g +4A?’B(—g)56“ v € u75¢u¢aa
1
= Alg—44°Bg;(=3l9"") G,

— Alg+ ASBgets, . (3.3)
In a more compact form of the volume element
V—gdie = A%\ /=gy /1 — 2§Xd4x. (3.4)
We note that d*xz = d*Z because z* is only a frame which contains no physical

data.

The next quantity we want is the inverse of the disformal metric, g*”. By

varying the determinant of the disformal metric we obtain the identity

0 = 99" 0Guv, (3.5)
= _ggw(ggw. (36)
These identities also hold for the untilde metric. The the inverse metric can be
computed by
po o 10 Lo
g 59(16 g (;gwj 69(16
16(A% + A*Bgg* ¢,p¢5) 1 9"

(3.7)

g dgHv A (‘)‘goéﬁ7
1 dg dg dogr?
= — A4 +A3B< P74 o|
Ag |: 5.9045 59&69 g5ga5 ¢p¢
]. —g°f ﬁ06 «
_ T [A4ggaﬁ+A3B <ggaﬁgpa —l—gg(sggﬁ> ¢p¢g:|7
g Jap
1
T [Atgg™P + A*B (—29g"" X — g¢*¢")] ,
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1 A'gg*? + A3B(=299*P X — g¢*¢")

A Atg —2A3BXg ’
1 B
_ 1 as o 4B
119 1 2Ex " |- (3.8)

Riemann tensor can straightforwardly be computed. Starting by compute the

connection( defined by V., §,, = 0)

B, = 50 Ouius + s — Oai).
= S (Vudios + Thrs + Dhniion) + (Vdus + Thns + Todup)
—(VsGuw + T390 +1%,300)),
= I}, + %gaﬁ(vuguﬂ +Vuius — Vaguw) - (3.9)

For the sake of computations, we define

o, =Ty, + K. (3.10)
Then by definition
Riyap = 0alt, — 0gl0, + 4,13, — T4, (3.11)
= Rlyap +2VEKh, + 2K\ Kp),. (3.12)
The Ricci tensor
Rg, = Rg, + 2V (o K§), + 2K51, K}, (3.13)
and the Ricci scalar
R = §Rs, (3.14)
_ l B _ B ¢v¢ﬁ {R LoV K% 4+ 9K K2 (3.15)
- a4y T A 2Bx By T2Vl + 285, K5, (3.

3.3 Deriving the Einstein-Hilbert Lagrangian from
Purely Disformal Metric Transformation

If we begin with the metric in the form of the purely disformal metric (3.1) ,
the inverse metric reads

g =g" =’ DeteY with P = — (3.16)
and we have introduced (3.10)

o o o —a = 1 =
Ko, =T%, —T%, = 3V (v — 5vAg,w) : (3.17)
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Then, we can write the Riemannian tensor as (3.12)

R = 2a[uf316 + 2F$[MFZ]B ’
= R%u + 2V, Kjj5 + 2K [uK , (3.18)
and the Ricci scalar as
R = (9" —+*Dé’¢")(Rp, + 2V, K}y + 2K K1),
R = R-1’D¢’¢"Rg, + Zgﬂyv[u V]B + QQ&IKW[HKV}
~2v2D¢P ¢V |, K s~ 272D¢ﬁ¢VK§[MKV] 5 (3.19)

By substituting g,, from (3.16) into K, in (3.17) and after straigthforward

calculations we can obtain that

1
s =—5(VD)o o, +7 (VD))o

v2D
+7(V D) b pd. +7 D bpy (3.20)

From appendix 5, we list here again the 3rd - 6th terms of (3.19) which are
the results from (5)(15)(9) and(17), respectively. We will subtract the possible

terms at this step before adding to the remaining terms of R
207V, K, = (1+9°)(0D)X + (VD) (V*9?) X +4°D(0¢)° = 4D $pu
1
#5000 {(1+72) 9"V, D + (V,D)(V12)}

HBuT0 — 609" ) {5 (V*D)TIO(1 +377) + D(V?)06)
~V’ DR e" (3.21)

m) ¥

(1 =) 5 D" Dy ¢ue” +v*(1 —+?)X2D, D"

v gk
29" K7, K g

2
FOuOHDH T (17} + G0 DS (- 37 +294)
o ¢
+YA D278 63, (00) — ¥ D267 b b1

2

+7 D2 X DA o by (3.22)
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~2°D¢P ¢V, Ky = —*D{-2(0D)X* - (V'V,D)¢" ¢, X
63407 |(1+4)(V*D)X]
+(O8)6” [293(VaD) X (DX —1)]

O ¢

+72D0¢d, 0" ¢° — V2Dl g™ d b . (3.23)
7 @
= 5YDX2DMD,¢,¢" + 2v*DX3DFD,

=

—V DX D"$,¢,56" ¢ — 27 D> XD ¢,,5(3.24)

~2y*D¢f¢" KL, K]

We comeback to the Ricci scalar with the above results

R=(¢"" —7"D¢"¢") (R, + 2V, K} + 2K K1), (3.25)
R = R-—+’D¢P¢"Rs, + Qgﬁ”V[MKL‘] 5+ Qgﬁ”Kf;[ﬂKZ] 5
—272D¢ﬁ¢”V[MKl’j] 5= 272D¢5¢>”K5{#K§] 5 (3.26)

= R—2v’DRp,¢?¢" ++*D((0¢)% — b ")

2'\/2

+(@OD)X (1 4+12 +2DX~?) + X(V,.D)(VF+?)

