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Abstract: In this work, we present in more details the formulation of Euclidean relativity. We 

show that even though there are profound differences between Einstein special relativity and 

Euclidean special relativity, general relativity with both pseudo-Euclidean metric and 

Euclidean metric have many common features. For example, both forms of metric can be 

used to describe the precession of planetary orbits around a gravitational mass and the 

cosmological evolution.  

 

In our work on the motion of quantum particles, when they are viewed as three-dimensional 

Riemannian manifolds, we suggested that their motion could be described by extending the 

isometric transformations in classical physics to the isometric embedding between smooth 

manifolds [1]. According to the Whitney embedding theorem, in order to smoothly embed 

three-dimensional Riemannian manifolds we would need an ambient six-dimensional 

Euclidean space [2,3]. It has also been shown in our works on the temporal dynamics that a 

six-dimensional Minkowski pseudo-Euclidean spacetime is obtained by extending one-

dimensional temporal continuum to three-dimensional temporal manifold [4]. While the 

question of whether it is possible to smoothly embed three-dimensional Riemannian 

manifolds in six-dimensional pseudo-Euclidean spacetime remains, we showed that it is 

possible to apply the principle of relativity and the postulate of a universal speed to formulate 

a special theory of relativity in which the geometry of spacetime has a positive definite metric 

by modifying the Lorentz transformation. The modified Lorentz transformation gives rise to 

new interesting features, such as there is no upper limit for the relative speed between inertial 

reference frames, the assumed universal speed is not the speed of any physical object or 

physical field but rather the common speed of expansion of the spatial space of all inertial 

frames. Furthermore, we also showed that when the ratio of the relative speed and the 

universal speed approaches infinite values, there will be a conversion between space and 

time, therefore not only the concept of motion but the concepts of space and time themselves 

are also relative [1]. In this work we will develop and present in more details the Euclidean 

special relativity and extend it to the Euclidean general relativity. 

In classical physics, the concept of a pseudo-Euclidean spacetime was introduced by 

Minkowski in order to accommodate Einstein theory of special relativity in which the 

coordinate transformation between the inertial frame   with spacetime coordinates 

           and the inertial frame    with coordinates                are derived from the 
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principle of relativity and the postulate of a universal speed  . The coordinate transformation 

is the Lorentz transformation given by 

                                                                                                                                                    

                                                                                                                                                               

                                                                                                                                                                

                                                                                                                                                 

where       and           [5]. It is shown that the Lorentz transformation given in 

Equations (1-4) leaves the Minkowski spacetime interval                invariant. 

Spacetime with this metric is a pseudo-Euclidean space. We now show that it is possible to 

construct a special relativistic transformation that will make spacetime a Euclidean space 

rather than a pseudo-Euclidean space as in the case of the Lorentz transformation. Consider 

the following modified Lorentz transformation 

                                                                                                                                                   

                                                                                                                                                                

                                                                                                                                                                

                                                                                                                                                   

where       and    will be determined from the principle of relativity and the postulate of 

a universal speed. Instead of assuming the invariance of the Minkowski spacetime interval, if 

we now assume the invariance of the Euclidean interval               then from the 

modified Lorentz transformation given in Equations (5-8), we obtain the following 

expression for     

   
 

     
                                                                                                                                            

It is seen from the expression of    given in Equation (9) that there is no upper limit in the 

relative speed   between inertial frames. The value of    at the universal speed     is 

       . For the values of    , the modified Lorentz transformation given in Equations 

(5-8) also reduces to the Galilean transformation. However, it is interesting to observe that 

when     we have      and      , and in this case from Equations (5) and (8), we 

obtain        and      , respectively. This result shows that there is a conversion 

between space and time when    , therefore in Euclidean special relativity, not only the 

concept of motion but the concepts of space and time themselves are also relative. It is also 

worth mentioning here that the Euclidean relativity of space and time also provides a 

profound foundation for the temporal dynamics that we have discussed in our other works 

[6]. In the present situation, if in the inertial frame   with spacetime coordinates            

the dynamics of a particle is described by Newton’s second law           , then since 



       and       it is seen that the spatial Newton’s second law in the inertial frame   is 

converted to a temporal law of dynamics            in the inertial frame    with 

spacetime coordinates               . 

