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Abstract:  Dirac’s seminal 1928 paper “The Quantum Theory of the Electron” is the foundation 

of how we presently understand the behavior of fermions in electromagnetic fields, including their 

magnetic moments.  In sum, it is, as titled, a quantum theory of individual electrons, but in classical 

electromagnetic fields comprising innumerable photons.  Based on the electrodynamic time 

dilations which the author has previously presented and which arise by geometrizing the Lorentz 

Force motion, there arises an even-richer “hyper-canonical” variant of the Dirac equation which 

reduces to the ordinary Dirac equation in the linear limits.  This advanced Dirac theory naturally 

enables the magnetic moment anomaly to be entirely explained without resort to renormalization 

and other ad hoc add-ons, and it also permits a detailed, granular understanding of how individual 

fermions interact with individual photons strictly on the quantum level.  In sum, it advances Dirac 

theory to a quantum theory of the electron and the photon and their one-on-one interactions.  Six 

distinct types of experimental tests are proposed. 
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PART I:  GAUGE SYMMETRY, TIME DILATION, AND THE ENERGY 

CONTENT OF MATERIAL BODIES IN CLASSICAL 

ELECTRODYNAMICS 
 

1.  From Minkowski Spacetime to Electromagnetic Interactions using Weyl’s 

Local U(1) Gauge Symmetry:  A Compact Review of the Known Physics 

 

 The modern concept of spacetime originated when Hermann Minkowski in his seminal 

paper [1] based on the Special Theory of Relativity [2], famously proclaimed that “from now 

onwards space by itself and time by itself will recede completely to become mere shadows and 

only a type of union of the two will still stand independently on its own.”  Following the advent 

of General Theory in [3], the invariant interval 2 2 2 2 2c t x y z− − −  Minkowski discovered became 

expressed via an infinitesimal metric line element 
2 2

c d dx dx
µ ν

µντ η=  with a metric tensor 

( ) ( )diag 1, 1, 1, 1µνη = − − −  named for him.  Moreover, it became understood that gravitational 

fields reside in a curved spacetime metric tensor gµν  to which µνη  defines the tangent space at 

each spacetime event, with a line element 
2 2

c d g dx dx
µ ν

µντ =  specified according to Riemannian 

geometry which one of Gauss’ preeminent students had been developed half a century earlier. 

 

 The equation 
2 2

c d g dx dx
µ ν

µντ =  for the proper time line element dτ  is often written in a 

number of different, albeit mathematically equivalent ways.  For example, if one divides through 

by 2dτ  and defines (“ ≡ ”) a four-velocity /u dx dµ µ τ≡  this equation becomes 
2c g u uµ ν

µν= .  By 

absorbing the spacetime indices into these vectors and writing 2c u uσ
σ= , we see that the squared 

four-velocity is equal to the squared speed of light.  Further, if we postulate some material mass m 

and multiply the foregoing through by 2m , also defining an energy-momentum vector 

( )/ / ,p mu mdx d E cµ µ µ τ= = = p , we arrive at 
2 2m c g p p p pµ ν σ

µν σ= = , well-known as the 

relativistic energy momentum relation. 

 

 A next step often taken is to write down a complex function ( )exp /s ip xσ
σφ = − ℏ  where 

( )s pν  is a function of energy-momentum and ( )exp ip xσ
σ−  is the kernel used in Fourier 

transforms between momentum space and configuration space.  Using  being the spacetime 

gradient operator ( ) ( )/ , / / ,tc t cµ∂ = ∂ ∂ ∂ ∂ = ∂x ∇  it is easy to see that i pµ µφ φ∂ =ℏ .  As a result, 

starting with 2 2m c p pσ
σ=  and multiplying through from the right by φ , it is straightforward to 

form the operator equation ( )2 2 20 m cσ
σ φ= ∂ ∂ +ℏ , better-known as the Klein-Gordon equation for 

a free (non-interacting) particle. 