272

+%¢H¢V(V“VVD) (14+~2+2DX~?) + %gz),tgz)"(vw?)(vym

=0
+X2D,D"(7? — 4* +4%2DX)

1
+¢#D¢[§(1 £392 492 4t — 44" DX(DX —1))D* + D(vW)}

2

4y

1
~6w " |3(L+37° — 14392 — 294 + 4D2Xy* + 2DX+2(1 +9%)) D"

4~

+D(V“72)} : (3.27)
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62
R = R—2v’DRs,¢°¢" ++°D((0¢)% — ¢ d") +27°X(0OD)
FX(V,D)(V#9?) + 20u0" [27V#9,D + 29(V#3)(V, D)
+64(06)[292D" + 27 D(V#7)|
e [2721)# + 27D(V“7)} (3.28)
Lor = %R = %R —27DR3,¢7¢" +4D((00)* — ¢ ™)

+29X(OD) + 2X(V,D)(V"7) + 26,6 [24(V#V,D) +2(7¥2)(V, D)]

2Vv*(yD)

+6,(0¢) [27D“ + 2D(V“'y)}

2v*(yD)

6" [29D" +2D(VP)] (3.29)

where GF' denotes the Galileon frame. By using the relation

Vo (27D(¢"06 — ¢u¢™)) = 2V, (vD)(¢"0¢ — ¢.0"") + 27D((06)° — ¢ ™)
—2yDRp,¢" ¢, (3.30)

We obtain the more compact form of the action

Lor = ~R=D(08) = dut™) + 0 X(OD) +2X(V,D)(V"7)

+6u0" [194V, D + (V49)(V, D) (3:31)
Oor even more compact
1
Lop = ;R —D((0¢)* — ¢ ¢"”) + 2XV*(vV D)
(3.32)

+oud"V*(7V, D).

By using integration by parts with the last two terms one obtains

R
£=7- YD (B¢% = ud") +7|V,uDdad™ —V,D0G¢" | . (3.33)
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3.4 Disformal Action in Covariant GLPV form

We will consider the disformal gravity Lagrangian (3.33) (we set 167G = 1 in

this section)

R
L= o YD(0¢* — ¢ d™) + 7|V Do d™ — V, D Og ¢" | . (3.34)
It is a covariant action so we will compare it with covariant GLPV action
(2.363),(2.364), (2.365),(2.366), and (2.367)

Lo = Ay(pY)+Y Cyy, (3.35)
Ls = (C3+2Y Csy)06, (3.36)
Ly = (Bi+Cs)R—2(By+Cs), (0% - ¢2)

e €500 87 07160 | (3.37)
Ly = G5Gué" + ééw (D¢3 — 306 ¢}, +2 ¢>iy)

+F5 €7 €055 00 0765 (3.38)

Consider the case of L5 = C5 = 0. In this case

Ly = ByR—2Bu (0¢* —¢2)

g
B, +A,-2YB
+< b 4Y><—Y(D¢2— fw>—2¢#¢W¢m¢a+2m¢¢w¢“¢">,

By + Ay 2 2
_ B4R—Y<D¢ — g2,

2(B Ay —2YB
LUBut ;‘,2 ar) (Dw,m%”—%w”quw). (3.39)

We then expand our disformal action

R
L = ; - ’YD(D(ZSQ - QSW,(ZWV)

+7 [ DPudad™ + DyY,009™" — Dy, B¢ ¢” — DyY, D¢ ¢”} ;o (3.40)

R
= ; - 'YD(D(bQ - ¢MU¢IW)

+7|Dp¢pdad™ + 2Dy ¢3,0° $ad™ — Dyd, O ¢” — 2Dy ¢g,¢° O ¢”

)

R
= ; - ’YD(D(bz - %ufﬁ’“')

—2vDy |¢p,0° O ¢" — ¢5,.0° o™
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—yDgY B¢ + Db, pad™" .

(3.41)

The last term is not seems to match to any terms in covariant GLPV action

(3.35), (3.36) and (3.39), but one can see that

From (3.39) and (3.41) one may expect that
By+ Ay
4T D
% Y,
which consequently implies
1
A4 = ’}/DY —_ — .
Y

From (3.42) and (3.44) one obtains

B4 + A4 — 2YB4Y = —’}/Y2DY .