As in the case of the Lorentz transformation given in Equations (1-4), we can also derive the 

relativistic kinematics and dynamics from the modified Lorentz transformation given in 

Equations (5-8), such as the transformation of a length, the transformation of a time interval, 

the transformation of velocities, and the transformation of accelerations. Let    be the proper 

length then the length transformation can be found as 

                                                                                                                                                  

It is observed from the length transformation given in Equation (10) that the length of a 

moving object is expanding rather than contracting as in Einstein theory of special relativity. 

Now if     is the proper time interval then the time interval transformation can also be found 

to be given by the relation 

   
 

     
                                                                                                                                       

It is also observed from the time interval transformation given in Equation (11) that the 

proper time interval is longer than the same time interval measured by a moving observer. 

With the modified Lorentz transformation given in Equations (5-8), the transformation of 

velocities can be found as follows 

  
  

   

   
 
     

  
   
 

                                                                                                                                

  
  

   

   
 

  

     
   
  

                                                                                                                      

  
  

   

   
 

  

     
   
  

                                                                                                                      

Form Equation (12), if we let      then we obtain   
      

   
  . Therefore in this case 

  
    only when the relative speed   between two inertial frames vanishes,    . In other 

words, the universal speed   is not the common speed of any moving physical object or 

physical field in inertial reference frames. In order to specify the nature of the assumed 

universal speed we observe that in Einstein theory of special relativity it is assumed that 

spatial space of an inertial frame remains static and this assumption is contradicted to 

Einstein theory of general relativity that shows that spatial space is actually expanding. 

Therefore it seems reasonable to suggest that the universal speed   in the modified Lorentz 

transformation given in Equations (5-8) is the universal speed of expansion of the spatial 

space of all inertial frames. The transformations of accelerations can be derived from the 



modified Lorentz transformation and the transformations of velocities given in Equations 

(12-14). The transformation of the accelerations can be found as 

   
 

   
 

 

      
   
  

 

   
  

                                                                                                                    

   
 

   
 

 

      
   
  

 

   

  
 

   

       
   
  

 

   
  

                                                                       

   
 

   
 

 

      
   
  

 

   
  

 
   

       
   
  

 

   
  

                                                                       

By carrying out the thought experiment of the collision of two identical masses in two inertial 

frames that are moving relative to each other, we can derive the following relationship 

between the rest mass    observed in the rest frame and the mass   observed from other 

frame as [7,8] 

  
  

     
                                                                                                                                            

It is seen from Equation (18) that     when    . However, when     we also have 

the conversion between space and time       , therefore we may speculate that there may 

also be a conversion between the spatial mass   and the temporal mass   of a particle when 

    [4]. Form Equation (18) we obtain  

            
                                                                                                                               

Since both   and   are variables, we obtain the following relation by differentiation 

                                                                                                                                     

On the other hand, from Newton’s second law           , we have 

   
  

  
  

  

  
                                                                                                                                    

Using Equations (21), the change of kinetic energy               can be obtained as  

                                                                                                                                          

Using Equations (21) and (22) we arrive at 

                                                                                                                                                     

Since     , therefore we have     . By integrating both sides of Equation (23) 



   
 

   

       
 

  

                                                                                                                             

we obtain the following expression for the kinetic energy 

                    
                                                                                                       

For    , we have           and Equation (25) reduces to      
   . However, we 

have      
  when    . The relativistic momentum   of a particle of mass   with 

velocity   can also be defined by the following relation   

                                                                                                                                               

Then we have       when    . In magnitudes,               , where the 

total energy   is defined by the relation          
   . From this definition, we 

obtain     when    . Using the relations       and      , we also obtain the 

following Euclidean relativistic energy-momentum relationship 

       
                                                                                                                                    

Now consider the rotating frames of reference in the form of concentric circles as shown in 

the figure below [9] 

 

Let r and t be the radius and time of a circular frame which is regarded as being stationary. 

