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Annotation

A solution of the Maxwell equations for a variable voltage
capacitor with a variable voltage is given, which is a development
of inconsistency (corresponding to the energy conservation law)
solution of the Maxwell equations for vacuum. It is shown that in
an electromagnetic wave propagating through a capacitor, the flux
of electromagnetic energy does not change with time. It is shown
that there exists a longitudinal (along the radius) standing
electromagnetic wave. For a simple verification of the findings,
detailed proof is given.

1. Introduction

In [1, 2], 2a new solution of the Maxwell equations is proposed for a
monochromatic wave in a nonconducting medium. The dielectric of the
capacitor is also such a medium. If a monochromatic alternating voltage
is present on the capacitor plates, then a monochromatic wave with
electric and magnetic intensities should also be present in its dielectric.
This wave propagates between the capacitor plates. This wave
propagates between the capacitor plates. According to the existing
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concept, in the energy flow through the capacitor only the average (in
time) value of the energy flux is conserved [3]. This contradicts the law
of conservation of energy (this was already discussed in [1, 2] for a
traveling wave). Therefore, a new solution of Maxwell's equations for a
capacitor is proposed below.

The Maxwell equations for free electromagnetic oscillations in an
unbounded medium have the form

rot(E )+ ﬂaa_‘t’ _o0, M
OF

rot(H )- 55 =0, 2

div(E)=0, (3

div(H)=0. @)

In [1, 2] the solution of these equations was obtained under the
assumption that £ = 0. Below this restriction is removed.

2. Solution of the Maxwell’s equations
As in [1, 2], we will use cylindrical coordinates r, ¢, z and apply

the following notation:
co=cos(ap+ yz+ wt), 1)
si=sin(ap + yz + wt), )
where «, y, @ are some constants. We represent the unknown

functions in the following form:

H,.=h(r)co, 3)
H,.=h,(r)-si, 4)
H_.=h(r)-si, )
E.=e(r)si, ©)
E,=e,(r)-co, M
E .=—e_(r)-co. 8)
Then the system of Maxwell's equations takes the form:
&0 )= s e () =0, )
r r
Ot e, ()7 - poh, () =0, 10
e, (r )y +e.(r) + uwh,(r) =0, (11)




€l s ¢ () - &) (r)- o+ poh.(r) =0, 2
r

h(r) h()+ —-h.(r)=0, 13)
h(”)a h,(r) y — swe, (r) =0, (14
—h,(r)z—h;(r)wweq,(r) =0, (15
@+h;(r)+h"7(r)-a—ga)ez(r)zo, (16)

where h(r), e(r) are some functions of coordinate r.

Here we can not use the solution obtained in [1, 2], since there in
the search for a solution it was assumed that e(r)=0. Here such an
assertion is not satisfied by the condition of the problem.

We will seek a solution in which the tensions are related by the
relation

h(r)=0, 17
which follows from physical considerations. Then the system of
equations (9-16) takes the form:

M+e;(r) ¢ )a+;( e (r)=0, (18)
r

LA e, (r)y — poh,(r) =0, (19
r

e, () + €L(r) + ook, () =0, @0

e(/,(l’) _|_e;’(,»)_e’—(r)-a -0, @1)

- hwmz ~ eoe, (=0 =

—h, (r);( +ewe, (r) =0, 24

ho() oy, )

“’T+h¢,(l‘)+7'0[—€wez(’”):0~ 25)

In Appendix 1 it is shown that there exists a definite Bessel
function, denoted as Fa(r), on which the functions of intensities

depend, namely

e.(r)=F, (),




&)= F, (). b, ()=~ F, ().

& ()= F, (). 1, ()= F, ()

More precisely,

e.(r)=F,(r), (26)

el(r)= %Fa (). @7)

e,(r)=2%e (), (28)

q

e,(r)= _zael) 29)
q r

h(r)= %ew ). (30)

h,()=-"e (), (1)
z

where
qg=y" —peaw’ >0. (32)

The function F), (r) is a solution of the equation

!

2
e' (r)+ e () +e. (r) (q _a_zj =0. 33)
r r

For the existence of this solution, the quantity g must be positive.

