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Abstract  
An explicitly time independent Lagrangian functional of a three-dimensional 
damped harmonic oscillator has been proposed. I derive results for the motion 
of the three-dimensional damped harmonic oscillator with a pure imaginary 
three dimensional vector and oscillator’s position-dependent friction coefficient.  
The Hamiltonians corresponding to the Lagrangian is also explicitly time 
independent. The choice of functional form of the friction coefficient on the 
oscillator position determines and plays a vital role in the form of the equation 
of motion classically and quantum mechanically. One choice of the form of the 
friction coefficient I made lead to breaking the symmetry of the isotropy of 
oscillations in the three dimensional space.    
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Introduction 
The equation of motion of a damped simple harmonic oscillator in one 
dimension- ( x  direction) - is 

 0mx bx kx       (1) 
where m  is the mass of the particle, b  the coefficient of friction of the medium 
in which the oscillator moves, which assumed to be constant, and finally k  is 
the spring constant. 
In three dimensions it may be written  
     0mr br kr  

               (2) 
Since 1930 there have been many efforts to find an explicit time independent 
Lagrangian and Hamiltonian functionals of the damped harmonic oscillator.  
A Lagrangian that lead to the equation of motion of the DHO equation (1) was 
found to be 

   
2 21 1( , , ) ( )
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It is explicitly time dependent so do the Hamiltonian.
 

The nonexistence of these functionals made it difficult to canonically quantize 
the equation of motion of the damped harmonic oscillator. 

    
 

The Model 
The classical model of the damped harmonic oscillator: the Lagrangian 
Here, I proposed an explicit time independent Lagrangian for a three 
dimensional damped harmonic oscillator.  
Consider the following Lagrangian functional 

              
2 21 1

2 2
L mr ib r kr   

               (3) 

where 1i    is the imaginary unit and ( ( ))b b r t
    is the coefficient of friction 

of the medium in which the oscillator moves. The coefficient is assumed to be a 
real three dimensional vector and is a function of the displacement vector of the 
oscillator from its equilibrium position. ( ( ))b b r t

    is measured in 1kgms (unit of 
momentum). 
   
The above Lagrangian functional in equation (3) is of the type  
     L T U   
Where U  is a velocity dependent potential. In the model above, 

21
2

U ib r kr  
   and r is the kinetic velocity of the oscillator.  

The equation of motion of the damped harmonic oscillator derived from the 
Lagrangian functional in equation (3), for this model has the following 
mathematical form  
     ( ) 0mr i b r kr    

                       (4) 
The canonical conjugate momentum derived from the Lagrangian in equation 
(3) is given by 
             p mr ib 

                           (5) 
The second terms in this expression plays the role of a potential momentum. 
 
The mechanical momentum is given by 
             mr p ib 

     
 
and the mechanical “velocity” is given by 
            1 ( )r p ib

m
 

     (6) 

 
 



(3) 
 

The classical model of the damped harmonic oscillator: the Hamiltonian 
The Hamiltonian functional is 
    2 21 1( )

2 2
H p ib kr

m
  

               (7) 

where I have substituted the kinematical velocity in equation (6) and the 
Lagrangian functional in equation (3) in the general definition of the 
Hamiltonian function defined as: 
     s s

s
H p q L    

The Hamiltonian functional in equation (7) is that of a simple harmonic 
oscillator with the canonical momentum being shifted by an amount equals to 
the coefficient of friction ( ( ))b b r t

   of the medium in which the oscillator moves 
times the imaginary unit 1i   . The friction perturbed the Hamiltonian of the 
simple harmonic oscillator. 
Since b


 is not explicitly dependent on the time t , then L  does not depend on t  

explicitly as can be seen in equation (3) and the Hamiltonian functional also is 
not explicitly dependent on time t  and it is a constant, that is 

 
2 21 1 1 1[ ( ) ] ( ) ( ) ( ) ( )

2 2
( ) ( ) ( ) [( ) ] ( ) [ ( ) ] 0

dH d p ib kr p ib p ib kr r mr mr kr r
dt dt m m m

r mr kr r r mr kr r i b r

            

            

               

              
 

