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ABSTRACT. In mathematical literature it is asked for a computable function or
efficient algorithm to find all, or at least a large subset, of the prime numbers.
This paper shows that all primes can be characerised by their reciprocal period
length L and its figure value R. These parameters are given for each prime after
inversion to an infinitely repeated period and are used to group all primes into
disjoint sets that arise as a function of a geometric progression. This theory
suggests new ways to enumerate and find large primes.

1. INTRODUCTION

The purpose of this paper is to obtain a general formula for all prime numbers
and explain their arising pattern. The work is based on the specific property of
prime numbers, that each of them can be inverted to give an infinitely repeated
period of integers characterised by two parameters, its length L, equal to the period
number of digits, and its figure value R without the introductory zeroes [1]. The
reciprocal length L of the small prime numbers <5 will be considered separately as
will the few primes consisting of the repeated digit 1 only [2].

Primes with the same L-value can be defined to be members of families A;, =
{p1,p2,03,---}r; L =1,2,3..., that are disjoint and together contain all prime num-
bers, UAp = P, with every family containing at least one prime. The maximum
number of primes in a family is limited to a relatively small and foreseeable number.
When searching for family members it is essential to know if the periodic length
L is a prime or a composite number. This is however automatically determined in
advance if the search is performed in numerical order of L = 1,2,3.... The prime
numbers obtained from families generated in numerical order of L = 1,2,3... will
be called original primes (op), when they appear for the first time. This is always
the case when L itself is a prime. If L is a composite number it will be shown that
some smaller and earlier in the series found original prime(s) are repeated in the
resulting R-value, which therefore demands a correction to get the proper family
Ajp. Those recurrent primes are said to be complementary (cp) and are excluded.

An important equation is p — 1 = LU ; p>5, where L is the reciprocal period
length of 1/p and U is an integer. This equation is used to show that products of
prime numbers with the same L also get the same L, and furthermore to demon-
strate that the amount of primes with equal L are limited in number.

The families Ay, can be linked to the geometric series (10X —1)/9, called repunit
numbers [2], the series of the infinitely repeated digit 1, thus 1, 11, 111, 1111.. . etc.
which abbreviated can be written (1);. Every family consisting of primes with
the same period length L has an original and complete solution within this infinite
progression. With this knowledge it is possible to create an algorithm to find all
primes. They will then appear in the order of their reciprocal period length, not
in order of the prime values themselves. Note, however, that the relation to the
natural sequence of prime numbers is elucidated in part 6.
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2. INVERSION OF PRIME NUMBERS

When the number 1 is divided by a prime p > 5, there is only p — 1 possible
remainders in each step of division. As soon as a remainder repeats itself a period is
formed and the calculation starts from the very beginning again. Thus, no inverted
prime number p > 5 can have a repeated period length L that is longer than p — 1
digits. But L could be shorter, a digital fraction of p — 1. This results in the
equation, where U is an integer,

(1) p—1=LU.
The reciprocal period of any 1/p , (p # 2;5), is as follows

R
———
(2) 1/p = 0.a1a2a3...aN T172T3...7 pf G10203...ANT1T2T3... T3] ...

period with length L

where ap...ay are zeroes (for primes >7), 1y # 0; rap # 0; R = r1..rp, @
sequence of digits ending on 1,3,7 or 9. Example: 1/271 = 0,0036900369 ... with
L =5 and R = 369.

3. THE CONNECTION BETWEEN INVERTED PRIME NUMBERS AND A
GEOMETRIC PROGRESSION

Let the infinite fraction 1/p = P. The equation 2 is multiplied with 10% =
(100...0), where L is the length of the reciprocal period.

(3) 1OLP = 1OL(.CL1a2a3...aN’I"17“27“3...T‘MCL1a2a3...aN’I“17“27"3...’r‘M...)

P is subtracted from both sides to give (999...9)P = ajasas...anT1rors ... 'ar,
followed by division with 9 to give (111...1)P = R/9.

Define the periodic number value T' = R/9 and then, because P = 1/p, the final
result is

(4) (111...1) = pT.

This equation shows, that all prime numbers with period length L, are factors of
the corresponding repunit number,

(5) (D =p1-p2-...-on-C,

where C' is the remaining, yet unknown, factor.

