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I. INTRODUCTION

In this paper, the second order in Φ/c2 gravitational relativistic redshift accuracy is the

topic. In GNSS and geodesy terms, that means a tenth of a millimeter location accuracy.

This accuracy, determined by the improvement of atomic clocks, will be the inevitable future

of GNSS some three to four decades from today. Research towards a relativistic positioning

system capable of handling this expected accuracy is all based upon the Schwarzschild metric

as a replacement of todays Euclidian-Newtonian metric.

The method employed in this paper to determining frequency shifts between identical

clocks is a Minkowski- EEP (Einstein Equivalence Principle) approach, thus an intermediate

step in between todays Euclidian-Newtonian GNSS 1.0 and tomorrows GR-Schwarzschild

GNSS 2.0. This hypothetical GNSS 1.5 approach is based on relating two atomic clocks to

one another, clocks in different states of motion and at different locations in a central field

of gravity, through a background ensemble of frequency gauged clocks, a grid.

The crucial grid of this paper, the Free Fall Grid, will be constructed and justified in

several steps, starting with an Euclidian rectangular lattice of syntonized static clocks in

free space. An Euclidian radial lattice will be a step towards a radial lattice of static clocks

around a central mass, a lattice that fundamentally lacks syntonization. From there, the

Einstein Equivalence Principle will lead to the Free Fall Grid. This Free Fall Grid can be

related to the Ehlers-Pirani-Schild P-CP Weyl space formalism, when applied to a central

mass.

The Free Fall Grid will lead to the connection between two static clocks which, in first

order in Φ/c2 relative accuracy, will be identical to the exact Schwarzschild redshift result.

From there, the Free Fall Grid second order in Φ/c2 static redshift is calculated and compared

to GR-Schwarzschild and PPN (Parametrized Post Newtonian). Derived next are the FFG

connections between a satellite and a ground station and then between two orbiting satellites.

In the end a FFG extension of the Schwarzschild metric is proposed, mirroring the PPN

method. But it all starts with the expected development of ever more accurate atomic

clocks.
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II. THE FUTURE OF GNSS: SECOND ORDER IN Φ/c2 ACCURACY

In GNSS systems, engineers use an Euclidean or Newtonian stationary grid in free space

attached to the center of the earth and then apply corrections. These corrections might

be due to rotation (Sagnac effect, first order in v/c), velocity (classical Doppler effect, first

order in v/c; Special Relativity time dilation, second order in v/c) and gravity (General

Relativity time dilation, first order in Φ/c2, so second order in vesc/c) (Ashby, 2002, 2003;

Hećimović, 2013).

Since a few decades, several researchers pointed out that such a Newtonian GNSS system

with Einsteinian corrections is rather anachronistic and that it would be more logical to

construct an Einsteinian GNSS from the ground up (Kheyfets, 1991; Coll, 2001; Bahder,

2001, 2003; Coll, 2003; Ruggiero et al., 2008; Čadež et al., 2011; Bertolami and Páramos,

2011; Coll, 2013; Pascual-Sánchez et al., 2013; Gomboc et al., 2014; Kostić et al., 2015;

Puchades and Sáez, 2015, 2016). In an ESA report, the basic idea is expressed as:

A simple way to avoid having to deal with the defects of Newtonian theory is to

change the paradigm. Instead of modeling the system in a Newtonian framework

and adding relativistic corrections, the positioning system could be modeled di-

rectly in general relativity. [...] A local Schwarzschild frame was designed, based

on the clock signals originating from four satellites. (ESA, 2010)

Relativistic positioning systems are designed under the assumption that spacetime has a

Schwarzschild metric. This corresponds to an Earth that is isolated, static and spherically

symmetric (Puchades and Sáez, 2016). Satellites on time-like geodesics, photons on null

geodesics and users on or ‘near’ the earths geoid are the basic ingredient of such a relativistic

GNSS, against the background of the Schwarzschild metric (Kheyfets, 1991; Puchades and

Sáez, 2016).

Reading the mentioned research on GR Schwarzschild based GNSS gives the impression

that, after the promising first initiatives, progress is somewhat stalled. This might be due

to the discrepancy between the complexity of GR-Schwarzschild on the one hand and the

technical robustness of todays operating GNSS on the other hand. This robustness seems

to be interwoven with the relative simplicity of the Newtonian-Euclidian framework. In this

paper I propose to go for an intermediate relativistic framework for GNSS, a Minkowski

plus Einstein Equivalent Principle (EEP) approach. In the not to far away future of GNSS,
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second order in Φ/c2 accuracy will be the new normal and in such an environment, correc-

tions to Newton-Euclidian basics will probably not be sufficient any more. Minkowski-EEP

relativistic GNSS might be a pragmatic and realizable intermediate towards a fully GR-

Schwarzschild GNSS.

My Minskowski-EEP approach has a theoretical background in the form of the Ehlers-

Pirani-Schild (EPS) Weyl space analysis and a more practical side in the form of syn-

tonized grids of atomic clocks in Einstein Elevators. Future second order in Φ/c2 accu-

racy is driven by an ongoing improvement of atomic clocks, roughly gaining a factor 10

accuracy every decade. This pragmatic version of the EPS Weyl Space approach can be

temporarily positioned in between present day Euclidian-Newtonian GNSS 1.0 and a future

GR-Schwarzschild GNSS 2.0 because it combines the Minkowski metric with EEP.

The greatest push towards GNSS 2.0 will come from the to be expected improvement in

the accuracy of precision clocks as the heart of all GNSS satellites. In Galileo, clocks with a

relative accuracy of 10−14 are employed. Todays scientific research precision clocks reach a

relative accuracy of 10−17 and improve by a factor of 10 every decade (Delva and Lodewyck,

2013). Today only first order in φ/c2 relativistic effects, of 10−10 relative impact, are taken

in account in GNSS 1.0 operational technology, but a future relativistic GNSS 2.0 must be

expected to handle second order effects too, with a 10−20 relative impact. Accumulative

effects in clock drift might even speed up the relevancy of second order in φ/c2 effects for

future GNSS practices. In the already mentioned literature on relativistic GNSS there is

scarcely any attention for this second order accuracy issue. In (Blanchet, L. et al., 2001),

the 1/c3 order of accuracy is investigated, while mentioning that the φ2/c4 accuracy isn’t an

issue yet because it is in the 10−20 relative frequency shift range.

This paper tries to fill the gap by treating these second order effects in an adapted EPS

Weyl space environment. The outcomes will be compared with the result reached using

the usual Schwarzschild metric and the PPN perturbative expansion of it as presented in

(Castel-Branco et al., 2014). The first order effects are identical in both approaches, the

second order effects deviate. Given the fact that the Schwarzschild metric is known to be

limited to weak fields of gravity, the question rises, how weak is weak when second order in

φ/c2 effects are taken into account? Is the Schwarzschild metric up to the task of becoming

the backbone of GNSS 2.0?