Where the vector identity 
    [( ) ] 0A B A   

  
 

has been used and the term in the square brackets is substituted from the 
equation of motion: equation (4). 
It is easy to see that in this case the total energy of the system is conserved. 
    H  constant                      (8) 
 
Discussion 
Here, I give an example of explicit position dependence of the coefficient b


 and 

determine the equation of motion of the DHO for that case. 
I choose,  
    0 0

ˆ ˆb b yi b xj  


            
(9) 

 Then, 
    0

ˆ2b b k 


 
where 0b is a constant which has unit of 1kgs . 
With this choice, the Lagrangian in equation (3) is 
  2 2 2 2 2 2

0
1 1( ) ( ) ( )
2 2

L m x y z ib xy xy k x y z             

The corresponding Euler-Lagrange's equations after dividing both sides by the 
mass of the particle are written  



(4) 
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              (10) 

where I introduced the natural angular frequency 0 of the oscillator where 

0 k m  , and b  is an oscillation frequency (measured in Hz) defined as 
    0b b m   
and , ,x y z  are the components of the displacement of the particle from the 
equilibrium position. 
Equations of motion also can be directly deduced from the equation of motion 
in it vector form in equation (4) after substituting the condition in equation (9), 
and then setting each component to zero.  
 
The first and the second equations in equation (10) are a system of the coupled 
linear differential equations of the second order, and hence we can try a solution 
of type 
   ( ) ( )

0 0,i t i tx x e y y e         (11)     
where 0x , 0y  are the amplitudes of oscillation,  the frequency in Hz and   and 
  are phase factors, respectively.  
The general solution of the last equation in equation (10) is 
    0 0cos( ),z z t                (12) 
that is the oscillation in z   direction takes place with the natural angular 
frequency 0 of the free oscillation, 0z the amplitude of oscillation and    is a 
phase factor. 
Inserting the presupposed solutions in equation (11) in the first two equations in 
equation (10), we get   

    
2 2

0 0 0
2 2

0 0 0

0 ( ) 2

0 ( ) 2
b

b

x y

y x

   

   

  

   
            (13) 

Then the system (13) changes to the system of the algebraic equations which is 
written in matrix form as 

   
2 2

00
2 2

00

2
0

2 ( )
b

b

x
y

   
   

   
      

 

So the secular equation is 

   
2 2

2 2 2 20
02 2

0

2
( ) 4( ) 0.

2 ( )
b

b
b

   
   

   


    
 

 

This equation is equivalent to two equations, 

   
2 2

0
2 2

0

2 0;

2 0,
b

b

i

i

   

   

  

  
 

which has four roots  
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   

   

   

  

  

   

   

    (14) 

The only root that is compatible with the decay behavior of the damped 
harmonic oscillator for the trial solutions in equation (11) is the first one in 
equation (14) 
    2 2

1 0[ ]b bi                          (15) 
Hence the damped harmonic oscillator exhibits two Eigen frequencies 0 and 1 . 
Note that first mode does not depend on the coefficient of friction of the 
medium at all, and the second mode is caused by the coefficient of friction of 
the medium. 
 
In the case 0 0

ˆ ˆb b yi b xj  


, the oscillator is showing a damping behavior in the 
x  and y directions -equation (18) - with the frequency 1

 
-equation (15) - and 

an oscillatory behavior with the frequency 0 -equation (12)- in the z direction.  
 
It can be clearly seen that the choice in equation (9) from the beginning has no 
z component; this broke the symmetry of the equality of the directions in space 
and made the oscillator to oscillate simple harmonically in the z direction and 
decay in the other directions.   
 