 

 It is also easy to see that by taking a simple scalar square root one can obtain the linear 

energy-momentum relation mc g p p
µ ν

µν= ± , or mc p p
µ ν

µνη= ±  in flat spacetime.  But Dirac 

found in [4] that there exists an operator equation in flat spacetime – essentially a square-root of 
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the Klein-Gordon equation – that uses a set of 4x4 matrices 
µγ  defined such that 

{ }1
2

µ ν ν µ µνγ γ γ γ η+ ≡ .  First we write { }2 2 1
2

m c p p p pµν µ ν ν µ µ ν
µ νη γ γ γ γ= = + .  Then we observe 

that ( ) ( ) ( ) ( )( ) { }2
1
2

p p p p p p p p p
µ µ ν ν µ µ ν ν µ µν

µ µ ν ν µ µ ν µ νγ γ γ γ γ γ γ γ γ η= = = + = .  Therefore, 

p p p
µν µ

µ ν µη γ± = .  However, in order to connect this with mc p p
µ ν

µνη= ±  two adjustments 

are required.  First, because pµ
µγ  is a 4x4 matrix, the mass term mc  needs to be formed into mc  

times a 4x4 identity matrix 4 4I × , which is implicitly understood, not explicitly shown.  Second, 

because 4 4mcI ×  is a diagonal matrix while pµ
µγ  cannot be diagonalized, simply equating 

p mcµ
µγ =  is mathematically nonsensical.  Instead, we form a four-component Dirac spinor 

( )u pν  and multiply from the right to obtain ( ) 0p mc uµ
µγ − = .  This makes mathematical sense 

as an operator equation with eigenvectors and eigenvalues.  Note also that the ±  sign, which results 

whenever a square-root is taken, gets absorbed into the components of µγ , all of which are 1± or 

i±  with an balanced number of positive and negative entries.  Further, similar to Klein-Gordon 

equation above, we write down a four-component spinor function  ( )exp /u ip xσ
σψ = − ℏ , deduce 

that i pµ µψ ψ∂ =ℏ , and so may write ( ) 0i mcµ
µγ ψ∂ − =ℏ  which is Dirac’s equation for a non-

interacting fermion, e.g. electron in a configuration space.   

 

 Dirac’s equation as developed above applies within a flat spacetime.  To generalize to 

curved spacetime, thus to gravitation, we first define a set of µΓ  having a parallel definition 

{ }1
2

gµ ν ν µ µνΓ Γ + Γ Γ ≡ .  We also establish a vierbein, a.k.a. tetrad 
aeµ , with both a superscripted 

Greek “spacetime/world” index and an early-in-the-alphabet subscripted Latin “Lorentz/ 

Minkowski” index, and define the tetrad by the relation a

aeµ µγ ≡ Γ .  Consequently we deduce that 

{ }1
2

a b b a ab

a b a b
g e e e eµν µ ν µ νγ γ γ γ η= + = .  It is readily seen that the flat spacetime g µν µνη=  and 

µ µγΓ =  are obtained when 1aeµ =  along the aµ =  diagonal and zero otherwise, i.e., when 
aeµ  is 

a 4x4 unit matrix.  Then, starting with mc g p pµ ν
µν= ±  we follow the exact same steps as in the 

previous paragraph, ending up with ( ) 0p mc uµ
µΓ − =  in momentum space and 

( ) 0i mcµ
µ ψΓ ∂ − =ℏ  in configuration space.   

 

 However, in curved spacetime, in order to couple the spinor fields ψ  to gravity in a 

generally-covariant manner, we must also advance µ∂  to a spin-covariant derivative 

4

abi
abµ µ µ µω σ∂ ∇ ≡ ∂ −֏ , where a spin connection 

ab ba

β βω ω= −  which is antisymmetric in the 

Lorentz indexes a, b  is defined using the gravitational-covariant derivative of beν  by 

( );

ab a b a b be e e e eν ν ν σ
µ ν µ ν µ σµω ≡ ∂ = ∂ + Γ , and where [ ]2

i
a bab b aγ γ γ γσ ≡ −   are the bilinear covariants 

which in the form of µνψσ ψ  contain the fermion polarization and magnetization bivectors.  The 

extra term 
4

abi
abµω σ−  also makes its way back into the momentum space Dirac equation which 
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thereby becomes ( )( )4
0abi

abp mc uµ
µ µω σΓ − − = .  The foregoing may all be thought of as 

equivalent albeit progressively-richer and more-revealing ways of writing the spacetime geometry 

metric interval 
2 2c d g dx dxµ ν

µντ = . 