Fundamental in the approach of this paper, the Free Fall Grid method to handle second
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order frequency shift accuracy, is to analyze gravity using relative frequency shifts as one of

the basic inputs. Such a method is also looming in today’s geodesy, the secondary context

relevant for this paper. In modern gravitational geodesy scientists are investigating the

relativistic frequency shift as a new observable type for gravity field recovery (Mayrhofer

and Pail, 2012). Driven by this development, modern geodesy is about to go through a

change from the Newtonian paradigm to Einstein’s theory of general relativity (Kopeikin

et al., 2017). A new generation of atomic clock is the game changer for this new domain of

chronometric geodesy, and requires additional new techniques to be developed in the field

of frequency transfer and comparison (Delva and Lodewyck, 2013). The paradigm shift is

based on the principle of frequency comparison between two clocks in order to measure the

frequency shift between them (Delva and Lodewyck, 2013). The knowledge of the Earth’s

gravitational field has often been used to predict frequency shifts between distant clocks. In

relativistic geodesy, the problem is reversed and the measurement of frequency shifts between

distant clocks now provides knowledge of the gravitational field (Delva and Lodewyck, 2013).

This reversal also looms in our EPS Weyl based approach.

Second order accuracy in relativistic frequency shift measurement isn’t just a too far away

future to be concerned about today. In 2010 a research group reported the measurement of

the height difference between two atomic clock using the gravitational redshift:the result of

37±15 cm agrees well with the known value of 33 cm (Chou et al., 2010). Simple calculations

show that for an accuracy of 1 cm, the measured frequency difference of ∆f
f
≈ 10−18 is

necessary (Delva and Lodewyck, 2013). Thus a second order in Φ/c2 accuracy (≈ 10−20)

implies a height resolution in geodesy of a tenth of a millimeter. The best clocks of today

reach relative uncertainties in the 10−17 − 10−18 range. Progress continues rapidly, with no

hard limit in sight (Wolf et al., 2017). Todays practical use of General Relativity in geodesy

implies an accuracy in gravitational redshift in between first order and second order in

Φ/c2. Research in fundamental theory should prepare for the second order in Φ/c2 technical

accuracy, the 0.1 mm range, to be relevant in GNSS 2.0 thirty years from now.
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III. THE EHLERS-PIRANI-SCHILD FORMALISM APPLIED TO A

CENTRAL MASS

The Ehlers, Pirani and Schild or EPS formalism will function as a theoretical background

for the more pragmatic Free Fall Grid approach towards the GNSS, using Einstein Elevators

on frequency gauged grids. In these Einstein Elevators, monitored atomic oscillators are the

essential ingredient, not synchronized time keeping clocks. Some of these atomic oscillators

will be moving on a geodesic, thus in free fall. Others will be stationary in a central field of

gravity.
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FIG. 1. Ehlers-Pirani-Schild Weyl space, around a central static mass M filling up the smallest

circle, with a radial CP structure and a tangential P structure. A and B are static atomic clocks

on the P structure but also connected through the CP structure. Photons cannot orbit M on a P

geodesic but they can move along a CP geodecis. A and B on different P geodesics and have to

communicate through the CP geodesics. GNSS satellites are on a P geodesic, communicating with

Earth through CP geodesics.
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According to EPS, rigid rulers and standard clocks are not appropriate as fundamental

objects for constructing a relativistic space-time geometry. EPS wrote that the choice of

Synge for particle and clock as basic concepts was a smart one for deductive purposes,

but not for constructive ones. EPS used freely falling particles and light signals for the

constructive approach. Light signals are light-like null geodesics and freely falling particles

are time-like geodesics of a Lorentzian metric. Standard clocks should then be characterized

with the help of light signals and freely falling particles (Ehlers et al., 2012; Perlick, 2016).

EPS tried to show how space-time geometry can be constructed from a small number of

assumptions/properties about light propagation and free fall (Ehlers et al., 2012).

Freely falling particles move on what is called time-like or P geodesics. A set of such

P geodesics form a projective structure (Capozziello et al., 2012). Light propagates on

null geodesics or C geodesics and a set of such geodesics forms a conformal structure. CP

geodesics are those geodesics that are the paths of both freely falling particles and light

signals. Most geodesics are either C or P geodesics. Around a central mass M , as filling up

the smallest circle in fig. (1), satellite orbits form P geodesics and the radial lines are CP

geodesics. A light ray that is not directed to or from the center of M will follow a bended

hyperbolic path around M . Freely falling particles can never track a light ray on such a

path. Light rays in turn cannot orbit M . But the radial lines are both C as P geodesics,

thus CP geodesics. A manifold with a CP structure is what EPS called a Weyl Space (Ehlers

et al., 2012). According to (Ehlers et al., 2012), with some additional assumptions, every

Weyl space also was a Riemann space.

One of the basic characteristics of a CP geodesic is that a freely falling particle can

eventually chase light signal arbitrarily close. As for the central mass M of fig. (1), if this

is a black hole then this criterium is fulfilled. But there is a more concrete set of particles

in the Universe that match the ESP CP criteria relative to fig. (1), the high energy cosmic

rays. The earth is continuously bombarded by these particles, some of them extragalactic

others originating from the black hole region of our own galaxy, all with ultra high energies

(Thoudam, S. et al., 2016; HESS Collaboration, 2016; The Pierre Auger Collaboration,

2017). On a cosmic scale, the subset of these particles that are observed on earth can be

treated as moving towards the earth parallel to galactic and extragalactic photons, thus on

a radial CP geodesic.

As for the EPS move away from clocks towards test-particles, we propose to connect this
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to the move away from synchronization towards syntonization (“syntonized” means “having

equal frequencies” (Ashby et al., 2007)). Einstein focused on synchronization procedures,

todays technology more on syntonization.

It should be clear now that the difficulties inherent in the chronometric approach

[...] are absent from the test-particle approach presented here, and that the lat-

ter approach offers a deeper understanding of the space-time geometry than the

former. (Ehlers et al., 2012)

From a phenomenological perspective this can be interpreted as the realization by EPS that

real stable atoms do not carry time, only oscillatory frequencies. Chronometric devices as

atomic clocks are human constructions based upon those atomic oscillations. Synchronized

clocks are not fundamental objects in nature, syntonized oscillators are. The basic observable

in an EPS approach should be atomic frequencies related to atoms, not synchronized time

related to clocks.

According to (Capozziello et al., 2012), the Ehlers-Pirani-Schild formalism provides a

natural interpretation of the observables showing how relate them to General Relativity and

to a large class of Extended Theories of Gravity. In this paper, I connect the EPS approach

intuitively and pragmatically to my Free Fall Grid approach towards gravitational phenom-

ena. In fig. (1), the basic geodesics relative to a GNSS system are depicted, together with

two positions A and B. The P geodesics are the satellite’s free fall orbits around the earth’s

central mass M . The CP geodesics are the C or null geodesics of light- or EM-signal com-

munication between posts A and B, but are at the same time the P or time like geodesics

of freely falling Einstein elevators, thus the CP geodesics in the Free Fall Grid approach. In

the following four sections I will gradually setup an EPS-FFG background structure that

will be used to connect foreground GNSS precision atomic oscillator clocks.