(3.42)

(3.43)

(3.44)

(3.45)

Therefore the third terms of (3.39) and (3.41) are consistence with each others
then the last term of (3.41) should contribute to L2 and L3. To deal with it we

define an auxiliary function
7Dy =FE+YEy.
Then we have
YDyY, " = —DyY?—EYO$,
= —DyY?-0¢ / yDydY .
up to the boundary term. equation (3.41) now becomes
L=- %D¢Y2 — (vDsY + % /7D¢dy) O¢

R
+ ; - 'YD(D¢2 - ¢pu¢lw)

— 2yDy {qsﬁy(zﬁ O¢ ¢” — ¢pud” %szﬁa“]
It is clear that

1 1
O3 = -3 /7D¢dY , Ay = —§D¢Y2 —YCsy .

(3.46)

(3.47)

(3.48)

(3.49)

Now one can see that the disformal gravity action is in the class of GLPV

theories.



Chapter 4

Background Evolution

4.1 Introduction

In order to investigate the situations in which the gravity theory in the previous
chapter can drive accelerated expansion of the late-time universe, we study
the evolution of the FLRW universe for this theory of gravity. The evolution
equations can be obtained using the FLRW metric given by

ds* = —N?*(t)dt* + a*(t)6;;dx" dx? (4.1)
where d;; is the Kronecker delta, and we will work in the time gauge, i.e., ¢ =

¢(t). We work with the action from the previous chapter (3.35),(3.36),(3.37)

plus the matter action

1 4
S = %/d4xﬁgﬁi + S (4.2)
where

Ly = Ay,Y)+Y Csy, (4.3)
Ly = (Cg +2Y ng)‘j¢ s (44)

Ly = BisR- B4+A4 <D¢2 - wa)

2(B Ay —2YB

JHB 2 o) (Dwmw - ¢H¢*‘"¢m¢a) - ()

with B4 == 1/’}/, Cg = —%f’yDdiY 7A2 = —%D¢Y2 - Y03¢7 A4 = ’yDY - %,
and kK = 87 G. In the case of GR we have D = 0,7y =1,C3 =0,B, = 1,4, =
0,Ay =—1.

65



66 CHAPTER 4. BACKGROUND EVOLUTION
4.2 Equations of Motion

The equations of motion can be derived from [73] (See also [0])
En +6H?Y? (5Fy + 2Y Fyy) = —2kpy, (4.6)
Py + 2V [— <3H2 + 2H> YFy — AHY Fy — 2HYY Fyy — 2HY $Fyy| = —26p,(4.7)

pm and p,, are the energy density and pressure of matter respectively, and the

equation of motion for the scalar field reads
J+3HJ =P, (4.8)
with
J = Ju — 24H?Y ¢Fy — 12H?*Y?$Fyy(4.9)
Py = Pug + 6H*Y?Fyfd.10)
& = 24:5&, Pu = 24:79(1@1.11)
a=2 a=2

Jg = *éGQY —6HY G3y — 2(15G3¢ — 3H2(1-5(G4y + 2YG4yy) — 12HYG4y¢

(4.12)
where

E = 2YGay — Go, (4.13)
E = —6HY$Gsy — Y Gy, (4.14)
&1 = —6H?Gy+24H?Y (Gay +YGayy) — 12HY $Gay s — 6HPG 44 15)
Py = Go, (4.16)
Py = —Y(Gss—26Gsy), (4.17)
Py = 2(3H?+2H)G4 —4(3H?Y + HY +2HY)Gyy —8HYY Guyy

+4Y (¢ — 2H)Gayy + 2(¢ + 2HP)Gagp — 2Y Gupy. (4.18)

Piy = Gy — Y(Gagg — 20Gay ) + 6(2H? + H)Gug + 6H(Y + 2HY )Gy {4.19)

In this case we have the arbitrary functions Ay, C3, By, A4. We can recast
our action in Horndeski form plus extra term (Fy) by using
B4 + A4 — 2YB4Y
Fy, = v ) (4.20)
Gy = Ax+ YC3¢, R (4.21)

Gs3 = (C3+42YCsy , (4.22)
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Gy = By. (4.23)
The first-order differentiation for the complicate C'5 term reads
_ i
Cyy = _§D¢ , (4.24)
C3y = —l(A +1p Y?) (4.25)
We then have
F4 = —’}/Dy (426)
1 1
Gy = Ay—(As+ 5D¢Y2) = —§D¢Y2 (4.27)
G3 = 03 - ’7YD¢ (428)
1
Gy, = —. 4.29
Recall that
1
= —. 4.30
1T Vit Dy (4.30)
We then have
~3
’}/¢ = _?Dtﬁy (431)
3
wvo= _?(D +YDy) (4.32)
Y2
Ggy = _7D¢Y — YD¢ . (433)
Therefore from (4.13), (4.27) and (4.33) we have
& = 2YGay — Ga, (4.34)
1
= —Y3Dyy —2Y?Dy + §D¢,Y2 (4.35)