3. Velocity of electromagnetic wave

propagation

It was shown in [1, 2] that in such a solution for a free wave
propagating at the velocity of light,

7 =t ue = i% . (1)
In the case under consideration, the quantity (2.32) must be positive, i.e.
7’ —usw’ >0 @
ot
w @
X2 ‘a)\/ﬁ‘ = ;,HpI/I‘ICM Xnin = ? ?3)




d.
Obviously, this velocity is equal to the derivative i of the

function given implicitly in the form (2.3-2.8). Having determined the
derivative of these functions z(#), we find the propagation velocity of a
monochromatic electromagnetic wave
v, = __ o O
dt x
Combining (3, 4), we obtain:

1

®)

v, = — ‘s L
PR

>

1
c
So,

v, ScC. (6)
Consequently, the propagation velocity of the electromagnetic wave in
the capacitor is less than the velocity of light.

4. Energy density
The energy density is

w=|EE s L g (1)
2 2
ot, taking into account previous formulas,

(e} + 6, (o) +e.( o) o

- @)
4 % ((hr ()Xo +(, (ki ) )

Taking into account (2.29, 2.30), we obtain:

£ (e 0 +,030) + (ko)
(2] 2000 om)

W =

or

- {g (koY + [[f’jg;}(( (ko) <€, (rw)} 0




Thus, electromagnetic wave energy density in condenser is constant
in time and equal in all points of the cylinder of given radius.

5. Energy Flows
The density of electromagnetic flow is Umov-Pointing vector
S=nExH, M
where
n=clir. 2)
In cylindrical coordinates r, @, z the flux density of
electromagnetic enetgy has three components S,, §,, S, directed along

the radius, along the circumference, along the axis, respectively. They are
determined by the formula (as shown in [1, 2])

'S ] E,H —E.H,
S = S(p = U(E XH): 77 EzHr _Eer : (3>
S, | EH,-EH,
ot, taking into account previous formulas,
S, ] s, - Si°
S=|S,|=n|s, si-co|. 4
| S, | s, -Si-co

where
s, = (8th - ezhw)
S(o = (ezhr o erhz ) (5>
s, = (erhw —e,h,

Taking into account (5, 2.27-2.31), we obtain:

E® Ew |
Sr = _ezh(p = ez _er = _ez - ez ’ (7>
X q
2
s, =(e.h)=e. ﬂeq) __swae o
v4 qg r
s, = (erh¢, —e,h, % —% e+ ae; ) ©)

[Torok sHeprum, KOTOPBI PaCIPOCTPAHACTCA IO PAAUYCY U3 BCEH
OKPY/KHOCTH AAHHOTO PaAHyCa, KaK CACAYeT U3 (4), paBeH




27 27
S_r=nf—ez[8—a))e; -si’ ~r-d(0=77@~eze; ~rjsi2 do. (10)
0 q q 0

We call this flow a radial flow of energy. The integral in (10) is a
constant. In Appendix 3 shows that the quantity ®=(e.e!-r) is a
periodic function of r. This means that the radial energy flux varies
along the radius, and its total value is zero.

The energy flow that propagates along a circle of a given radius, as

tollows from (4), is equal to
2z

o 2r 2

S, =—nj€wae—z-co-si-r-d¢=—n Loa e’ J.co-si-d(o. (102)
o 4 T q 0

The integral in (10a) is a constant. In Appendix 3 it is shown that

the value ezzj is significant only at the center of the capacitor.

The energy flow, which propagates along the axis 0z through the
cross section of the condenser, is equal to

S_Z:n”[sz -si-co]dr-dgo. 1)
e
Taking (9) into account, we obtain:

S_z:—%n” [(ef +ae;)si-co]ir-dg0 (12)
r.e

or

S_Z:—@U(I(ef +aeijdr]{jsi-co-d¢} (13)
Z G P

Both integrals in (13) are constants that do not depend on the
coordinates Z and t (as shown in [1, 2]). Consequently, the energy flux
of the electromagnetic wave is constant in time. This flow is the
active power P = S_z , transmitted through the capacitor. This power does

not depend on the design of the capacitor. The magnitude of the power
does not depend on the intensities. There is only one parameter, which is
not defined in the mathematical model of the wave - it is a parameter ¥

and power depends on it. More precisely, on the contrary, the power

P =S _determines the value of the parameter y .