IV. A RECTANGULAR LATTICE OF SYNTONIZED STATIC CLOCKS

IN FREE SPACE

This buildup starts with an Euclidian grid to which a Minkowski metric connection will

be added. In the context of this paper, a grid is defined as frequency gauged localities,

Einstein Elevators, spread out on a global structure in space and time, thus covering a four
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dimensional event area. The Einstein Elevators contain frequency gauged clocks that can

emit and absorb frequency gauged photons. A collection of such frequency gauged clocks is

a syntonized ensemble, a grid. Additional synchronization is not assumed, all that needs to

be monitored in the standard clocks is the frequency of the photons emitted or absorbed by

the atomic oscillator being at rest in its core.

I assume that these clocks can also measure frequency shifts of received photons, using a

Pound and Rebka type measurement of frequency difference to the highest accuracy (Pound

and Rebka, G. A. Jr., 1960). And the Einstein Elevators are Einstein Equivalence Principle

(EEP) local environments (Will, 2010). I will come back to the EEP in detail later in

this paper. In the first example of a grid, the Einstein Elevators will be distributed on

a rectangular, static lattice in free space, the Euclidian grid to which a Minkowski metric

relating the Einstein Elevators will be added.

A

B

Va

Vb

FIG. 2. Einstein Elevators in free space on a rectangular Euclidean lattice. The two randomly

directed Einstein elevators A and B on the foreground each have a constant velocity va and vb

relative to this Euclidian grid that is their background.

Then a set of separate clocks A and B is introduced. These two clocks are not on

this grid but move inside Einstein Elevators through this grid with two different random

constant velocities, see fig.(2). From the fact that clocks on the grid aren’t capable of directly
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absorbing the photons emitted by the moving clocks, it can be inferred that these clocks on

Einstein Elevator boxes A and B are operating on different frequencies, although they have

the same standard clocks. Randomly moving standard clocks aren’t frequency gauged with

the grid.

Suppose we do not know how the clocks A and B are ticking relative to each other but

we do have a procedure of how to relate the frequencies of the individual clocks A and B to

the grid. Then we are also able to compare the clocks A and B relative to each other, as

seen from the perspective of the grid.

So let the frequency of all the clocks on our grid be νg and let there be the two clocks A

and B who are not on the grid and who have frequencies νa and νb. Suppose we know how

to relate the frequency of clocks on the grid to the frequencies of clocks A and B as in

νa
νg

= δa and
νb
νg

= δb, (1)

so with measured values δa and δb. Then we also know how to relate the frequency of clock

A directly to the one of clock B, as deduced from the grid perspective. We have, in an

Euclidian environment,

Euclidian connection :
νb
νa

=
δb
δa
. (2)

Next, imagine that we know how to Lorentz boost clocks from the grid to a position at

rest right next to the off-the-grid clocks A and B with frequencies νa and νb. For such a

Lorentz boost, we need to know the velocities va and vb of the elevators A and B relative to

the grid and then the Lorentz boost factors γa and γb can be calculated using

γa =
1√

1− v2a
c2

. (3)

From Special Relativity we then have for clock-frequencies (Einstein, 1907),

νa =
1

γa
νg, (4)

leading to
νa
νg

=
1

γa
= δa. (5)

For the clock B we have equal equations relative to our grid. We insert these two known

Lorentz boost into Eqn.(2) to get

Minkowski connection :
νb
νa

=
γa
γb
, (6)
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with Lorentz boosts γa and γb both relative to the grid. We need the Minkowski metric to

connect clocks on A and B to the grid and then to each other. An alternative way to present

this result is
∆νba
νa

=
γa − γb
γb

(7)

All we need to use Eqn.(6) or Eqn.(7) is a background of frequency gauged ensemble of

standard clocks with on its foreground two non-gauged standard clocks with known Lorentz

boosts relative to this background grid. This approach of relating two non-gauged foreground

observers through a gauged grid in the background will be repeated throughout this paper.

V. A RADIAL LATTICE OF STATIC CLOCKS AROUND A CENTRAL

MASS

The procedure of the previous section also works using a radial instead of a rectangular

grid in free space, see fig.(3). This is the basic grid used by a GNSS, and A and B can be

satellites, airplanes, cars or shoppers with a smart-phone searching a specific store. There

is however a problem with such a grid once it has a central mass in its center.

Present navigation satellite systems, such as Galileo and GPS, employ New-

tonian trigonometry to determine positions, using Earth stations as reference

points. This approach would perform ideally if all the satellites and the receiver

were at rest and far from Earth.

However, this is only correct as a first approximation because of the level of

precision needed by a GNSS, the distortions that Earth causes in nearby space

and time (space-time curvature) and the effects of the relative motions between

the satellites and the user (relativistic inertial effects) both have to be considered.

(ESA, 2010)

Once a central mass M is added to the central Euclidian grid of fig.(3), clocks at a different

radius from the center of M cannot absorb each others photons any more, see fig.(4). Then

the system cases to be a globally frequency gauged lattice, it cases to be a global grid. This

means that Special Relativity alone has limited use on this grid around a central mass,

because in Special Relativity only velocity can influence the frequency of standard clocks

and the clocks around M are all stationary. Clocks static relative to each other and on
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Vb

FIG. 3. Einstein Elevators in free space on a central static Euclidean syntonized lattice provide

the background against which two randomly directed Einstein elevators A and B on the foreground

are compared and connected. Such a grid is used in GNSS, where syntonization is assumed to be

achieved during the factory setting of the atomic clocks as part of the production process. SR and

GR effects are treated as corrections to this basic syntonization.

the same P-geodesic will still be syntonized, and so will clocks on the earths geoid (Ashby,

2002), but static clocks on Einstein Elevators on different P geodesics aren’t syntonized.

Because static clocks on different P geodesics will be non-gauged, the global grid is lost. It

is well known that in general relativity global synchronization of clocks in gravitational field

with no symmetries is impossible in principle. (Kheyfets, 1991) This is the basic problem for

relativistic GNSS. The Newton-Euclidian approach still assumes a global grid as its back-

ground. In GR-Schwarzschild, this actual global grid of real clocks as an imperfect reference

system is replaced by an abstract metric, without having made clear to the technicians how

to handle this loss.

In a stationary lattice around a central mass M, one locally has Einstein Elevators in

which Special Relativity can be applied, because EEP is valid in them. But we cannot

use Special Relativity alone to connect the standard clocks in the Einstein Elevators to

each other on the global scale. Gravity disintegrates the Euclidian static grid, even with
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FIG. 4. A background of Einstein Elevators in a stationary lattice around a central mass M,

including a GPS satellite S and an GPS earthbound station E on the foreground. Only the

background Einstein Elevators on the same P geodesic can function as a limited syntonized P grid.

The problem is how to connect atomic clocks on different P-geodesics, in the absence of a truly

global grid.

a Minkowski metric, into separately syntonized P geodesics. Different GNSS systems are

orbiting the earth on different heights, thus also on different P geodesics. This implies that

we cannot relate the frequencies of the standard clocks on the Einstein Elevator Satellite S

and Einstein Elevator Earth ground Station E on the foreground to this radial lattice as the

background. On a global scale the background isn’t syntonized any more.