Next, consider (4.28)

G3 = Cg - ’yYD¢
3 3
Gyy = —37Ds+ %YD¢(D +YDy) =Y Dyy , (4.36)
Az 1 73 212
G = — —=-D,2Y —~YD —DiY“. 4.37
3¢ v~ 3D0¢Y =Y Dsy + 5D (4.37)
We then have (4.14) as
. 3 '-)’3
53 = —6HY¢( — §D¢ + ?Y D¢(D + YDy) - ’}/YD¢Y)

1 3
+ A2+ 5D6Y* +9Y Dy - %DiYs . (4.38)
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Next, consider (4.29)

Gy = Vi+DY (4.39)
Gip = %YD¢ (4.40)
Gry = %(YDY +D) (4.41)
9 v
G4y¢ = —?Dqu(D + DyY) + 5(YDy¢ + D¢) (4.42)
_ 7 2, 7
Gayy = *?(D +YDy)* + 5(2DY +YDyy) (4.43)
We then obtain
6H> 3 Y
£ = — -+ 24H2Y(%YDY + %D — WZY(D +YDy)? + %(ZDY + DyyY))

R GH~
~12HY $( — %Dd,Y(D +YDy)+ %(YDW +Dy)) — T%YDQ5 | (4.44)

we also have

3
Fiy = %DY(D +YDy)+yDyy . (4.45)

Therefore, from (4.13),(4.14),(4.15),(4.26) and (4.45) the equations of motion
Eq.(4.6) becomes

1 .3 3
(= Y*Dgy — 22Dy + 5DsY? = 6HY (= 5Dy + LY Dy(D+Y Dy) =Y Dyy )

1 3 GH?
+ Az + 5DsY? +79Y2Dyy — T-D3Y? — 2 + 24HY (Y Dy + 2D
Y

~? s Y VR
——Y(D+YDy)" + 7(2Dy + DyyY)) — 12HY¢( — ZDd)Y(D +YDy)

4
_ 6Hy
2
—'yDyy} = —2Kppm - (4.46)

After simplification, it yields a modified Friedmann equation:

. 3
+%(YDY¢ +Dy)) ¢YD¢) — 30H%Y?yDy + 12H2Y3{%DY(D +YDy)

0 = (Ay—2YAyy) —2kpm +6H?*y* (1-Y?Dy), (4.47)
it is an equivalent equation of the one which derived from vary an action with
respect to the shift N. We can use the same method to obtain other equations

of motion, for Eq.(4.7) we obtain

0 = —2H¥$(DgY —2(D+YDy)d) +2y(2H + 3H?) + Ao + 2kh48)
where a dot denotes a derivative with respect to time, H = a/a is the Hubble

parameter.
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Since the disformal gravity considered in this work is a sub class of the

GLPV theory which is the covariantized Galileon theory [74], we first check

whether the acceleration of the universe can be driven by the kinetic terms of
scalar field as in the Galileon theory[75, 76]. In the flat FLRW background,
we have v = 1/4/1 — D¢?, so that D@? should lie within the range (—o0,1).

In addition, it follows from the above equations that v should be unity during

matter dominated epoch and should be larger than unity during the acceleration

of the universe. Hence, 0 < Dq.b2 < 1 throughout the evolution of the universe.

Therefore, our equations of motion now approximately reduce to

3H? ~ k(pm — i(A2 —2Y Asy)) , (4.49)
—2H —3H?> ~ k(pm + %AQ) . (4.50)
In this sense we can deduce that
Py —i(x‘lz —2Y Agy), (4.51)
py = iAz ; (4.52)
: 1

wr s g1 Zn&fg;mm ’ (4.53)
wy A WAQAﬁ , (4.54)

and acceleration equation for the dust-filled background (p,, = 0) then reads
4% - %’“{imz Y Any) + %Az ~pm} (4.55)

the main contribution in the above equation that can make @ > 0 is pro-

portional to —pg/3 + ps. From this rough analysis, we expect that for the

disformal gravity considered here, the accelerated expansion of the universe

cannot be driven by kinetic terms of the scalar field. We will check this analysis

using numerical integration below. An equation of motion from variation of the

action with respect to ¢ (4.8) becomes

O =

o [AQ,Y +2Y Aoyy +3H*7°[D(1-Y?Dy +2Y°Dyy) — 2YD2]}
+2Y (5D y —3Y2D% +2YD,yy) + 3H¢ (AQ,Y ~29*Y(D+YD.y) (%H2 + H))

1
+5 (AM — 2V Ay vy + 3H [SWQYQD@(D +YDy)—2Y2D 4y — YD,¢D .
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For concreteness, we choose the disformal coupling of the form