6. Radial wave
In the capacitor there is a wave along the radius with the intensities
H._.=h (r) cos(ap + yz + wt),
E.=e (r) sin(a@ + yz + wt)
- see (2.3) and (2.6). They correspond to the radial energy flux (5.10)
considered above. It can be seen that these intensities are shifted in phase
by a quarter of a period. In Appendix 3 shows the dependencies of these
intensities and the energy flux on the radius. It can be seen that these
tensions constitute a longitudinal standing wave, oscillating along the
radius.

7. Voltage in the capacitor

The voltages in the solution found are determined to within a
constant factor. For example, the intensity (2.8) should be written, taking
into account (2.26) in the form:

E .=-A-F, (r)cos(ago + yz+ot), )
where A is an indefinite constant for all the intensities.
We assume that the potential on the lower plate for z=0 and
some @,, 1, is zero, and the potential on the upper plate for z=d and

same ¢ , 7, is numerically equal to the voltage U across the capacitor.
Then

U=-A4-F,(r )cos(ap, + yd + at) , @
what can be used to determine the coefficient A. At some intermediate
value z, the voltage for the same ¢, , r, will be equal to

u(zy=—-A4-F, (ro )cos(agpo +z+ot), ©)

i.e. the voltage along the capacitor varies in function cos(z).

8. Discussion

The proposed solution of the Maxwell equations for a capacitor
under an alternating voltage is interpreted as an electromagnetic wave
with three electric intensities and two magnetic intensities (there is no
magnetic field directed along the axis of the capacitor). We note the
following features of this wave:




1. Magnetic and electrical intensities on a certain coordinate axis
r, @, z are shifted in phase by a quarter of a period.

2. The vectors of electric and magnetic intensities are orthogonal.

3. The instantaneous (and not the average for a certain period)
energy flow through the capacitor does not change in time, which
corresponds to the law of conservation of energy.

4. The energy flow is equal to the active power transmitted through
the capacitor.

5. The velocity of propagation of an electromagnetic wave is less
than the velocity of light

6. This velocity decreases with transmitted power (in particular, in
the absence of power, the velocity is zero and the wave becomes
standing)

7. The wave propagates along the radii; the intensities vary as the
Bessel function of the radius.

8. There is a longitudinal standing wave in which the intensities and
the energy flux oscillate along the radius; the total value of the energy
flux is zero.

Appendix 1
Denote by:

ergo = er + e(p’ (1)
Suppose, that

e,=e te,= 19(11,/) —hr) )
Let us find the sum of the equations (2.19, 2.20):

e '
e,g+—=a+e =0. 3)
r
where
H®
= y+=1 4

v .

Let us find the sum of the equations (2.18, 2.21):
, e

ew+7w-(l—a)+;(eZ:0. ©)

From (3) we find:
, e, 1
e, z—(ez +—a}—, ©)
r-Jg




, P e, 1
e, = —[ez +—a—— aj—. @)
From (5—7) we find:

’
e;'+e—za— e; a
r r

l+(e; +e—zajll~(1—a)— ye. =0, (8
g

ro)gr

or

[e;'+e—za—e—§aJ+(e;+e—zaJ(l_—a)+ezq:O, ©)

r r r r

where

q9=-8%. (10)
After simplifying (9), we obtain:

. e! aZ
ez+—z+ez(q——2]:0. 1n
r r

It will be shown below, that g > 0. Therefore (11) is the Bessel equation
- see Appendix 2. Next we will denote this solution as F/, (r) So,

e.()=F,(r). (12
el(r) = iFa (). (15)
dr
From (2.21, 1) we find:
e’¢+le¢(1+a)—gew =0, (16)
r r
From (6, 16) we find:
e;+le¢(l+a)+z(e;+e—zajl=0, (17)
r r ro)g

Suppose, that

e, =K(%) (18)

e, :K(e—Z—e—g) (19)

ror
We substitute (18, 19) into (17) and find:

I((e—z—e—;j+ll((e—zj(l+a)+z(e; +e—zaJl: 0,
r r r r r r g

2 '
% (—K+K(l+a)+a—J+e—z(K+gj=0,

r g r g
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K= —g. 20)
So, from (18--20) we find:
_afe.
e(p = —E 7 N (21)
, afe e,
e Z—E(7—r—2j (212)

or, taking into account (10),

1
e, =——el :—14. 22)
g q
Consider equations (2.22-2.25). Subtracting (2.24) from (2.23), we
find:
~, — 1 Y —sole, +e,)=0, 23)
From (2, 23) we find:
__ X 24)
s
Then from (4, 24, 10) we obtain:
2
A0
g:_(;(_” J (24a)
X
qg=y" - uco’ . 25)
Subtracting (2.22) from (2.25), we find:
h, - hr ' ' hr —h
£ +h, —h + L.a—cwe, =0. (26)
r r