 

 In §9 of [3], one of the most important findings was not only that  gravitation could be 

reduced to pure geometry based on a spacetime metric, but, in a phrase later coined by Wheeler 

[5], that the resulting theory was a theory of “geometrodynamics.”  Specifically, for a finite proper 

time 
B

A
dτ τ=   between any two events A and B, the lines 0

B

A
dδ τ=   of minimized variation are 

the geodesics of motion.  Moreover, this equation of motion has been shown for over a century 

without empirical contradiction to describe gravitational motion.  This calculation again begins 

with 
2 2c d g dx dxµ ν

µντ = , now divided through by 2 2c dτ  and turned into the number: 

 

1
dx dx

g
cd cd

µ ν

µν τ τ
= . (1.1) 

 

Next, taking the scalar square root of this “1” enables us to write the variational equation as: 

 

( )0 1
B B B

A A A

dx dx
d d d g

cd cd

µ ν

µνδ τ δ τ δ τ
τ τ

= = =   , (1.2) 

 

where the ±  sign which attends to taking a square root may be discarded because of the zero on 

the left-hand side above.  Then, using a well-known calculation reviewed in Appendix A because 

we shall shortly derive the Lorentz Force motion of classical electrodynamics in a similar way, 

one is able to derive the equation of motion (A.14), reproduced below: 

 
2

2

d x dx dx

d d d

β
µ

ν

ν

β µ

τ τ τ
= −Γ . (1.3) 

 

Given that (1.3) is derived when (1.2) is applied to the spacetime metric 
2 2c d g dx dxµ ν

µντ =  merely 

divided through by 2 2c dτ  in the form of (1.1), it is not uncommon to regard 
2 2c d g dx dxµ ν

µντ =  

as the first integral of this equation of motion.  So once again, we arrive at an even-richer 

understanding of the simple metric 
2 2c d g dx dxµ ν

µντ =  for curved spacetime geometry.  And this 

now brings us to electrodynamics. 

 

 During the course of just over a decade, Hermann Weyl in [6], [7], [8] convincingly 

demonstrated that electromagnetism is a gauge theory based on a local U(1) internal symmetry 

group.  The underlying principle of gauge symmetry is that the equations of physics – such as the 

Dirac equation or the Klein-Gordon equation or their respective Lagrangian densities – must 

remain invariant under transformations in a complex phase space defined by 

( )exp cos sini iΛ = Λ + Λ  where ( ),tΛ x  is a locally-variable phase angle.  Specifically, we require 
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any physics equations containing a generalized function ϕ  to be symmetric under a local 

transformation ( )exp iϕ ϕ ϕ′→ ≡ Λ  which changes the direction but not the magnitude of the 

function in the phase space.  However, because ( )( )exp i iµ µ µ µϕ ϕ ϕ′∂ → ∂ = Λ ∂ + ∂ Λ  violates this 

symmetry, we are required to define a gauge-covariant derivative µD  which likewise transforms 

as ( )exp iµ µ µ′→ ≡ ΛD D D .  So we introduce a vector gauge field Aµ  and a charge q fashioned into 

/iqA cµ µ µ≡ ∂ − ℏD .  Now ( ) ( )exp /i i qA cµ µ µ µ µϕ ϕ ϕ ′→ = Λ ∂ − − ∂ Λ ℏD D .  Along with this, if 

we define qA qA qA cµ µ µ µ′→ ≡ + ∂ Λℏ  as the transformation for the gauge field, then the µ∂ Λ  terms 

will cancel, so ( ) ( )exp / expi iqA c iµ µ µ µ µϕ ϕ ϕ ϕ′  → = Λ ∂ − = Λ ℏD D D  is also redirected in the 

phase space just like ( )exp iϕ ϕ ϕ′→ ≡ Λ , exactly as required.  Note, in the above we adopt a 

convention where q is a positive charge.  So for an electron, for example, we would set q e= − .   