D = M~ edegm Mo (_y)rz (4.57)
and choose A, as
Ay = M3 (Y)Y —2MteNa? (4.58)

Here, M, Mj and M, are the constant parameter with dimension of mass and
in the case of flat FLRW universe they are all equal to zero, while A1, A2, A3
and A4 are the dimensionless constant parameters. For the homogeneous and
isotropic universe, Y = —¢?, and therefore the field ¢ may be classified as a
phantom field when the kinetic term in A, is proportional to Y*3. We choose
the above form of As because this form can be easily reduced to the canonical
form, and as discuss above, the potential term of the scalar field is needed to
drive an accelerated expansion of the universe. The above form of the disformal
coefficient D is chosen because this form is the simplest form that can be used
to study the influence of the kinetic-dependent disformal coefficient. For this
choice of D and As, the equations of motion become

0 = 6H’(v*+x2(7® =) + M7 (=)™ (1 — 2X3) — 2Mye ™M — 2kpp

0 = 47% 2% H¢ (Al —2D (/\2 + 1) ¢) N (H + /\1¢'>> + M (f)Pe

—oMre Mo 4 2KDm ,

(4.56)

(4.59)

(4.60)

0 = +¢ (M,j*“SAS(QAg —1)(¢)*** = 3+*DH? (Ag + 1) Y</\2 <372DY - 2) +3¢y°DY — 1))

+3HM 3 03(4)* 2 4+ Y M hge % + % { —3y*DH (H)\lY()\g (3v*DY - 2)

+37°DY — 1) —2(X2 + 1) (3H" + 2H)¢'>)} :

4.3 Evolution of Background Universe

We briefly study the evolution of the universe at late time by solving the above
equations numerically. Substituting M2e~*¢ from eq. (4.59) into eq. (4.61), we
can write eq. (4.61) as

¢ = %a [2(97 (=12 e+ 1)2+37 (1% = 1) x (2ha + 1) (Aa + 1) — 2330 + Ang)]

H' H'
x ¢ (373 (2,\2(2ﬁ +2X1¢" + Mg’ +3) + Ao+ 5\i¢ + 2\ + 6)

H/ / / H' / /
= 3y(Aa (457 + M6+ 200 +6) + 4 + 2000 +6) + A (@ — 62m) 6

— 2)\SQk ()\4¢, + 3) - 9’)’5)\1 ()\2 + 1) ¢l> )

(4.61)

(4.62)
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where a prime denotes a derivative with respect to Ina
d 1d

dlne Hdt’
Q. = M (H) s JH?, Q= kpp/3H? = Qe 3N /(H?/HZ), Hy and
Q0 are the present value of the Hubble parameter and ,, respectively. The
function H'/H can be computed by combining eq. (4.60) with eq. (4.59) and
setting p,, = 0, so that we obtain

H/

-1
= [27(3’}/5 M2+ 1)2 =37 Ao+ 1) — 3yAa (Ao + 1) + (1 — 2)3) Agm)] x

{2778 M+ =9 M+ D2 (TAa+6)+97* D2+ 1% (BAa+3) =9 A (M2 +1)7

=97 (A2 + 1) 2 (A3 + 3Qm) + 37 A2 + 1) x (2(2X2 — A3 +2) A3 + 3 (4h2 + 5) Q)
—3v ()\2 + 1) (()\2 — 23 + 1) A3k + 3 ()\2 + 2) Qm) + A3 (2)\3 — 1) Qe ()\ggk + 3Qm)

+ (7 = 1) 70 x (,\1 (1= 2X8) As% + (A2 + 1) Aa [69° + 6 (72 — 1) YA
20 + Q — GQm])} :

Setting Q0, = 0.3, wr = —0.97(1 — Q2,) = —0.68 at present and M? = M? =
M? = M,Hy, where we have restored M), in this relation to avoid confusion and
wr = —2H /(3H?) — 1, we numerically solve egs. (4.62) and (4.63) by making an
integration from the present to the past of the universe, and plot the evolution
of AQ,, = (U — Q4)/QA and wr in figs. (4.1) and (4.2). Here, Q2 is the
density parameter of matter computed from ACDM model by setting Q3 = 0.3
at present.

It follows from the plots that the evolution of €2, and w; for the disformal
model closely mimics that evolution for ACDM model. In the numerical inte-
gration, v is larger than unity at late time because —DY = qu.52 is close to one,
while ¥ — 1 when —DY becomes much smaller than unity during matter domi-
nated epoch. Thus —DY is always smaller than unity throughout the evolution
of the universe. Based on the value of the parameters chosen above, DY < 1
which implies that ¢ /H < 1, i.e., the field slowly evolves in time compared with
the expansion rate of the universe. From our numerical integration, we find
that the accelerated expansion of the universe can be achieved if the form of
Ay can satisfy Ay /(2Y Asy — Ag) < —1/3, e.g. Ag = (—Y)*s where \3 < 1/2,
Ay = Y /2 — Me=*9 which corresponds to phantom case (a potential driven,

not kinetic driven) etc. This is in agreement with the above rough analysis.