But there is one difficulty to be observed. If a number in the geometric progression
(of repunit numbers) is a single prime itself, solely consisting of a row of the digit 1,
then L must also be a prime, but it is still not possible to see the difference between
those numbers being prime or composite. That is because every inversion 1/(1)y,
gives T' = 1. This is shown by comparison of some examples:

L=2,(1)2,1/11 =0.090909..., T = R/9 = 1 and 11 is a prime number,

L=5,(1)s,1/11111 = 0.0000900009 ..., T = R/9 =1 but 11111 = 41-271
composite,

L =19, (1)19, 1/1111111111111111111 = 0000000000000000009 . .., T = 1,

a prime.
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Prime numbers in the progression (10¥ — 1)/9 consisting of a row of the digit
1 are very rare; only four numbers >11 are known so far: (1)19, (1)23, (1)317 and
(1)1031 [3]- Next number in that series (if any) must according to Dubner have more
than 10 000 digits [4]. Every such prime number makes a single-member family Ay,.

Another more important obstacle is, however, that the nature of L in the calcula-
tion above, equation 3, must be considered. L can be either a prime or a composite
number and the knowledge is of great significance.

3.1. The Period Length L is a Prime Number. If L is a prime, all the eventual
factors of T" must have the same reciprocal length L as the inverted p to form the
product (10% —1)/9 = pT. This is shown as follows. Let p; and ps have the same
L and apply a set of equation 1,

pP1 = LU1 + 1
and
p2=LUs +1
which multiplied gives
pip2 — 1 = L(LU Uy + Uy + Us)

where L is the same as in each of the equations above, only the new U-value is
increased and dependent on the L-value. Further multiplication with primes of the
same reciprocal length L gives

(6) [Ipn—1=10

and the product of all multiplied factors must have the same L. This is verified
by the inversion of the final product 1/(1)r = 0.00...09 with the same L. Thus,
when L is prime,

(7) (10" = 1)/9= (1) =[] pn:
giving C' =1 in equation 5.
The following relations also hold, for L being prime:

Ty = pap3pa - - - PN

Ty = p1p3ps ... PN

T3 = p1p2ps ... PN

TN = p1paps - -DN—-1
(8) (10" —1)/9 = (1) = p1 Ty = poTp = psTs = ... = PyTy,
where all primes belong to the same family

(9) Ap = {P1,P2,p3,~-~7pN}~

When L is prime all the factors appear for the first time in the progression
(10 —1)/9, L =1,2,3... and are original primes.
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3.2. The Period Length L is a Composite Number. If the reciprocal period
length L is a composite number L., a number of primes with shorter period length
values I, ,where 1 < I, < L. and L./l, is an integer, will interfere. An [,, can
sometimes correspond to more than one prime. This is illustrated by a typical
example.

Let L. = 15 which has the two divisors [y = 3 and I, = 5.

Prime numbers 3 and 37 which have a period length [ = 3 that exactly divides
L. = 15 can thus be repeated. Prime numbers 41 and 271 have a period length
! = 5 dividing L. and are repeated likewise. This is not the case if smaller primes
have a periodic length of, e.g. L = 6, or any other L-value that does not divide L.
giving integers. Thus

(10" —1)/9 = (1)15 = 31 -2906161- 3 - 37 - 41 - 271.
5 L.=15 1=3 1=3 I=5 [=5

=

The family A5 = {31,2906161}.

This can also be shown in general terms:

Let p1 — 1 = LU; and py — 1 = loUy where lo = L/m ; L is composite and m is an
integer.

Then p; = LU; + 1 and po = LU3/m + 1 and

(10) p1p2 — 1 = (LU + 1)(LUz/m) = L(LU Uz /m + Uy + Uz /m)

The product is calculated the same way as was equation 6; the L-value for the
product remains constant, however, the U-value is different when taken care of
the particular primes with shorter lengths. This shows why the equation 4 cannot
distinguish between L being prime or composite and why prime numbers with
shorter L-values must be eliminated to find the proper Ay family.

If prime numbers p,, are inverted and their period lengths are the same composite
L. and smaller prime numbers ¢, with shorter lengths [,, where 1 < [,, < L, and
L./l = m are present either of the following results is obtained:

1/p1=p2-DP3-Pa--c DN Q- G2-q3- .- g =T
1/po=p1-D3Da-i DN Q- Q23 - =T

1/pN =p1-DP2 D3 "PN-1°G1-G2-q3 .- qur = TN
Let g1 - g2 - ... - qu¢ = C to correct for primes of shorter lengths and obtain the
product of the members of the requested family

(11) HALC:pNTN/C:p1'p2'p3'---'PN

A table of some prime numbers is generated to show the difference between the
periodic lengths when L is prime or composite and also to illustrate how original
primes change to complementary.