Let    and    be the radius and time of a circular frame which is rotating with respect to the 

     -frame with a constant angular speed   about the common centre O. Denote s and    the 

arc-length positions of a particle in the      -frame and        -frame respectively. If we 

assume     , then from the figure above we obtain the following relations 

                                                                                                                                                             

                                                                                                                                                    

                                                                                                                                                  



From Equations (28) and (30), we obtain 

  
 

  
                                                                                                                                             

Together with     , Equation (31) can be seen as a form of kinematical Galilean 

transformations of circular reference frames. In order to formulate a Euclidean special 

relativity for circular reference frames, we assume that the relativistic transformations for the 

rotating frames take the following forms 

  
  

  
                                                                                                                                          

   
  

  
  

     
 

                                                                                                                           

where   is a quantity that will be determined and   is an undetermined universal speed. The 

quantity   can be determined if we simply assume the following Euclidean identity 

  
      

                                                                                                                                     

With the assumed relation given in Equation (34), we obtain 

  
  

    
     

  

                                                                                                                                     

We finally obtain the following Euclidean special relativistic transformations for circular 

reference frames 

  
 

   
  
   

  

                                                                                                                          

   
 

   
     

  

  
     
 

                                                                                                           

As in the case of linear inertial reference frames, there are new features considering the 

special relativity of circular reference frames that have a Euclidean metric. For example, we 

have     and            when    , and from Equations (36) and (37) we have 

      and       , respectively. There is also a conversion between space and time.  

In the following we will extend our presentation of the Euclidean relativity to general 

relativity. It is obvious that we can still assume that Einstein theory of general relativity can 

also be applied to Riemannian spacetime manifolds which are endowed with positive definite 

metrics. In the original Einstein theory of general relativity, the field equations of the 

gravitational field are proposed to take the form [5] 



    
 

 
                                                                                                                                      

where     is the covariant form of the energy-momentum tensor,     is the Ricci tensor 

defined by the relation 

    
    

 

   
 
    

 

   
    

    
     

    
                                                                                            

and the metric connection    
  is defined in terms of the metric tensor     as 

   
  

 

 
    

    
   

 
    

   
 
    

   
                                                                                                  

and          is the Ricci scalar curvature. However, as discussed in our previous works 

on the field equations of general relativity [10], if we rewrite Einstein field equations in the 

following form 

    
 

 
     

 

 
                                                                                                                            

then Einstein field equations can be interpreted as a definition of an energy-momentum tensor 

as that of Maxwell theory of the electromagnetic field. In this case, the basic equations of the 

gravitational field can be proposed using the contracted Bianchi identities 

   
   

 

 
                                                                                                                                       

Even though Equation (42) is purely geometrical, it has a form of Maxwell field equations of 

the electromagnetic tensor,    
      . If the quantity 

 

 
       can be perceived as a 

physical entity, such as a four-current of gravitational matter, then Equation (42) has the 

status of a dynamical law of a physical theory. With the assumption that the quantity 
 

 
       to be identified with a four-current of gravitational matter then a four-current 

          can be defined purely geometrical as follows 

   
 

 
                                                                                                                                                

For a purely gravitational field, Equation (42) reduces to  

   
                                                                                                                                                     

Using the identity    
    , Equation (44) implies 

                                                                                                                                                       

 



where   is an undetermined constant. Using the identities     
     and     

    , we 

obtain      , and the energy-momentum tensor given in Equation (41) reduces to 

     
 

 
                                                                                                                                             

As shown in the appendix 1, the Schwarzschild vacuum solution with     can be obtained 

with a Riemannian positive definite metric for a centrally symmetric field given in the form 

                                                                                                         

The Schwarzschild vacuum solution is found as 

       
 

 
          

 

 
 
  

                                                                     

where   is a constant of integration that can be identified with the mass of the source of a 

physical field. It should be mentioned here that if the line element given in Equation (47) is 

the description of the physical field of a three-dimensional physical object which is 

isometrically embedded in a six-dimensional Euclidean space    then the time   can be 

assumed to be the temporal arclength of a temporal curve. In order to investigate the nature of 

the constant   we examine the motion in this spacetime that is described by the geodesic 

equation 

    