(4.63)
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Figure 4.1: the different density parameter AQ,, as a function of log;,a for
various values of A1, Ao, A3 and A4.
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Chapter 5

Conclusion

In this thesis, we investigate disformal gravity theory which is in the class of
Beyond Horndeski theories. We have review the overall structure of beyond
Horndeski up to GLPV in Chapter 2. Then we concentrate our study to the the-
ory generated by general disformal transformation g, — g, + D(¢,Y )00,
in Chapter 3. We have obtained the disformal action and have shown that it
contains in the class of GLPV theories.

In Chapter 4 we study the evolution of background universe in a general
purely disformal gravity theory in which the gravity action is a result from
purely disformal transformation on the Einstein-Hilbert action. We write the
gravity action in the form of the covariant GLPV theory and find their equations
of motions.We discuss the cosmic evolution for this model of gravity, and find
that the accelerated expansion of the universe cannot be driven by kinetic terms
of the scalar field as in the Galileon theory. The accelerated expansion of the late-
time universe can be achieved if the Lagrangian of the scalar field A satisfies
wy = A2/(2Y Agy — Ay) < —1/3 which corresponds to the case of potential

driven.

73



74 CHAPTER 5. CONCLUSION

Derivation of Disformal Action

.1 Derivation in details

Continue from section 3.3, now we are going to calculate the third and the fifth

terms in (3.19) by starting from the second term in (3.18) ,
VKD = Va(=5 (VD) s6.) = Vu(=5 (VD) 6.u) + Vau(y* (Vs D)6 ) ¢)

’D
VLA VD)) + V(Lo (VD)6 6,56,.) -
2

D
VV(VTWAD)qsﬂweﬁ,mu) + V(Do dipy) = Vo (V2D bipy)

(V¥ )36, = 5(V*D)bsud + 5 (V¥ D)ady + 5(V* D)s o
(Vur*)(V (5D) iy 0™ + 7 (VY (5D) by 0 + 7 (V (D) b6 + 7 (VD) by 6%
—(Vu¥*)(V(5D)puyd* =V (VuV(5D) 6™ — v (VD)™ — 7> (V (5D)bpyd™
(Vi 7*)D(VAD) ¢ d3dy) + 72 (Vi D) (VAD) " b3y,

1
2
+

_|_
+72D(V 1 VaD)¢" 0 by +v° D(VAD) P 6 dpoy)
+72D(VAD)¢" ¢1y, 6501 + 7> D(VAD) " b1
+2(Viu v ) Do dap) + 27° (Vi D)o by + 29> DL, 1)
+272D¢a ¢,8[1//L] )
2v[,uK1Ij]ﬁ = _(VHV[MD)QSu]qbﬁ - (VMD)(bB ,u¢u + (v 2)( ﬂD)¢u Qw
1
—§(Vw2)(qu)¢ﬁ¢” +(Vuy?) (VD)X + = (VBV D)y " +7*(VpV,D)X
_VQ(V D)¢u]ﬁ¢u+’72(v(3D)¢u)D¢_’y ( BD)d)u QI) v

+5(Vi7*) o D(VaAD)§" 6™ 65 + D(VAD) (V7 )9 ds X
2

Ql\’)\»—l

(VaD)(V,D)¢u¢"$*ds +7°(VaD)(VyD)d b5 X

D(VAV,D)¢, "¢ p5 +~+2D(VAV, D) pp X

D 2
(VAD)Odg, ¢ b — 7(VAD)¢“V¢M¢ b

%w\%w\

2D
+T<VAD)¢/\M¢V¢H¢[3 +92D(VaD)¢ o X + T(VAD)¢5N¢V¢H¢)\

+72D(VaD) g, ™ X + 2D(V(,7°) b5 9" + 292 (V[ D)) ¢"

MM‘
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+72D0¢¢us — 2D, s + 27> D i
We will use the above quantity in order to calculate the 3rd and the 5th terms

in (3.19). The 3rd term is given by
20"V, Kl = (OD)X
+%(V“VVD)¢M¢” - %(V“D)%mﬁ” + %V"Dﬂb% + (V) (V. D)gl "
2
S (V) (TuD)g ¢ + (Vur?) (V" D)X + L-(V/V,D)6, 6 +7*(OD)X
2 2
~ 2 (VuD)D6e" + L-(V, D)t +72(V* D)6, 06 =72 (V (, D)y 6

&
—(V,/2)D(VAD)¢'¢* X + D(VAD)(V,7*)p*¢" X — +2(VAD)(V,.D)pt* X
& = =2
+72(VAD) (VD) ¢* X — 42 D(VAV D)l X + +2>D(V\V, D) ¢* X