From (2, 26) we find:

/

Cro G0 S g spe =0 @7
S 9 I

or

e’—"”(l—a)+e;¢, — Jewe, = 0. (28)
r




From (24, 28) we find:
e
ﬂ(l—a)+e;¢+;(ez =0. 29)
r

Equation (29) coincides with (5) This means that the assumptions made
are satisfied.

From (2) we find:

e,
h, = 3 +h (30)
From (2.22, 30) we find:
ﬂ+h;+g(e’—'“’+h,}=0, €2))
r r{ 9
or
—on - X2, o, (32)
r r
Cpasambas (32) u (16), 3amevaem, 9To
—-Gh, =e, (33)
From (33, 24) we find:
€ e
h=—0—p 2% 34
r g (34)
From (30, 34, 1) we find:
pooGo gy _Ge % _&
L
ot, taking into account (24, 22),
I Ew  Ew
,=—¢,—=—¢.. (35)
X 4
Consider the equation (2.20)
e, (r);( —e.(r)+ pwh,(r)=0
and paste in it (35, 22). Then we get:
2
EQ
e.(r )y —ge, (N = (=0 66
or
UED’
X—8- =0 (37
V4

ot, taking into account (24a),
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£w* £w*
z—(z—”z —”z =0. 69

Thus, equation (2.20) becomes an identity, what was to be shown.

Appendix 2.
We know the Bessel equation, which has the following form:
’ 2
y"+1+y[1—v—zj=o, (1)
X X

where V is the order of the equation. Denote by Z () the general

integral of the Bessel equation of order. It is shown in [4, p. 403] that an
equation of the form

y”+£y'+y-[bx"’+%J:O. 2)
X X
can be transformed into an equation of the form (1), where Z (y) and

order V is determined through the parameters a, b, m, c.

In particular, equation (11) from Appendix 1 is transformed into an
equation of the form (1) by the following substitution:

a=1,b=q, m=0, c=-a’, V=%(/—4i—0(2 )):a. 3)

Thus, the solution of equation (11)

e.()=F, (1) =2,(q) @

Because the

d 1
5 0= -2,.0)) 5)
then
1

) =5 (e ) 2. 6a) ©
Appendix 3.
Pacecmorpum ypasaerne becceas

y"+£+y(l—i2j:0, (1

r r

1 PYHKIIUIO BUAA
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O(r)=y(r)-y'(r)-r. @)
In Fig. 1 shows graphs of
* Bessel function y,

* a derivative )" of this function,
* function @(r),
* function y°.

It can be seen that the function ®(7) is a petiodic function.

In Fig. 2 shows graphs of
* a derivative y', which is proportional to the intensity e, (r) - see
(2.28, 2.27) and a solid curve with a large amplitude,
* a function y/r that is proportional to the intensity /4, (r) - see

(2.30, 2.29, 2.26) and a solid curve with a small amplitude
approaching the axis
* a function @(7) that is proportional to the energy flux along the

radius 5 - see (5.10) and the dotted curve.
®  IIPOU3BOAHOM oT dysKIIII becceas, KOTOpas
IIPOIOPIIMOHAABHA HAIIPAKEHHOCTH €, (r) - oM. (228, 2.27) n
CIIAOIIIHYFO KPUBYIO C OOABITION aMITAHUTYAOH,
® (yukuum y/r, KOTOpas IPONOPHUOHAABHA HAIIPSKEHHOCTH
hr(r) - om. (230, 2.29, 2.26) 1 CHAOIIHYIO KPHUBYIO C MaAOH
AMIIAHTYAOMH, TIPUOAIIKAFOIIYIOCA K OCH

o dyukuun D(r), xoTOpas HPOHOPIUOHAABHA IIOTOKY SHEPIHU

IO PAAHYCY S_r - cM. (5.10) 1 IyHKTHPHYIO KPUBYIO.
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