   
    

    

  

   

  
                                                                                                                         

With       and       , the geodesic equation for     can be found to satisfy the 

relation [11] 

   
 

 
 
  

  
                                                                                                                                          

where    is a constant of integration. For         we obtain following the relations 

   

   
 

 

   
   

 

 
  

  

  
 
 

 
 

   
   

 

 
 
  

 
  

  
 
 

     
 

 
  

  

  
 
 

        
  

  
 
 

     

   

   
 
 

 

  

  

  

  
          

  

  
 
 

                                                                                                 

   

   
 
 

 

  

  

  

  
      

  

  

  

  
                                                                                                       

On the other hand, if we divide the line element given in Equation (48) by          , we 

obtain the equation 

     
 

 
  

  

  
 
 

 
 

  
   

 

 
 
  

 
  

  
 
 

 
 

  
    

  

  
 
 

       
  

  
 
 

                           



For a planar motion with      , Equation (53) reduces to 

  
  

  
                                                                                                                                                    

where    is a constant of integration. Using Equations (50) and (55), Equation (54) is reduced 

to the equation 

     
 

 
 
  

  
  

  
 

  
   

 

 
 
   

  
 
  

  
 
 

 
  
 

    
                                                                    

Using the identity 
 

  
 
  

  
 
 

  
 

  
 
 

 
  

 

, Equation (56) is simplified to 

 
 

  
 
 

 
  

 

 
 

  
 
  

  
 
     

   
   

   
  

 

  
                                                                                    

By differentiating Equation (57) with respect to  , we have 

 

  
 
 

 
  

  

   
 
 

 
  

 

 
  

 

  
 
 

 
  

   

   
  

  

   
                                                                              

From Equation (58), we obtain the following two equations 

 

  
 
 

 
                                                                                                                                                   

  

   
 
 

 
  

 

 
 
   

   
  

  

   
                                                                                                                    

It is seen that as in the case of Schwarzschild solution with the Minkowski pseudo-

Riemannian metric, Equation (59) describes a circle and Equation (60) can be used to 

describe the precession of planetary orbits around a gravitational mass if the constant   is 

identified with the gravitational mass   as           and the constant    is defined in 

terms of the semi-latus rectum   of an ellipse as   
     . 

It is noted that if the field endowed with the Riemannian metric given in Equation (47) is still 

spherically symmetric but now time-dependent then the metric can be shown to be written in 

the form [11] 

                                                                                                         

Similar to the case of time-independent spherically symmetric metric as shown in the 

appendix 1, the time-dependent metric given in Equation (61) can be reduced to the time-

independent Schwarzschild metric given in Equation (48) if the following condition is 

assumed 



       
 

 
                                                                                                                                            

where   can be shown to be time-independent from the condition                  . 

For the case of a gravitational field, the constant of integration   can be identified as 

         . Therefore, if   is time-independent then the mass   of a gravitational source 

must be constant. This is the content of Birkhoff’s theorem which states that any spherically 

symmetric vacuum solution of the field equations of general relativity is necessary static. It 

can be observed that even though Birkhoff’s theorem is a perfect mathematical theorem, it 

cannot practically applied to physical reality because there is no physical object which has a 

constant mass can be a physical star. In fact, most of the stars that we are observing at the 

moment had already turned into other forms of energy many billion years ago. Therefore, the 

Birkhoff’s mathematical stars can shine brightly in a mathematical universe but it must 

completely stay dim in the physical universe that we are living in. And definitely the 

Birkhoff’s theorem cannot be applied to spacetime structures of quantum particles even 

though for convenience a spherically symmetric spacetime line element may be assumed. 