=yl
—~2D(VAD)O¢* X — LL(VAD)oH ¢, b, — 42 D(VAD)dhoH X

el
+72D(VAD)™ ¢, X + T2(VAD)$,udt¢” ¢* + 4> D(V5D)Dgg* X
+D(V,7%)0¢¢" — D(V,72) ¢, 0" ++*(V,.D)Dd¢" —+*(V, D)gLd"
+92D(0¢)* = ¥* D¢ ¢, — Y’ DRy, ", (2)

1 2
— (OD)X + ¢, ¢"{=V*V,D + (VF42)V,D + Lv*V, D
D) 2

& &
~ 3 (VD)(V,?) = (V#?)(V,D)DX + D(VAD)(V,r?) X

== =g
—v%(VHD)(V,D)X +~v2X(V*D)(V,D)}

1 9 ez
f—/%
68" {5 V"D + V"D = 4?V"D = 5 D(V+D) X

EEE
/—/%
+72D(VHD)X — DV*~? — 42V* D}

2
0,5 (VAD)06 — L (V# D)6 +1*(V*D)0o
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e LEEEZ
—v2D(V*D)O¢X + v>D(VHD)OpX

+D(V*4*)0¢ ++*(V*D)O¢}
+(Vuy*) (VD)X +7*(0D)X +~*D(0¢)* = > D" ¢
_’72DRNV¢M¢V ) (3)

= (1+9)@D)X + (V,.D)(V"*)X +7*D(0¢)* = v D" Gy
+5040" (14 72)V#9,D + (V,D)(V#7)}
1
+ o {=5 (VI D) (1 +37%) = D(V!4?)}
0,5 (VADITG(1 +37) + D(V*7%)00}
_VZDRNV(ZBH(ZBV ) (4)
207V K, = (1+9*)(ED)X + (VD) (V"y*)X +92D(0¢)* = v2 D™ G
50,6 {1 +72)V#V,D + (V,D)(V#92)
1
+(6p06 — G )5 (VI D)DS(1 +39%) + D(V"y*)0e}
~?DR,¢"¢" . (5)
Next, calculate the 5th term in (3.19) by using QV[qufm from (1)
~29*D¢P ¢V, Kl =
2 D{=2(OD)X? ~ (V*V, D)6, X + (V' D), X + 5 (VD) 66"6,

2 B3 2
—2(V,7*) (VD)9 ¢7 X + (Vuy*) (VD)@ ¢ X + (Vir?)(VeD)g ¢ X

RN

R RN
(VYD) P X + 42(VsV,D)¢* P X — % (V,D)dspt e’ ¢

RAAR
2 2
+ 5 (VD)6 66" — 292 (VsD)0o6" X — (V5 D)3 606”6

R R
+92(V*D) b ¢” X + 2(V, 7)) D(VAD)pHp* X2 — 2D(VAD)(V,7?) ¢  ¢” X2
= & =t
—272(VAD)(V,D)¢p"¢* X2 + 2942(VAD)(V, D) ¢" X2 + 292 D(V,V D) pHp* X 2
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@@

—292D(VaV,D)¢*¢" X2 + 29y°D(VAD)Ogp* X? + 4> D(VaD) ", 6" 9* X
@@ e e
+272D(VaD)¢* ¢ X? — 292 D(VAD)d*,¢" X* — 42 D(VaD) s, 0P o™ X
BEE PEEEE BEEED

2 D(VAD) 356 70" X + D(V,07) st 6" 6 — D(V,1?) 600" 0P
0+ 72 D0g6,0" o — 12D 5,06, +0}
= —92D{-2(0D)X* — (V"V,D)¢" ¢, X + (V* D)3, X
2
45 (V#D)63 06" 0 — 22 (VD)T66°X — (VD) 60" 0"
+92(VD) @ X + 292 D(VAD)I6* X2 + 42 D0156" ¢
~’ D gt 6} (7)
= —2D{=2(0D)X* — (V"V,D)¢"6,X
650" [(wD)X + 2V D)X|
(=0)
#0587 [§(V,D) — (*/2)(V,.D) + 72 D(V,u D)X
+(08)” | = 24%(VsD)X + 242 D(V3D)X?]
2 D0G6,30" O — 12D’ B3, 6.} ®)

~2y°D¢ ¢V, Kl = —*D{=2(0D)X” — (V"V,D)¢" ¢, X
+¢5,¢¢6[<1+v><v“ )X|
+(09)¢” [29*(V4D) X (DX — 1)
+92D06¢,0" ¢ — 4D’ dpu 0 0} . . (9)

Next, we will calculate the ramaining 4th and 6th terms in(3.19). For the sake

of convenience we will write down everything straigthforwardly

o 1 o "}/2 o ’72 e%
KS, = _i(v D)p~y + ?(V’YD)QSHQS + ?(VNDM)’M)