Kheyfets suggested to use what he called ‘Schwarzschild coordinate time’ to realize a

global synchronization scheme.

It would be a good idea to make all the clocks to display Schwarzschild coordinate

time, i. e. the time of an observer placed at spatial infinity and resting with

respect to the Schwarzschild coordinates. Schwarzschild coordinate time is the

closest possible analog of the time of the ECI frame (the special relativistic limit

of the Schwarzschild coordinate frame coincides with the ECI frame). The first

step in this direction is to compare the rates of the clocks of the satellite and the
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observer with Schwarzschild clocks simultaneously with respect to Schwarzschild

time. (Kheyfets, 1991)

The proposal of Kheyfets would imply to synchronize all the clocks of the stationary

observers in Fig. (4) to the clocks of the stationary observers at infinity. Kheyfets wants to

use the Schwarzschild metric as the global background, thus imposing this metric upon all

static observers as a synchronization scheme. To first order in Φ/c2 this equals the Newton-

Euclician approach, with the difference that in the last globalization method, the Earth

based factory setting is used as the globally enforced time and not the stationary time at

infinity.

The Free Fall Grid approach of this paper has a strong connection to Kheyfets’ because

I use ‘Schwarzschild coordinate time’-rate to realize a global syntonization scheme. This

syntonization scheme isn’t enforced upon the stationary lattice of Fig. (4). I introduce

a Free Fall Grid on radial CP geodesics as a replacement of the Newton-Euclidian pre-

relativistic radial grid and as a global background for the tangential P-geodesics around a

central mass. This EPS-FFG background, in the form of a Minkowski-EEP grid, might be

a pragmatic intermediate towards a fully operational curved metric background for GNSS.

VI. FROM THE EINSTEIN EQUIVALENCE PRINCIPLE TO THE FREE

FALL GRID

I combine the Minkowski metric with the Einstein Equivalence Principle (EEP) to con-

struct an hypothetical alternative grid for global GNSS purposes, the Free Fall Grid. At this

point a clarification of what is meant by the EEP is at place. There are three versions of

the equivalence principle in physics. The equivalence of being at rest in free space and being

in free fall in a field of gravity is what is called the weak equivalence principle (WEP). In

a free falling elevator, the resulting local space-time must be Minkowskian. Einstein added

what is now called the strong equivalence principle (SEP) to the Galilean notion of free fall.

The SEP states the equivalence of an accelerated frame and uniform gravity. A uniform

acceleration in free space can be replaced by a gravitational field that is homogeneous in

the first order, thus giving the observer the impression of being at rest in a field of gravity

instead of being in a state of accelerated motion in free space. Einstein derived the gravita-

tional red shift from this second equivalence principle. Uniform gravity only exists as a local
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idealization. The real gravitational field of a stationary central mass cannot be transformed

away globally, all around that central mass (Einstein, 1916; Norton, 1985).

My approach is based upon the Weak Equivalence Principle or the principle of free

fall. I don’t use the Strong Equivalence Principle of homogeneous gravity and constant

acceleration. It does imply the Local Lorentz Invariance (LLI), which states that locally

special relativity is valid and is not affected by the presence of a gravitational field. In the

free fall elevators atomic oscillators are assumed to be present, as clock frequency generators,

to remain frequency gauched from infinity all the way towards the central mass M . Therefore

Local Position Invariance or LPI must be valid on these Einstein Elevators. Local Position

Invariance implies that the non-gravitational constants of nature are space-time independent.

WEP, LLI and LPI are the three pillars of the Einstein Equivalence Principle (EEP) (Will,

2014; Wolf et al., 2017). The Einstein elevators of this paper are all assumed to embody

the Einstein Equivalence Principle when in geodesic, force free motion.

In physics, there is a long history of deducing gravity effects using Special Relativity

and EEP, as for example in (Ashby, 2006). In this paper I continue that tradition, which

was also at the core of my previous paper, in which I derived the geodesic precession using

hyperbolic Special Relativity and EEP (de Haas, 2014). In the SR-EEP Einstein Elevators

in free-fall the following applies:

Inside a freely falling elevator, as long as the field is uniform (locally), they would

be subject to zero total force, which is equivalent to being inside an elevator at

rest in empty space (or moving with uniform velocity), in which case there would

be no frequency shift. (Nobili et al., 2013)

In other words, an atomic clock placed in an Einstein Elevator at rest in infinity and then

set on a free fall trajectory towards a central mass M, will, all the way down to M remain

at the same initial rest system frequency. Tests of the WEP (part of EEP) in free fall have

reached accuracies comparable to the accuracy of atomic clocks (Will, 2014). Atomic clocks

on “Einstein Elevators” in free fall from at rest in infinity towards a central mass on a radial

CP geodesic will remain frequency gauged or syntonized all the way down towards M . In

this way a free fall ensemble of syntonized clocks capable of emitting syntonized photons is

established.

All free falls start at rest in infinity and stretch all the way to just above the surface of
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FIG. 5. A CP background of Einstein Elevators in free fall on a global free fall grid, a CP-FFG,

on which Special Relativity is valid. On the foreground a GNSS satellite in a geodesic P orbit

around M and a stationary GNSS ground station on another P geodesic (the Earth’s geoid) are

also depicted. In our EPS approach, the foreground E and S will be related through the background

FFG grid, using two CP-P connections.

this central mass, see fig.(5). On this grid one has an infinite number of Einstein Elevators

in perfect free fall. All the clocks at rest in the Einstein Elevators on this free fall grid (FFG)

have rest system frequency νg = ν0 = ν∞. These clocks do not feel any acceleration. Without

acceleration there is no Lorentz boost, and without Lorentz boost the clock frequency will

not change. Thus the FFG of figure (6) constitutes a perfect example of a global ensemble

of frequency gauged clocks, a global grid.

So all the clocks on the grid can absorb photons emitted by all the other clocks on the

grid, although the velocity of the clocks varies with height in the perspective of observers

who are stationary relative to the central mass M. From the perspective of this grid, gravity

does not exist and the velocity of light is a constant in all directions. In the terminology of

EPS, this radial FFG constitutes a CP structure and this grid spans a Weyl Space.

This free fall grid is not very practical in performing scientific experiments. Rohrlich
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started a 1963 paper on the principle of equivalence with the observation that it was very

difficult to perform laboratory experiments in falling elevators. They were usually carried

out in reference frames that were supported in a static gravitational field (Rohrlich, 1963).

Half a century later, such a free fall research lab do exist, as for example the Bremen Drop

Tower of the ZARM laboratories, with a height of 146 meter (Seibert and Fitton, 2001).

The difference with the FFG is that ZARM’s Drop Tower free fall doesn’t start at infinity.

Because of that, the CP-FFG can only function as a theoretical instrument, an instrument

of calculus, useful to relate real clocks, as for example clocks A and B in fig. (6).