However, it may be speculated that due to the conversion between space and time as well as 

the conversion between the spatial mass and the temporal mass, the Birkhoff’s theorem could 

be applied instead to the total conservation of spatial-temporal mass of a physical system that 

is defined entirely in terms of geometrical objects. This total symmetry of spacetime needs a 

sophisticated mathematical formulation that requires further investigation. In the mean time, 

as has been shown in our previous works that we can derive equations that can be used to 

construct line elements to describe the spacetime structures of quantum particles for given 

Ricci scalar curvatures [10,12]. For example, if we assume a quantum particle to have a Ricci 

scalar given by the equation of the form 

  
 

       
  

 
        

                                                                                                                        

then, as shown in the appendix 2, by seeking a line element of the form 

                                                                                                         

where     is constant, the quantity               satisfies the following differential 

equation 

 
 

    

   

   
 

 

      
 
  

  
 
 

 
 

  
    

 

   
      

 

       
  

 
        

                       

Similarly, the spacetime structure of a quantum particle can be described by the equation 



 
 

    

   

   
 

 

      
 
  

  
 
 

 
 

  
    

 

   
     

      
   

  
 
  

   

  
         

   

  
  

   

 
                                              

where   is a wavefunction that satisfies the Schrödinger wave equation 

    
  

  
                                                                                                                               

We can extend the above discussions to the case when we consider not only space but time to 

be a three-dimensional manifold. The infinitesimal distance    between two neighbouring 

points    and        is defined by the relation          
    , where    

                     . If we consider the case when both spatial and temporal manifolds 

are centrally symmetric then a general spacetime line element of the six-dimensional 

spacetime manifold endowed with positive definite metric can be written as 

                    
           

               
           

                

where the infinitesimal distance has been chosen to have a spatial dimension. We now 

consider the case when we can arrange the       directions of both the spatial manifold and 

the temporal manifold so that  

                                                                                                                               

then the line element given in Equation (68) becomes 

                                                                                                  

In the following, we show that there are profound differences in the structure of space-time 

that arise from the line element given in Equation (70). First, we show that the line element 

given in Equation (70) can lead to the conventional structure of space-time in which, 

effectively, space has three dimensions and time has one dimension. The line element in 

Equation (70) can be re-written in the form 

                       
  

  
                                                                      

where we have defined the new quantity that has the dimension of speed as      . The 

meaning of the speed   can be interpreted as follows. As discussed in our previous works 

[13], spacetime can be considered as being composed of spatial-temporal quanta that have a 

very short lifespan.  Each of these quanta of spacetime has its own spacetime structure after 

having been created, which can be described by the line element given by Equation (70). In 

order for a quantum of spacetime to disintegrate it simply expands rapidly. Therefore the 

speed   in the line element given by Equation (71) is the speed at which a quantum of 

spacetime is expanding. Overall, the structure of spacetime at any given moment is a 



collection of expanding spatial-temporal quanta. When    , then the only observable 

structure of spacetime is that of the form of the positive definite Schwarzschild metric 

                                  . Instead of the form given in Equation 

(71), the line element given in Equation (70) can also be re-written in a different form as 

follows 

                   
  

  
                                                                        

When    , then the line element given in Equation (72) is reduced to the line element for a 

spacetime manifold in which, effectively, time has three dimensions and space has one 

dimension, namely,                                     . This line element is 

that of a quantum cell of spacetime and this gives the reason why a three-dimensional time 

could not be observed at the macroscopic scale and the microscopic objects that occupy these 

quantum elements of spacetime can be described as string-like objects. It is aslo seen from 

Equations (71) and (72) that there is a conversion between space-like quantum cell and time-

like quantum cell when    . 

We would like to give a remark here on the formulation of Robertson-Walker metric to 

describe the dynamical structure of the observable universe in modern cosmology. The 

Robertson-Walker metric can be written in the following form 

                                                                                                         

In the cosmological line element given in Equation (73), the time   is a universal time and the 

factor       is an expansion factor. However, since the metric is conformally flat in order for 

the spatial section of spacetime to be described as a curved space it must be embedded into a 

four-dimensional Euclidean space   . Since a flat space    does not exist in Einstein general 

relativity, a fictitious flat space    must be introduced so that a three-dimensional 

hypersurface can be embedded. However, as has been discussed above, within the framework 

of the Euclidean relativity, a six-dimensional Euclidean space   , which is regarded as a 

natural setting, must exist in order to isometrically embed physical objects, which are 

considered as three-dimensional Riemannian manifolds, including the observable universe as 

a whole. For example, if we describe the dynamics of a physical object which is viewed as a 

three-dimensional spatial manifold with respect to the time  , which can be taken as the 

temporal arclength of a temporal curve in the three-dimensional temporal manifold, then the 