 

 Then, armed with /iqA cµ µ µ≡ ∂ − ℏD , we merely substitute µ µ∂ ֏ D  into any physics 

equation containing µ∂  operating on a general function ϕ , and are assured this equation will have 

a local U(1) gauge symmetry.  So for Dirac’s equation operating on ϕ ψ= , in flat spacetime where 

; 0beν
µ∂ =  thus 0ab

µω =  and µ µ∇ = ∂  we substitute /iqA cµ µ µ µ∂ ≡ ∂ −֏ ℏD  for the spin-

covariant derivative to obtain ( ) ( )( )0 /i mc i qA c mcµ µ
µ µ µγ ψ γ ψ= − = ∂ + −ℏ ℏD .  For the Klein-

Gordon equation we obtain ( ) ( ) ( )( )2 2 2 2 2 20 / /m c iqA c iqA c m cσ σ σ
σ σ σφ φ= + = ∂ − ∂ − +ℏ ℏ ℏ ℏD D  

by doing the same with ϕ φ= .  Empirical evidence for almost a century has established these to 

be correct equations for interacting fermions and bosons, with q being a physical electric charge 

and Aµ  being a physical electromagnetic vector potential.  In fact, if we subject a generalized 

gauge potential Gµ  with related charges g to a gauge transformation ( )expG G i Gµ µ µ′→ ≡ Λ  and 

likewise require invariance of the field strength F G Gµν µ ν ν µ= ∂ − ∂  under this transformation, we 

can even obtain [ ] , /F G G G ig G G cµν µ ν ν µ µ ν µ ν = − = ∂ −   ℏD D  using this heuristic prescription 

µ µ∂ ֏ D  with /igG cµ µ µ≡ ∂ − ℏD .  This application of local gauge symmetry to gauge fields 

themselves, will be recognized to now yield a non-Abelian Yang-Mills [9] field strength such as 

that of SU(2)L weak and SU(3)QCD strong interactions.  

 

 From here we backtrack from configuration to momentum space via the relation 

i pµ µϕ ϕ∂ =ℏ  for an ordinary derivative operating on a function ϕ  containing the Fourier kernel 

( )exp ip xσ
σ− .  Consequently, using ( )exp /u ip xσ

σψ = − ℏ  then removing the kernel, Dirac’s 

equation becomes ( )( )/ 0p qA c mc uµ
µ µγ + − =  in flat spacetime, we reveals the electron 

magnetic moment, see, e.g., section 2.6 of [10].  Likewise, using ( )exp /s ip xσ
σφ = − ℏ  and then 

removing the kernel, the Klein-Gordon equation becomes 

( ) ( )( )2 20 / /p qA c p qA c m c sσ σ
σ σ= + + − .  Here, however, because there are no µγ  matrices, 
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( )s pν  may be removed, and we end up with a mathematically perfectly sensible equation  

( ) ( )2 2 / /m c p qA c p qA cσ σ
σ σ= + + .  Defining a gauge-covariant or “canonical” momentum 

/p qA cµ µ µπ ≡ + , this is compactly written as 2 2m c σ
σπ π= , and is simply the relativistic energy-

momentum relation 
2 2m c p pσ

σ=  generalized via local U(1) gauge symmetry to encompass a test 

charge q with mass m within a vector potential Aσ .  From this we see that in momentum space in 

flat spacetime, requiring local U(1) gauge symmetry leads to a prescription pµ µπ֏ , which is 

the momentum-space parallel to the configuration space prescription  µ µ∂ ֏ D .  So in momentum 

space Dirac’s flat spacetime equation becomes ( ) 0mc uµ
µγ π − =  and the relativistic energy 

momentum relation underpinning the Klein-Gordon equation becomes 2 2m c σ
σπ π= . 

 

 Taking a closer look at the relation 2 2m c σ
σπ π=  with /p qA cµ µ µπ ≡ + , we may write: 

 

( )
2

2 2

2

qA qA q q
m c p p p p A p p A A A

c c c c

σ
σ σ σ σ σ σσ

σ σ σ σ σ σπ π   = = + + = + + +  
  

. (1.4) 

 

In the above we have avoided commuting pσ  with Aσ  to combine the mixed terms A p p Aσ σ
σ σ+  

into 2A pσ
σ  or 2 p Aσ

σ .  This is because ( ),Aσ φ= A  is a function of the spacetime coordinates

( ),x ctµ = x  while ( )/ ,p E cσ = p  is an energy momentum vector.  So when we treat position and 

momentum as Heisenberg operator matrices we cannot commute x and p without exercising care, 

because of the canonical relation ,
i j ij

p ix δ  = ℏ .  Likewise, because the Hamiltonian operator H  

has energy eigenvalues ( )2H s E mc s= −  when operating on a state vector s , the Heisenberg 