For a weak friction, 
    0 ,b    
the frequency 1  is approximated to the form 
    1 0( )bi          (16) 
while in an opposite case of a strong friction, 
    0 ,b   
we have 

   
2 2

0 0
1 2

1[ (1 )] [2 ]
2b b b

b b

i i 
   

 
      (17) 

Other choices of b


 as explicit function of the position of the oscillator give 
similar behavior as the example above. 
The position vector of the oscillator at any time for the case above may now be 
written as 
 

2 2 2 2
0 0( ) ( )

0 0 0 0
ˆˆ ˆ( ) cos( )b b b bt i t ir t x e i y e j z t k                   


           (18) 

This is symmetric about the z   direction. 
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The Quantum Hamiltonian of the Damped harmonic oscillator (DHO)  
The Quantum Hamiltonian of DHO system as given by equation (7) is 
   2 21 1ˆ ˆˆ ( )

2 2
H p ib kr

m
  

   

Can be expanded     

   
2

2 2
ˆ 1 1 1ˆ ˆ ˆˆ ( )

2 2 2 2
pH i p b b p b kr
m m m

      
         (19) 

For any function ( )g r holds 
  ˆ ˆ( ) ( ) ( )p b b p g r i b g g b b g i g b             

          
   

This expression always vanishes in the present case since  
    0b 


                   (20) 

where I assumed 0b 


 in the equation of motion (4). 
Accordingly, holds 
    ˆ ˆp bg b pg  

      (21) 
and, consequently,  

   
2

2 2
ˆ 1 1 1ˆ ˆˆ ( )

2 2 2
pH i b p b kr
m m m

    
              (22) 

Using Cartesian coordinates and 0 0
ˆ ˆb b yi b xj  


 yield, 

22 2 2 2
2 2 2 2 20 0

2 2 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
2 2 2x y

ib bH yp xp x y k x y z
m x y z m m

   
          

  
   

After some manipulations it may be written  
2 22 2 2 2

2 2 2 2 20
2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
2 2 2

b
b x y

m mH i yp xp x y x y z
m x y z

 


   
          

  
  (23) 

Rearranging equation (23) and use the expression for the angular momentum 
operator in the z   direction: 
   ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )z x yL yp xp i y x

x y
 

      
 

     (24) 

Equation (23) becomes  

 
22 2 2 2

2 2 2 2 20
02 2 2

ˆ ˆ ˆ ˆ ˆ( ) ( )( )
2 2 2b z b

mmH i L x y z
m x y z


  

   
       

  
    (25) 

Observe that the third term in the RHS of equation (23) vanishes when: 
    0b    (26) 
The Hamiltonian in equation (25) may be separated into two parts  

 
22 2 2 2 2

2 2 2 2 20
02 2 2

ˆ ˆ ˆ ˆ ˆ[ ( ) ( )( )] [ ]
2 2 2 2b z b

mmH i L x y z
m x y m z


  

    
       

  
  (27) 

The three terms in the first square bracket in the RHS in the Hamiltonian (27) 
describes two identical oscillators along the x   and y directions which are 
coupled through the angular momentum operator ˆ

zL , whereas the last term 
describe a free oscillator in the z direction. The square of the frequency of the 
each oscillator in equation (27) is shift by 2

b . Equation (27) has the same 



(7) 
 

symmetry about the z direction as the classical equation of motion in equation 
(18). 
The Hamiltonian in equation (27) may be written  
   ˆ ˆ ˆ( , ) ( )H H x y H z    (28) 
Where  

  
2 2 2

2 2 2 2
02 2

ˆ ˆ ˆ ˆ( , ) ( ) ( )( )
2 2b z b

mH x y i L x y
m x y

  
  

     
 

  

This may be further be written 

 
2 2 2

2 2 2 2
02 2

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )( )
2 2b b

mH x y y x x y
m x y x y

  
    

       
   


 (29) 

and 

  
22 2

20
2

ˆ ˆ( )
2 2

mH z z
m z

 
 


  (30) 

Schrödinger equation in the case 0 0
ˆ ˆb b yi b xj  


 

To obtain the stationary states, i.e., the solutions of  
    ˆ ( , , ) ( , , )H x y z E x y z    
where the Hamiltonian Ĥ is given by equation (27).  For this purpose we use the 
wave function in the form 
   ( , , ) ( , ) ( )x y z x y Z z     (31) 
The Hamiltonian ˆ ( )H z  in equation (30) has the well known Eigen functions and 
Eigen values. It is Schrödinger equation is the well known: 

   
22 2

20
2 ˆ[ ] ( ) ( )

2 2 z
m z Z z E Z z

m z
 

 


   (32) 