Robertson-Walker metric can be modified to take the following form 

                                                                                                           

Similar to the case when the polar coordinates                     are introduced to 

describe a circle in the three-dimensional Euclidean space   , the three-dimensional spatial 

section can be described by introducing the spherical coordinates [7,11] 

                                                                                                                                               



                                                                                                                                                

                                                                                                                                                   

                                                                                                                                                        

With the spherical coordinates given in Equations (75-78), the line element given in Equation 

(74) can be expressed in the form 

                
 

     
                                                                        

where the Gaussian curvature   can take values               .  

 

Appendix 1 

With the line element given in Equation (47), the tensor metric     and its inverse are given 

as 

     

      
      
     
          

                                                                                                           

    

 

 
 
 

       
       

  
 

  
 

   
 

        

 
 
 
                                                                                                

The non-zero components of the affine connections are 

   
     

  
  

  
                                                                                                                                             

   
         

  

  
               

  
  

  
              

                      
                                 

   
     

  
 

 
               

                                                                                                             

   
     

  
 

 
                

     
                                                                                                   

The non-zero components of the Ricci curvature tensor are 

            
   

   
  

  

  
 
 

 
  

  

  

  
 
 

 

  

  
                                                                                   



     
   

   
  

  

  
 
 

 
  

  

  

  
 
 

 

  

  
                                                                                                    

         
  

  
  

  

  
                                                                                                               

          
                                                                                                                                            

For the vacuum solution, from       and      , we obtain the identity 

  

  
 
  

  
                                                                                                                                                  

On integration Equation (5) we have 

                                                                                                                                                    

where   is an undetermined constant. However, with the assumption that the metric given in 

Equation (1) will approach the Euclidean metric as    , we have    . Therefore we 

have  

                                                                                                                                                        

With the condition given in Equation (7), the component     can be rewritten as 

       

  
                                                                                                                                                  

From Equation (8) by integration we obtain 

      
 

 
                                                                                                                                                

where   is a constant of integration.  

 

Appendix 2 

With the line element given in Equation (64), we obtain the following non-zero components 

of the affine connection 

   
     

  
 

   

  

  
               

     
  

 

   

  

  
    

     
   

 

   

  

  
                               

   
   

 

   

  

  
    

  
 

  

  

  
          

   
 

  

  

  
               

   
 

  

  

  
                             

   
     

  
 

  

  

  
          

     
  

 

  

  

  
         

     
  

 

  

  

  
         

     
  

 

  

  

  
    



   
   

 

   

  

  
             

  
 

  

  

  
           

  
 

  

  

  
              

   
 

  

  

  
                                 

   
   

 

   

  

  
            

   
 

  

  

  
           

   
 

  

  

  
           

  
 

  

  

  
                                 

   
     

  
 

  

  

  
            

     
  

 

  

  

  
                                                                                    

From the components of the affine connection given in Equation (5), we obtain 

     
 

    

   

   
 
 

 

   

   
 

 

  

   

   
 

 

  

   

   
 

 

     
 
  

  
 
 

 
 

  
 
  

  
 
 

 
 

   
 
  

  
 
 

 
 

   
 
  

  
 
 

 

     
 

    

   

   
 

 

  

   

   
 
 

 

   

   
 

 

  

   

   
 

 

     
 
  

  
 
 

 
 

   
 
  

  
 
 

 
 

  
 
  

  
 
 

 
 

   
 
  

  
 
 

 

     
 

    

   

   
 

 

  

   

   
 

 

  

   

   
 
 

 

   

   
 

 

     
 
  

  
 
 

 
 

   
 
  

  
 
 

 
 

   
 
  

  
 
 

 
 

  
 
  

  
 
 

 

     
 

    

   

   
 

 

     
 
  

  
 
 

                                                                                                     

Using the relation                               we obtain 
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