As an example the prime number 11 is an original prime for L = 2 and a com-
plementary prime from L = 4 and then for every second L and so on. Sometimes,
as can be seen for L = 9, a small factor is repeated, necessary to make the value
a complete row of the digit 1, in this case (1)9, which then can be found in the
multiples of complementary primes e.g. for L = 18 and so on. It might be necessary
to control the primality by dividing with the smallest complementary factors again
as e.g. for L = 9 etc. and L = 22, depending on how the determination of the
primes is performed.
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primes € Ay, factors of Cp, [TAL-CL
Original primes op L complementary primes cp

11 2 1 (1)
3; 37 3 1 (1)s3
101 4 11 (1)4
41;271 5 1 (1)s5
713 6 11;3;37 (1)g
239;4649 7 1 (1)7
73,137 8 11;101 (1)s
333667 9 32,37 (1)g
9091 10 11;41;271 (D10
21649;513239 11 1 (1)11
9901 12 3:7:11;13;37;101 (1)12
53;79;265371653 13 1 (1)13
909091 14 11;239;4649 (1)14
31;2906161 15 3;37;41;271 ()15
17;5882353 16 11;101;73;137 ()16
2071723;5363222357 17 1 ()17
19;52579 18 32,7;11;13;37;333667 (1)1
(110 19 1 (110
3541;27961 20 11;41;101;271;9091 (120

TABLE 1. Prime numbers generated according to the geometrical
series (10L° —1)/9; L =2...20.

3.3. Elementary applications. Using for example the new pattern seen in table
1 it is possible to obtain series of larger primes by multiplying known L-primes,
thus being in control of the complementary primes and the reciprocal length of the
searched prime numbers. Some simple examples might illustrate.

Find the original prime numbers of: a) (1)14, b) (1)a4, ¢) (1)64.

Every prime number or product of prime numbers (p # 2;5) with the same re-
ciprocal length L divides some shortest number consisting of a row of L digits of
unit 1. If two L-values, both prime, are multiplied, the result is a new L with one or
more original prime numbers, (as the initial prime numbers have no complementary
primes, the Ay is rather easily calculated, see a) below). If instead a product of
L-values give a new L, that is divisible in more than one way, one has to observe
that the complementary primes should be eliminated in accord with the product of
equation 11 but not counted twice in general. However, see the remark in the last
sentence of 3.2 [5].

Answer:

a) Let L1 =2 and Ly =7, then L; - Ly = 14. Primes in Ay and A7 are now
complementary. Thus (1)14/((1)2 - (1)7) = 909091 (prime) € Ay

b) L = 44 can have factors 2, 4, 11 and 22 and (1)44 = 89 - 1052788969 -
1056689261 - 112 - 23 - 101 - 4093 - 8779 - 21649 - 513239. The three first
numbers are original prime numbers and the rest complementary primes to
be omitted, (previous original primes for 2, 4, 11 and 22, which can partly
be seen in Table 1. Original primes for L = 22 is 23, 4093 and 8779). Then
Ayq = {the first three numbers}.
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¢) L = 64 with factors 2" is an example of how series of numbers could be
built up as long as required. Table 2 is self-instructive.

2" L (1),  Prime number factors
21 2 (1), 11
22 4 (1), 11-101
22 8 (1) 11-101-73-137
24 16 (1)1 11-101-73-137-17 - 5882353
25 32 ()32 (1)16- 353449 - 641 - 1409 - 69857
26 64  (1)gs (1)32-19841-976193 - 6187457 - 834427406578561
27 128 (1)12s (1)es-1(0)esl
(a5 (1)

128 - 1(0)1271

TABLE 2. Formation of a series of primes with control of known
complementary primes. The original primes for each L is marked
with extra bold type. To find the original primes for e.g. the
reciprocal length L = 128 the calculation is (1)12s8/(1)64 = 1(0)g31.
The number 1(0)g31, to be resolved, contains all primes with that
L.

4. INVERSION OF THE MINOR PRIME NUMBERS <5

The prime numbers 2 and 5 do not give infinitely repeated periods if inverted,
1/2 =05, 1/5 = 0.2 and L = 0. If, however, 0.2 and 0.5 are looked upon as
0.19999... and 0.49999... respectively, the result willbe L =1, R=9and T =1 as
a consequence, which might be applied.