Equation of motion ,
t t

H A i d A i Aν ν ν  = − + ∂  ℏ ℏ  (take careful note of the total versus partial 

derivatives) also requires us to exercise care when we commute 0cp E=  with 0A φ=  whenever 

fixed-basis state vectors s  and field operators φ  are involved.  So to combine terms in (1.4) to 

show, say, 2A pσ
σ  while not ignoring Heisenberg commutation, we may make use of the 

commutator ,p A p A A pσ σ σ
σ σ σ  = −   to identically rewrite (1.4) as: 

 
2

2 2

2
2 ,

qA qA q q q
m c p p p p A p p A A A

c c c c c

σ
σ σ σ σ σ σσ

σ σ σ σ σ σπ π     = = + + = + + +      
. (1.5) 

 

Then, if we choose to approximate around these commutation issues and thereby set , 0p Aσ
σ  =   

which amounts to taking a classical 0→ℏ  limit, (1.5) easily reduces to: 

 
2

2 2

2
2

qA qA q q
m c p p p p A p A A

c c c c

σ
σ σ σ σ σσ

σ σ σ σ σπ π   = = + + = + +  
   

. (1.6) 
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 All of the foregoing is well-known, well-established, empirically-validated physics.  Now, 

however, continuing deductively from the above, we shall uncover some equally-valid new 

relations and new physics which do not appear to be known to date.  At the outset we will work 

from the classical approximation (1.6) in which we have set , 0p Aσ
σ  =   and thus effectively set 

0=ℏ .  Later, after sufficient development in section 7, we will shift over and work from (1.5) to 

fully account for the quantum mechanics of the commutation ,p Aσ
σ   , and thereby will be able 

to see precisely how quantum mechanics alters the classical results we shall obtain from (1.6). 

 

2.  Derivation of Geodesic Lorentz Force Motion from Local U(1) Gauge 

Symmetry 

 

 Starting with the classical 0→ℏ  relation (1.6), let us use the definitions p muµ µ≡  for the 

ordinary energy-momentum and /u dx dµ µ τ≡  for the 4-velocity to write (1.6) as: 

 
2 2

2 2 2 2

2 2
2 2

dxqm q dx qm dx q
m c m u u A u A A m A A A

c c d d c d c

σ σ
σ σ σ σ σσ

σ σ σ σ σ σπ π
τ τ τ

= = + + = + + . (2.1) 

 

Then, continuing to backtrack, we divide the above through by 2 2m c  and also raise an index to 

show the metric tensor in the first term after the final equality.  We thereby obtain: 

 
2

2 2 2 4
1 2

dx dx q dx q
g A A A

mc cd cd mc cd m c

σ µ ν σ
σσ

µν σ σ
π π

τ τ τ
= = + + . (2.2) 

 

The above is identical to (1.1) unless both 0q ≠  and 0Aσ ≠ .  That is, unless we have both a test 

charge with a charge-to-mass ratio /q m , and also a potential Aσ  with which that test charge is 

interacting, (2.2) is the same as (1.1).  This using (2.2) with either 0q =  or 0Aσ =  in the 

variational equation (1.2) will produce the gravitational geodesic motion of (1.3). 

 

 This raises the question whether using (2.2) with both 0q ≠  and 0Aσ ≠  in the variation 

0
B

A
dδ τ=   as in (1.2) might produce the Lorentz Force motion of electrodynamics together with 

the gravitational motion.  In other words, (2.2) raises the question whether the combined classical 

gravitational and electromagnetic motions can both be derived as geodesic motions from a 

variation using (2.2), which, as is easily seen, is just 2 2m c σ
σπ π=  from (1.6) divided through by 

through by 2 2m c . And (1.6) of course, is in turn merely the relativistic energy-momentum relation 
2 2m c p pσ

σ=  following application of the pµ µπ֏  prescription which comes about by requiring 