VII. THE FREE FALL GRID CONNECTING TWO STATIC CLOCKS.

These clocks A and B in Einstein Elevators are on a stationary lattice at a definite radial

distance from the center of mass M, see fig.(4) and fig. (6). Observer A is closer to the

central mass M than observer B. The observers A and B feel the pull of gravity induced

acceleration on their clocks. As they try to exchange photons, they find out that the received

photons are not being absorbed, meaning that the photons of the other atomic oscillator

based clock are frequency shifted relative to their own clock, although they were send by a

clock with identical factory settings.

The only difference is the height, the vertical position of the emitting clock. They conclude

that gravity is negatively influencing the procedure of establishing a frequency gauged lattice.

When they bring their clocks next to each other, either by A going to B or B going to A, the

clocks are again absorbing each others photons, thus ensuring the frequency gauged original

situation and confirming LPI. But as soon as they move up or down again with their clocks,

photons case to be absorbed and they cannot achieve a frequency gauged global grid. This is

the situation of the experiment performed by Pound and Rebka in 1960 (Pound and Rebka,

G. A. Jr., 1960), more specific, the part prior to the application of a correcting Doppler

shift.

In order to bring some clarity to this situation we imagine a free fall grid (FFG) as the

background of the stationary lattice with observers A and B, see fig.(6). Using the conser-

vation of energy and Special Relativity we can relate the clocks A and B on the stationary

lattice to clocks on the FFG. Relativistic kinetic energy is defined as Uk = (γ−1)U0 (Rindler,

2001, p. 112), in which U0 = m0c
2 is the rest energy. Gravitational potential energy is given
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FIG. 6. Background Einstein Elevators in free fall on the CP-FFG with a foreground set of two

stationary Einstein Elevators A and B located on different P geodesics. Another foreground set is

given by the GNSS ground station E and an orbiting satellite S. The two satellites p and q will

figure in the Inter Satellite Link section. Einstein Elevators A, B and E are not in free fall on P,

the satellites S, p and q are.

by Uφ = m0Φ, with Φ as the Newtonian potential. Relative to the stationary clocks the Ein-

stein Elevator in free fall has relativistic kinetic Uk. Due to energy conservation, potential

energy and kinetic energy relate as Uk = −Uφ because the free fall started at infinity. This

results in the Lorentz boost connection between a locally passing by elevator on the FFG

and a clock on the stationary lattice as (γφ − 1)m0c
2 = −m0Φ, so one gets

γφ = 1− Φ

c2
. (8)

A passing by elevator on the FFG can always position or launch a clock from his elevator

next to a clock on the stationary lattice by such a Lorentz boost, at least momentarily. In
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the classical velocity and energy range, we have Uk = −Uφ leading to

1

2
v2
φ = −Φ ⇔ v2

φ = −2Φ (9)

On might be tempted to relate the two clocks on the stationary grid to each other through

the intermediate of clocks on the free fall grid using Eqn. (6), νb/νa = γa/γb. Eqn. (6)

howerer can’t reproduce the basic gravitational experimental facts. Eqn. (6) was obtained

with an Euclidian grid at rest with two moving clocks within Einstein Elevators, related to

the grid through the Minkoswki metric. But now we have moving clocks on the frequency

gauged grid, the CP-FFG, and clocks at rest on P-geodesics of the stationary lattice. This

reversal of roles needs careful attention. If we write νga for frequency of the clock on the

CP-grid falling by the clock at rest in A on the P-grid with frequency ν0a, relative velocity

va and relative boost γa we get

νga =
1

γa
ν0a, (10)

resulting in ν0a = γaνga. For clock B we can do the same, after which we can calculate

ν0b/ν0a as

ν0b

ν0a

=
γbνgb
γaνga

=
γb
γa
. (11)

The last step is possible because the clocks on the Free Fall Grid ν0b and ν0a are still frequency

gauged and the clocks on the stationary grid are not. This is the reversal of the situation

in the gravity free world, were clocks at rest can be frequency gauged and the clocks in

different states of motion cannot be frequency gauged. The reversal doesn’t affect applied

laws of physics but it does make the difference between Minkowski and Minkowski-EEP.

Writing ν0a as νa again, we get

Minkowski− EEP :
νb
νa

=
γb
γa

, (12)

in which the γ’s have to be interpreted as Einstein Elevator local CP-P connections.

For clocks with non relativistic virtual escape velocity in a Newtonian field of gravity, so

v2 = −2Φ, this leads to

νb
νa

=
γb
γa

=

√
1− va

c2√
1 + vb

c2

=

√
1 + 2Φa

c2√
1 + 2Φb

c2

=

√
1− 2GM

rac2√
1− 2GM

rbc2

. (13)
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This is the exact GR Schwarzschild stationary redshift (Rindler, 2001, p. 236; Carrol, 2004,

p. 217; Ohanian and Ruffini, 2013, p. 308). To first order in Φ
c2

this leads to the familiar

νb
νa
≈
(

1− Φb

c2

)(
1 +

Φa

c2

)
= 1 +

∆Φab

c2
+O(c−4). (14)

and to

∆νba
νa

=
∆Φab

c2
. (15)

When clocks A and B are close to each other relative to the distance R to the centre of

M, ∆r � r, one has

∆νba
νa

=
gh

c2
(16)

with h as the distance between the clocks A and B. As a result, the frequency of the

clock at A will be lower than the frequency of the clock B who is positioned less deep

in the gravitational field than clock A. This General Relativity prediction matched the

experimental result obtained by Pound and Rebka in 1959, in the form of a correcting

Doppler shift of this magnitude, and by others thereafter (Will, 2014).

VIII. THE FREE FALL GRID SECOND ORDER IN Φ/c2 STATIC

REDSHIFT

Now that I reproduced the exact GR-Schwarzschild results for weak field redshifts, I can

make a second order in φ/c2 red shift prediction based on the FFG approach. The FFG

second order in φ/c2 gravitational redshift between two stationary clocks at different heights

reads

νb
νa

=
γb
γa

=
1− Φb

c2

1− Φa

c2

≈
(

1 +
Φa

c2
+

Φ2
a

c4
+O(c−6)

)(
1− Φb

c2

)
= (17)

1 +
∆Φab

c2
+

Φa

c2

∆Φab

c2
+O(c−6) = 1 + (1 +

Φa

c2
)
∆Φab

c2
+O(c−6). (18)

If the the third order in φ/c2 and higher terms are omitted, given by O(c−6), one gets, after

a bit of reshuffling,

Minkowski− EEP :
∆νba
νa

= (1 +
Φa

c2
)
∆Φab

c2
(19)
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In General Relativity this is given by

νb
νa

=

√
ga00√
gb00

=

√
1 + 2Φa

c2√
1 + 2Φb

c2

≈
(

1− Φb

c2
+

3Φ2
b

2c4

)(
1 +

Φa

c2
− Φ2

a

2c4

)
= (20)

1 +
∆Φab

c2
− Φb

c2

∆Φab

c2
+

Φ2
b

2c4
− Φ2

a

2c4
+O(c−6). (21)