2
+ T2 (VAD)6 0 0,0, + 72D b

2 2
K)g = <V”D>¢u¢ﬁ+ 5 (Vo D)pse” + 5 (VsD)duo"
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2
+ L2 (VD)6 66165 + 72D (10)

In the next step all the terms with ¢, ¢, will be vanish,

e} Y _
K [#Ku]ﬁ -

BopeY
K [MKV]B

v gk ¥
29 K’Y[MKVW

2

7 e v oo YD ga .
0 — - (VD) (Vi D)y 058" = 0 = 0 — ——=(V* D)y b1 &7 Plujs

4
.
0+4(

2 -
. (V[“\D)(VVD)¢7¢O‘¢|V]¢5 +0+ (V[MD)(VgD)qﬁ,ygb B¢

74D

4D R 74 D2
+7(VAD)(V[V‘D)¢ ¢ ¢w¢|u P +0+0+

72D

L2 (VD)1 $50% b + o 5
4 4D
+T(VBD)¢[V|¢7¢Q¢WM + ———(VuD)9 0 G| 0pd" D)
+’74D2¢7¢a¢’y[u¢u]ﬁ )

(V[VD)%WW%\M
2

72X 2
T(V“D)(V[V\D)%W +7° DX (V¥ D)g, b8

7t I ¥ +'D e
+Z(V'YD)(V[V‘D)¢/L]¢ ¢ﬁ¢ + T(V’YD)QS[/L\¢ ¢ ¢|u]ﬁ

4

2 X

—VZ(V w DY (VD) " b s — L(V[M\D)(VﬁD)W@y]
4DX

——— (VD) (VuD) " ¢“ dp1¢5 — v DX (VD) )5

4DX

(VAD)(V, D)¢H o> qzsm]o:g — y*D?X (VD) " b1 b1

v*D
—— (V' D)¢y 459" o] + = 5 ( vD)bpd" ¢ bry) 1

4 4D2
+7(VBD)¢[V|¢’Y¢M¢W|;L] + ———(VuD)o ¢ O 9pd" by
+74D2¢7¢“¢7[u¢u]ﬁ ’ (12)

= YX(V"D)(V[,D)¢u¢" +29*DX(V*D)pun)”
(=0)
%(V D)(V(,.D)¢, 9" ¢"¢Y + v D(V,D)¢" " ¢p.1”
(=0)
~ 3 (VID)(V, D))" ¢" ¢, — 4 X(V"D)(V(, D), 10"

4D
Vo D)(Viy D)8 656" +0+ 0+ 1=V, D) 6761

4
—— (VD) (VuD)py " ¢“ b1 0 + 1= (V[ul )P40 D" P1p — 0

(VAD)$“ ¢ by b1 07 D115
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(=0)
Y DX (VD) (V(, D), 0" ¢ — 24 DX (V(,D)b," "

(=0)
—v'DX(VAD)(V, D) ¢" ¢* — 2v* D> X (VAD)§" ¢ b(uhu)”
(=0) (=0)
—?D(V'D)¢F by 010" + v D(V(, D) by @ $F "
(=0)
+7 D(VY D)§" ppdpy by + v D? (Vo D) ¢ 7 0" b1y, dpaly

+274D2¢’Y¢H¢v[u¢u]y 5 (13)
2
X v
= 15 D"Dydud” ++*X*D" Dy + 7’ DXD(6,(06) — 6 ")
@ iy
~y'DXD,¢"06 — (1/2)y* DD 66,6, ~ *5=D"D,i6,6"
—*X2D"D, — y*DXD,0¢¢" +v*DXD,¢," ¢" + 2v*D?*X? D¢ 0o
&
4
+v D*X D¢ ¢y, + L2 DV ¢ by + 7 DXDY G by
+71D*¢7 ¢ $1,0¢ — v D* ¢ ¢ b ", (14)

Finally, we have got the 4th term of (3.19)

v i y
29 KV[#KV]B

(1 =) 5 DAD,0,0" +97(1 ~4?)X* D, D
2
£0,(00) D {L-(1 =720} + b D (5 (1 = 37 +27%))
+7' D?¢7 ¢ by, (O) — 7' D67 6 by
+7 D> X DA ¢ ¢" By - (15)

Next, calculate the last term we want

KH KW]BQSV ¢ﬁ

yp v

VX )
=3 (V*D)(VD)bydpd’ 8" + > DX (V' D)dj.b)50" ¢°
+0+0+0+0+0+0+0+0+04+0+04+0+0 ,

2X2

= _’y 2 (V#D)(VVD)QSHQSV - 'YQXB(VVD)(VVD)

v?DX

2

+ (V*D)¢30,.0"¢° +v*DX*(V* D), 50" (16)
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—2v2D¢”? ¢ Kl K

I8 Y DX?D"D,¢,4" + 2v*DX3*D"D,,

A D2X DM ,hu5¢" 87 — 241 D2 X2 D50 (17)
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