We also want to describe the stationary states corresponding to the Hamiltonian 
ˆ ( , )H x y in equation (29). It is Schrödinger equation may be written 

 2 2 2
2 2 2 2

02 2 ˆ ˆ ˆ ˆ[ ( ) ( ) ( )( )] ( , ) ( ) ( , )
2 2b b z

my x x y x y E E x y
m x y x y

    
    

        
   


  (33) 

Accordingly, we seek stationary states which are simultaneous Eigen states of 
the Hamiltonian of the two-dimensional isotropic harmonic oscillator 

    
2 2 2

2 2 2 2
02 2

ˆ ˆ ˆ( ) ( )( )
2 2 b

mH x y
m x y

 
  

    
 

  (34) 

and its Schrödinger equation 

 
2 2 2

2 2 2 2
02 2 ˆ ˆ[ ( ) ( )( )] ( , ) ( ) ( , )

2 2 b z
m x y x y E E x y

m x y
   

  
     

 
  (35) 

as well as of the angular momentum operator ˆ
zL . To obtain these Eigen states 

we introduce the dimensionless variables of the harmonic oscillator 

     0 ,mX x



  and 0mY y




   (36) 

Equation (29) is  



(8) 
 

 
2 2 2

2 2 2 2
02 2

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )( )
2 2b b

mH x y y x x y
m x y x y

  
    

       
   


  

can then be written  
2 2

2 2 2
2 2

0

1 1 1ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) (1 )( )
2 2

H X Y Y X X Y
X Y X Y

 


   
        

   
 (37) 

where 
0

b


 is a dimensionless constant. 

By employing the following annihilation and creation operators 

 
2 2

† 2 † 2

1 1ˆ ˆ[ 1 ]; [ 1 ];
2 2
1 1ˆ ˆ[ 1 ]; [ 1 ]
2 2

X Y

X Y

d X d Y
X Y

d X d Y
X Y

 

 

 
     

 

 
     

 

      (38) 

and the identity of operators which can be readily proven 
  † †

2

1 ˆ ˆ ˆ ˆˆ ˆ( ) ( )
1

X Y Y XY X d d d d
X Y 

 
   

  
  (39) 

We obtain for equation (37) 
2 † † † †

2
0

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ( , ) ( 1 ) 1 ( )
1

X X Y Y X Y Y XH X Y d d d d d d d d
 

      


 (40) 

We note that the operator in equation (39) leaves the total number of vibrational 
quanta constant, since one phonon in the Y   direction is annihilated and one in 
the X   direction is created by the first term in the RHS and one phonon in the 
X   direction is annihilated and one in the Y   direction is created by the second 
term in equation (39). We, therefore, attempt to express Eigen states in terms of 
vibrational wave functions 

   
† †( ) ( )( , ; , ) (0,0; , )

( )! ( )!

n m n m
X Yd dn m X Y X Y
n m n m

 
 


 

 (41) 

where (0,0; , )X Y  is the wave function for the state with zero vibrational 
quanta for the X   direction as well as for the Y   direction oscillator. Equation 
(41) represents a state with n m  quanta in the X   direction oscillator and n m  
quanta in the Y   direction oscillator, the total vibrational energy being 
      2(2 1 )n     (42) 
 where the second term in equation (42) arises from the factor in front of the 
identity operator in equation (40). 
 
The states (41) are not Eigen states of  ˆ

zL . There no way -via rotation- of the 
wave function ( , ; , )n m X Y  that would make it both be an Eigen state of the two 
parts of the Hamiltonian in equation (40). I have remarked that as the breaking 
of symmetry for simple harmonic oscillations in space.     
 
 
 



(9) 
 

Conclusion: 
The existence of many choices of the functional form of the friction coefficient 
on the oscillator coordinates lead to different equations of motion in the 
classical mechanics as well as different Eigen states in quantum mechanics. I 
have solved the Hamiltonian for the stationary states of DHO for one choice of 
the friction coefficient. Once the friction coefficient is set to zero the oscillator 
becomes a SHO in 3-dimensions and consequently the symmetry of motion in 
space and the quantum mechanics of a 3-D SHO are restored.  
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