If again we omit the third order in φ/c2 and higher terms, given by O(c−6), and rewrite it

we get the second order GR-Schwarzschild static redshift as

GR− S :
∆νba
νa

= (1− Φb

c2
)
∆Φab

c2
+

Φ2
b

2c4
− Φ2

a

2c4
. (22)

To first order in φ/c2 the EPS-FFG approach, Eqn. (19), gives the same result as the

GR-Schwarzschild approach, Eqn. (22). This can be written as

∆νba
νa

= (1 + α)
∆Φab

c2
, (23)

with α = 0 to the first order accuracy if LPI is valid (Turneaure et al., 1983; Delva and

Lodewyck, 2013; Will, 2014; Wolf et al., 2017). Once experimental redshift tests of LPI

reach second order in φ/c2 accuracy, the deviation term has to be upgraded to second order

too, which, for the EPS-FFG approach, by writing this term as α′ results in

∆νba
νa

=
∆Φab

c2
+ (1 + α′)

Φa

c2

∆Φab

c2
, (24)

with α′ = 0 to the second order accuracy if LPI is valid. If nothing is changed in the redshift

LPI test formulation, then EPS-FFG and GR-Schwarzschild both predicts |α| ≈ 10−10. But

then this value of α 6= 0 has to be interpreted as a confirmation of LPI. To avoid confusion,

it would be better to shift to the α′ formulation of second order redshift LPI tests somewhere

the next decades.

The difference between the second order static redshift predictions of EPS-FFG and GR-

Schwarzschild might be related to the question of how weak a field of gravity actually is

when you go to second order in φ/c2 accuracy. In the EPS-FFG approach, virtual escape

velocities determine the static redshift and a shift from Newtonian kinetic energy to SR

kinetic energy seems appropriate in the second order in φ/c2 accuracy range. In the GR-

Schwarzschild approach, the static redshift has obviously nothing to do with velocity, only

with strength of gravity/curvature. In the Newtonian kinetic/gravitational escape energy

range, the two approaches are identical.
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In the PPN approach, a perturbation of the weak-field Schwarzschild metric is used for

the higher order field strengths (Castel-Branco et al., 2014), giving for g00 the second order

extension

g00 = 1 +
2Φ

c2
+ 2β

(
Φ

c2

)2

(25)

leading to a second order gravitational redshift

νb
νa

=

√
ga00√
gb00

=

√
1 + 2Φa

c2
+ 2β

(
Φa

c2

)2√
1 + 2Φb

c2
+ 2β

(
Φb

c2

)2
(26)

and to the PPN result

PPN :
∆νba
νa

= (1− Φb

c2
)
∆Φab

c2
+ (1− 2β)

(
Φ2
b

2c4
− Φ2

a

2c4

)
(27)

with β = 0 for GR-Schwarzschild.

Present day accuracy of the gravitational redshift measurements goes to α < 10−6 (Ashby

et al., 2007; Will, 2014; Wolf et al., 2017). In the following decades the accuracy of the

stationary redshift measurements should be such that α measurements are going to reach the

10−10 relative accuracy. Given the speed of development, it might even be sooner than later.

The second order terms in the gravitational redshift calculations presented above are in the

10−10 range of α and in the 10−20 accuracy range of the redshift itself. Of these calculations,

the first two are theoretical predictions. In the PPN calculation, the ‘free’ parameter β can

be adjusted to approach the measurements as close as possible. As such, the PPN approach

is the most flexible and the less predictive of the three.

IX. THE FFG CONNECTING A SATELLITE AND A GROUND STATION

In figure (6) I also depicted a GPS ground station E and a GPS satellite S. In this section

I will use our method to derive the relative frequency shift between the standard clock on

the satellite S compared to the standard clock on the ground station E. In order to do this

using eqn.(12), I need the two gamma factors, of both the ground station E and the orbiting

satellite S, relative to our free fall grid. I already used the first gamma factor in the previous

derivation: γe = 1− Φe

c2
. For the second gamma factor I will use a result already arrived at

in a previous paper. In (de Haas, 2014) I used hyperbolic relativity to derive the Lorentz

boost connection between an observer locally passing by on a free fall grid and an orbiting
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satellite. It was shown that two successive boosts could launch a satellite from the FFG

elevator into a stable orbit around M. The first boost gave the satellite an escape amount of

kinetic energy Uesc relative to the free fall elevator and the second boost, perpendicular to

the first, gave it an orbital kinetic energy Uorb. Using relativistic kinetic energy Uk one gets

γesc = 1− Φ

c2
. (28)

From the conservation of energy and the virial theorem results

γorb = 1− Φ

2c2
. (29)

Under the condition that the two boosts are perpendicular relative to each other this results

in the Lorentz boost connection between the FFG and the satellite as

γsat = γescγorb =

(
1− Φ

c2

)(
1− Φ

2c2

)
= 1− 3Φ

2c2
+

Φ2

2c4
≈ 1− 3Φ

2c2
, (30)

as has been applied, using standard hyperbolic Special Relativity, in (de Haas, 2014).

This hyperbolic addition of Lorentz boosts is based on the addition of rapidities. Given

the definition of rapidity ϕ through β = tanhϕ with β = v/c, γ = coshϕ and γβ = sinhϕ,

the Lorentz boost addition law as formulated by (Varičak, 1912) reads

cosh(ψ) = cosh(ϕ1) cosh(ϕ2) + sinh(ϕ1) sinh(ϕ2) cos(α), (31)

with the angle α as the angle between the two velocity vectors themselves. Translated to

Lorentz boosts as given by γ and β, this relativistic velocity addition rule can be written as

γψ = γϕ1γϕ2 + γϕ1βϕ1γϕ2βϕ2cos(α). (32)

When the two velocities are perpendicular, cos(α) = 0 and this reduces to γψ = γϕ1γϕ2 .

Now that the hyperbolic part of Eqn. (30) has been justified we can combine Eqn. (12)

and Eqn. (30) to get

νs
νe

=
γs
γe

=
1− 3Φs

2c2
+ Φ2

s

2c4

1− Φe

c2

≈ (33)(
1 +

Φe

c2
+

Φ2
e

c4
+O(c−6)

)(
1− 3Φs

2c2
+

Φ2
s

2c4

)
= (34)

1 +
∆Φes

c2
− Φs

2c2
+

Φe

c2

(
∆Φes

c2
− Φs

2c2

)
+

Φ2
s

2c4
+O(c−6) = (35)

1 +

(
1 +

Φe

c2

)(
∆Φes

c2
− Φs

2c2

)
+

Φ2
s

2c4
+O(c−6). (36)
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If we omit the third order in φ/c2 and higher terms, given by O(c−6), and rewrite it we get

∆νse
νe

=

(
1 +

Φe

c2

)(
∆Φes

c2
− Φs

2c2

)
+

Φ2
s

2c4
. (37)

For future developments of relativistic GNSS based experiments and applications in second

order in φ/c2 accuracy range, Eqn. (37) is the relevant falsifiable/verifiable prediction of this

paper. It can be compared to Eqn. (26) of (Jaffe and Vessot, 1976), a PPN second order

redshift prediction. They proposed to measure this second order gravitational redshift by

tracking a satellite in a highly eccentric orbit around the sun while comparing its frequency

with an identical clock on earth (Jaffe and Vessot, 1973).