The smallest odd prime 3 is more interesting since it has two possible length
values L =1 and L = 3. As a fact 1/3 = 0.3333... but it is not quite obvious that
the period should be L = 1 except for the two first digits 3. If multiplied 3-3 =9
and 1/9 = 0.1111... the result is L = 1, but 1/3% gives 1/27 = 0.037037... with
L = 3. As a consequence of equation 8 for prime numbers when L is a prime,
(103 —1)/9 = 111 = 37 - 3 and the number 3 is an original prime number because
L =3; R=27and T = R/9 = 3. The first two digits 3 disappear by the compulsory
division of R. The smallest primes can thus be integrated in our final formula for
all prime numbers.

5. A CONCLUSIVE GENERAL FORMULA FOR PRIME NUMBERS

Every prime number >5 can be inverted resulting in an infinitely repeated pe-
riod, each with a certain length L, which also coincides with L in the geometric
progression (10X —1)/9; L =1,2,3...00. This means that all prime numbers with
the same L are enclosed as a product in a corresponding step of the progression,
thus forming the defined family A; = {p1,p2, p3, ..., pn }- It is, however, absolutely
necessary to know whether L is a prime or a composite number to be able to cal-
culate the prime numbers properly, as has been outlined in the previous sections.
This has been put together in a comprehensive formula.

All prime numbers are enclosed in the union of the infinite number of disjoint
families Ay,

(12) P= D Az
L=1
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and, it has been shown, that for every L, the product of the elements p, of Af,
satisfy

(13) [TAc=]]pn=@)/C

n

where (1), = (10L' —1)/9, C = 1 if L is prime or, if L is a composite number,
C =q1-q2-q3 . ..; the product of complementary primes with lengths [; : 1 <; < L
and L/l; an integer.

6. THE PATTERN OF THE PRIME NUMBERS

The wish to have a simple prime number function of the natural sequence of
numbers [3] is both directly and indirectly fulfilled here. However, the prime num-
bers are by definition presented as product families, which instead are a function
of a geometric progression. The formulas above, 12 and 13, generates primes in the
numerical order of their, through inversion (1/p) found, infinitely repeated periodic
length L. This method yields theoretically all prime numbers and its usefulness is
in principle depending only on an efficient data system.

Figure 1 illustrates the relation between the period length of a prime number and
the prime factors in the corresponding term of the (geometrical) series of repunit
numbers;

1. The diagonal is the line formed by the number (1) of repunit digits as a
function of the reciprocal length values of the inverted prime number families Ay ;
L =1,2,3.... The table along the y-axis contains original prime numbers obtained
for each repunit number. On the right hand side of the diagonal all reciprocal
lengths are repeatedly marked with dots. By the argument in section 3.2 the dots
indicate where there are complementary primes for composite (1), values.

This can be illustrated by an example: The prime number 9091, in the table at the
y-axis, has L = 10. Move straight to the diagonal and follow the line down to the
x-axis. As 10 is divisible by 5 and 2 the complementary primes are found in the
table to the left at the position of the dots, (41;271) and (11) respectively. Thus
(1)10 =9091-41-271-11. Complementary numbers are thus relatively easy to find
by searching the dividends to p — 1.

2. For products (1)1, where L is a prime, no complementary primes are present.
Consequently the lines downwards from the diagonal are free from dots where the
L-value on the x-axis is a prime number.

This together demonstrates the relationship between the suggested theory and the
described linear algorithm.

Remark: One has to be aware of the fact that for (1), the number L is equal
to the number of digits 1 as well as the reciprocal length value. But even if L is
prime the number (1), is very seldom a single prime itself. See section 3.

The described procedure of generating prime numbers, theoretically unlimited, is
besides the sieve of Eratosthenes perhaps the only complete method. The main
difference between these two methods is, that the sieve is probably more time con-
suming depending on the necessary elimination of the non-primes. On the other
hand, the new method presents the primes as families which are a function of the
geometric series (10X —1)/9, and not a function of the natural sequence of numbers.
This means that every prime >5 divides a row of the digit 1 (shortest possible, but
also multiples of that row). As all the family products end on the digit 1, the
visual pattern of large but limited series of prime numbers must probably deviate
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FIiGURE 1. This diagram illustrates the established relation be-
tween the period length of a prime number and the prime factors

in the corresponding term of the series of repunit numbers.
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from the results obtained by Lemke Oliver and Soundararajan in a recent paper [6].
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