We can approximate Eqn. (37) even further, to first order in Φ/c2, to get

∆νse
νe

=
∆Φes

c2
− Φs

2c2
(38)

Classically, in the Newtonian low velocity situation and the virial theorem, the last term

gives the kinetic energy. In terms of the Lagrangian L = UK − UΦ and atomic oscillator

rest-mass m0, we get
∆νse
νe

=
m0∆Φes

m0c2
+

1
2
m0v

2
s

m0c2
=
Ls − Le
U0

, (39)

assuming that all clocks are produced identically and use the same atomic oscillator as their

core. The almost non-relativistic velocities and the weak fields explains the appearance of the

classical mechanical Lagrangian in the first order in Φ/c2 relativistic redshift approximation.

We thus have for the satellite-earth frequency difference

∆νse
νe

=
∆Lse
U0

. (40)

The result of Eqn. (38) is the basic relativistic correction used in GNSS clock frequencies,

with the first as the gravity effect or gravitational potential correction and the second as the

velocity effect or the correction due to Special Relativity (Ashby, 2002; Hećimović, 2013;

Delva and Lodewyck, 2013).

These first order in Φ/c2 effect of height and velocity produce ∆νes
νe
≈ 10−10, creating an

accumulative clock-drift of about 40 µs/day (Ashby, 2003; Bahder, 2003). This makes it

relevant for todays GNSS. The additional second order effect is in the order of ∆νse
νe
≈ 10−20.

Todays precision clocks reach a relative accuracy of 10−17. The gravitational redshift in the

ACES/PHARAO experiment, which compares clock on the ISS with ground station clocks,
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is expected to measure the absolute redshift such that the constraint on α wil be improved

by a factor 45 compared to the GP-A experiment, resulting in |α| ≈ 3 · 10−6. The accuracy

of the spaceborne and ground clocks used in the ACES/PHARAO experiment in order to

reach this expected accuracy is about 10−16 (Wolf et al., 2017). Thus, in order for direct

measurement of the relative frequency shift due to second order in Φ/c2 contribution to

the ordinary redshift, clocks with an accuracy of 10−20 are needed. Given the fact that

clocks are improved by a factor 10 every decade (Delva and Lodewyck, 2013), and that such

experiments take a decade of preparation time, it might still take four decades before second

order effect become directly measurable. But accumulative effects in clock drift will speed

up the relevancy for GNSS practices. In the analysis of (Delva and Lodewyck, 2013), clock

accuracies of 10−19 will make it necessary to include c−4 terms.

X. THE FFG CONNECTION BETWEEN TWO ORBITING SATELLITES

In the GNSS research community, the inter-satellite link (ISL) is a promising topic,

a technique for enhancing GNSS reliability and integrity (Xie, 2016). In our EPS-FFG

approach we can calculate the second order accuracy ISL. Given the exact FFG to satellite

or CP-P connection as used in the previous section,

γsat = γescγorb = 1− 3Φ

2c2
+

Φ2

2c4
, (41)

we can also connect two satellites p and q to second order accuracy.

νp
νq

=
γp
γq

=
1− 3Φp

2c2
+

Φ2
p

2c4

1− 3Φq

2c2
+

Φ2
q

2c4

≈ (42)(
1 +

3Φq

2c2
+

7Φ2
q

4c4

)(
1− 3Φp

2c2
+

Φ2
p

2c4

)
= (43)

1 +
3∆Φqp

2c2
+

3Φq

2c2

(
3∆Φqp

2c2

)
+

Φ2
p

2c4
−

Φ2
q

2c4
= (44)

1 +

(
1 +

3Φq

2c2

)(
3∆Φqp

2c2

)
+

Φ2
q

2c4
−

Φ2
p

2c4
(45)

We can rewrite this as:

FFG− ISL :
∆νpq
νp

=

(
1 +

3Φq

2c2

)(
3∆Φqp

2c2

)
+

Φ2
p

2c4
−

Φ2
q

2c4
(46)
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For future developments of relativistic GNSS, this is our CP-P second order satellite to

satellite, ISL, relativistic redshift prediction. As for its possible relevance, it is technically

unavoidable that in the not to near future, both the GPS local P-grid and the Galileo local P-

grid will become independent self-gauged P-grids. Eqn. (46) then gives a verifiable/falsifiable

prediction regarding their frequency shift connection.

Now, let q be the satellite on the lower P geodesic and p the satellite in the higher

one. The energy formulation of the CP-P redshift, which integrates the relativistic velocity

and the relativistic gravity for the second order in Φ/c2 and v2/c2 satellite-satellite redshift,

includes all the simpler situations. We will use V = UΦ and K = Uk for potential and kinetic

energy respectively. Given the factory assemblage of all clocks, we assume mp = mq = 1

and set c = 1. Using this, Eqn. (46) becomes

psat − qsat :
∆νpq
νp

= (1 + Vq −Kq) (∆Vqp −∆Kqp) + 2(K2
q −K2

p). (47)

The situation with satellite and earth ground station is given by taking away the kinetic

energy of q:

psat − qearth :
∆νpq
νp

= (1 + Vq) (∆Vqp +Kp)− 2K2
p . (48)

The situation with an earth ground station at a higher location and another at a lower

location is then given by taking away the kinetic energy of the other satellite:

pearth − qearth :
∆νpq
νp

= (1 + Vq) (∆Vqp) . (49)

We can also go to first order in V accuracy for all three situations by removing the term in

the first bracket and the end terms:

psat − asat :
∆νpq
νp

= ∆Vqp −∆Kqp; (50)

psat − qearth :
∆νpq
νp

= ∆Vqp +Kp; (51)

pearth − qearth :
∆νpq
νp

= ∆Vqp. (52)

This concise formulation in terms of energies sums up the redshift result of the CP-P EPS-

FFG approach of this paper, including both kinematic and gravitational relativistic (time

dilated) redshifts terms in an integrated way. In first order in V accuracy, the symmetry

has a strong Lagrangian L = K−V signature, especially in the satellite to satellite, or inter

satellite link (ISL), relativistic redshift. In the second order in V accuracy, this Lagrangian
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signature is partially lost and in higher order in V accuracy this deviation from a nice

Lagrangian signature increases. First order in V accuracy Eqn. (50) and the next two can

be bunched into
∆νpq
νp

=
∆Lpq
U0

, (53)

in which we dropped the simplification of U0 = 1 and assumed the Lagrangian to be the

classical L = K − V .

XI. EXTENDING THE SCHWARZSCHILD METRICS REACH USING

THE FFG CONNECTION.

With the FFG approach based on Special Relativity, the Einstein Equivalence Principle

and Newton’s gravitational potential, first order correct expressions for the gravitational red

shift of stationary clocks and of satellites were derived. The second order FFG frequency

shift expressions are discussion points, falsifiable/verifiable predictions. In (de Haas, 2014)

the geodesic or de Sitter precession was derived using the same method of a free fall grid.

So independent of GR and Schwarzschild, only in the EPS Weyl Space CP-P or FFG envi-

ronment, curvature effects were correctly derived. Conceptually it was possible to split the

end result of the geodesic precession in a Schouten precession part and a Thomas precession

part, with the first interpreted as the space-like contribution and the second as the time-like

contribution (de Haas, 2014). This implies that the FFG approach covers both space-like

curvature effects and time-like curvature effects, thus both the g11 and the g00 effects of GR-

Schwarzschild. During the development of the FFG method, GR-Schwarzschild provided

indispensable guidance, for the precession of the previous paper as for this papers frequency

shifts.

The connection between the P and the CP geodesics in EPS Weyl space lead to the

Schwarzschild frequency shift g00 metric parameter. From the FFG resuls, Eqn. (13) and

Eqn. (20), together as

νb
νa

=
γb
γa

=

√
1− va

c2√
1 + vb

c2

=

√
1 + 2Φa

c2√
1 + 2Φb

c2

=

√
1− 2GM

rac2√
1− 2GM

rbc2

=

√
ga00√
gb00

, (54)

we conclude that
√
g00 = 1/γφ to first order in φ/c2 series expansion. In this expression,

γφ is determined by the r dependent free fall velocity on the CP geodesic at the location of
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the relevant P geodesic. Then also g00 = 1/γ2
φ in the first order to γφ escape velocity and

gravitational energy range. Which suggests that the Schwarzschild metric or solution to the

Einstein Equations might not be best suited for second order and higher in Φ/c2 accuracy.

If the EPS claim, as repeated by (Capozziello et al., 2012), that the Ehlers-Pirani-Schild

formalism provides a natural interpretation of the observables showing how relate them to

General Relativity and to a large class of Extended Theories of Gravity is of any value, then

it should be allowed to try to phenomenologically and constructively extend the reach of

the Schwarzschild metric based on the P to CP approach. The EPS Weyl space formalism

should then be able to translate, or at least relate, the extension of the Schwarzschild

metric to Riemann space and eventually to the Einstein Equations. So what I do next is to

phenomenologically guess a (stronger field of gravity extension of the) Schwarzschild metric

that would fully match with the EPS Weyl Space P-CP environment I have set up in this

paper. The leading question is what the form of the Schwarzschild metric had to be if the

Schwarzschild result were to match the FFG to higher order of accuracy in Φ/c2. I have no

claims at all regarding the result of the hypothetical exercise, other than that such a form

of g00 (and coupled g11) would give the same gravitational redshift predictions as the FFG.

This result can be compared to the PPN perturbation of g00 as for example in (Kopeikin,

2009; Castel-Branco et al., 2014).

With g00 = 1/γ2
φ to first order in φ/c2 series expansion and also γφ = 1 − Φ/c2 to any

order, the conditions can be relaxed a little in order to see what happens when the first

order restriction on g00 = 1/γ2
φ are dropped. This would give

g00 =
1

γ2
φ

=
1(

1− φ
c2

)2 =
1(

1 + M
r

)2 , (55)

with G = c = 1 at the end right hand side. The Taylor series expansion results in

g00 =
1(

1 + M
r

)2 = 1− 2M

r
+ 3

M2

r2
+O(

M3

r3
) (56)

to get back to the Schwarzschild metric in two steps, starting with the second order as

g00 = 1− 2M

r
+ 3

M2

r2
(57)

and then to first order as

g00 = 1− 2M

r
. (58)
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With
√
g00 =

√
1− 2M

r
+ 3

M2

r2
(59)

constructed this way one would evidentially have equal gravitational redshifts to second

order in φ/c2 accuracy.

In (Ruggiero et al., 2008) the Schwarzschild metric is given in polar coordinates as

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2θdφ2), (60)

with the usual G = c = 1. Using the above for g00 one will get the unlimited field strength

extension of the Schwarzschild metric as

ds2 = − 1(
1 + M

r

)2dt
2 +

(
1 +

M

r

)2

dr2 + r2(dθ2 + sin2θdφ2). (61)

I apply the interpretation(
1 +

M

r

)2

=
1
1

(1+M
r )

2

≈ 1

1− 2M
r

+ 3M
2

r2
+O(M

3

r3
)

(62)

to get full symmetry in the series expansion approximation. In the second order in φ/c2 this

would result in the metric

ds2 = −
(

1− 2M

r
+ 3

M2

r2

)
dt2 +

(
1− 2M

r
+ 3

M2

r2

)−1

dr2 + r2(dθ2 + sin2θdφ2), (63)

This will then lead to a second order static redshift that evidently matches our second order

redshift. Which was the sole goal of this exercise. When Eqn. (57) is combined with the

method behind Eqn. (25), we get

g00 = 1− 2M

r
+ 3β

M2

r2
(64)

with β = 1 for the FFG based extended SR-Schwarzschild metric.

The big question for the next decades will be if the Schwarzschild metric as exact solution

of the Einstein Equations is going to withstand the second order in φ/c2 accuracy tests of the

gravitational redshift. If not, will the proposed theoretical results of this paper be verified?

Perhaps the PPN formalism, smartly extending the reach of the Schwarzschild metric by

perturbation methods as in (Kopeikin, 2009; Castel-Branco et al., 2014), will produce the

correct results.
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XII. CONCLUSION

Given the future task of designing GNSS 2.0 in the 0.1 mm accuracy range, some compe-

tition among the fundamental theorists couldn’t hurt. If all fundamental theoretical research

in this area is to be in the GR-Schwarzschild paradigm or not to be and the attempts to inte-

grate a robust GNSS into this paradigm fail, then you have a problem. It might even be that

future GNSS second order tests prove the GR-Schwarzschild predictions to be inadequate

for second order accuracy,

The alternative PPN approach, although highly flexible and with an excellent perfor-

mance track, isn’t fundamental by itself. PPN is designed to adapt to any fundamental

(=metric) theory of gravity. It can only become accurate itself after enough measurements

are available to fix the PPN parameters to useful values, so after a test-version of GNSS 2.0

is operational.

It is my opinion that the pragmatic version of the EPS Weyl Space approach, as developed

in this paper in a Minkowski-EEP environment, might be an intermediate stage in the

fundamental research efforts towards GNSS 2.0. The advantage of my approach is that it

works with an easily imaginable global grid of free fall clocks instead of a highly abstract

global curved metric as its background. The conceptual language used to present the global

grid approach is highly compatible with the language of today’s GNSS 1.0.

The FFG approach is not an alternative but an intermediate theory of gravity, as are all

Minkwoski-EEP approaches. The motivation behind most of the Minkowski-EEP investiga-

tions is to produce conceptual anchor points and arguments for a subsequent or a forgoing

(as is usually the case) fully curved metric theory of gravity. The EPS Weyl space analysis

might provide a link between the FFG approach and GR.

As for alternative theories of gravity, as for example the f(R) theories as explored in the

already cited (Castel-Branco et al., 2014), I couldn’t find alternative approaches towards a

relativistic GNSS design in first order accuracy, so let alone in the second order accuracy

range.
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