Weyl’s local U(1) gauge symmetry.  And 
2 2m c p pσ

σ=  is in turn just another way of representing 

the metric 
2 2c d g dx dxµ ν

µντ =  once a rest mass m has been postulated and the metric multiplied 

through by 2 2/m dτ  while lowering an index.  So all roads lead back to 
2 2c d g dx dxµ ν

µντ = . 
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 To prove that the electrodynamic Lorentz Force motion can be understood as geodesic 

motion just like gravitational motion, as we did at (1.1) to (1.3), we first take the square root of the 

“1” in (2.2) and use it in the variational equation, to write the following, in contrast to (1.2): 

 

( )
2

2 2 4
0 1 2

B B B

A A A

dx dx q dx q
d d d g A A A

cd cd mc cd m c

µ ν σ
σ

µν σ σδ τ δ τ δ τ
τ τ τ

= = = + +   . (2.3) 

 

We then apply δ  to the integrand and use (2.2) to remove the denominator, obtaining: 

 
2

2 2 4

1
0 2

2

B B

A A

dx dx q dx q
d d g A A A

cd cd mc cd m c

µ ν σ
σ

µν σ σδ τ τδ
τ τ τ

 
= = + + 

 
  . (2.4) 

 

The first of the three terms corresponds with (A.1) which leads to gravitational motion.  So we 

segregate that term right away, then apply (A.12) which is directly derived from (A.1), to obtain: 

 

( )
2

2 2

2

2 2 4

1
0

2

2

B B

A A

B

A

dx dx d x
d d g g g

cd cd c d

q dx q
d A A A

mc cd

x

c

g

m

µ ν ν

µ να ν αµ
α

α µν αν

σ
σ

σ σ

δ τ τ
τ τ

δ
τ

τδ
τ

 
= = −∂ − ∂ − 

 

 
+ + 

 

∂ 



. (2.5) 

 

Because ( )1
2

g g ggβ
µν α µ

βα
µ να ν αµν−Γ = − ∂∂ − ∂ , we see that the gravitational motion (A.14) i.e. 

(1.3) is already contained in the top line above.  So now let’s develop the bottom line which 

contains the additional electrodynamic terms added by the U(1) gauge symmetry via the parallel 

configuration and momentum space rules µ µ∂ ֏ D  and pµ µπ֏  reviewed in section 1. 

 

 For the bottom line of (2.5) we first distribute δ  using the product rule, and assume no 

variation in the charge-to-mass ratio i.e. that ( )/ 0q mδ =  over the path from A to B, thus finding: 

 

( )

( )

2

2 2

2

2 2 2 4

1
0

2

2

B B

A A

B

A

dx dx d x
d d g g g

cd cd c d

q dx q d

x g

x q
d A A A A

mc cd mc cd m c

µ ν ν

µ να ν αµ αν

σ σ
σ

σ σ σ

α
α µνδ τ τ

τ τ τ

τ δ δ δ
τ τ

δ  
= = −∂ − ∂ − 

 

 
+ + +



∂




 



. (2.6) 

 

From (A.3) we may deduce that xA Aα
ασ σδ δ= ∂  and ( ) ( )xA A A Aα

α
σ σ

σ σδ δ= ∂ .  We use these 

as well as d dδ δ=  employed for (A.2) to advance the above to: 
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( )

( )

2

2 2

2

2 2 2 4

1
0

2

2

B B

A A

B

A

dx dx d x
d d g g g

cd cd c d

q dx q d x q
d A A A A

mc cd mc cd m

x g

x x
c

µ ν ν

µ να ν αµ αν

σ σ
σ

σ σ σ

α
α µν

α α
α α

δ τ τ
τ τ τ

δτ
τ τ

δ

δ δ

 
= = − ∂ − ∂ − 

 

 
+ + + 

 

∂

∂ ∂

 



. (2.7) 

 

We next use (A.10) to obtain / /dA cd A dx cdα
σ α στ τ= ∂ .  Then, for the second term on the 

bottom line above, to set up an integration-by-parts, we use this with the product rule to form: 

 

( ) dAd d x dx d x
A x x A x A A

cd cd cd cd cd

σ α σ
σ σ σσ

σ σ α σ σ
δ δδ δ δ

τ τ τ τ τ
= + = ∂ + . (2.8) 

 

Using (2.8) in (2.7) then produces: 

 

( )

( ) ( )

2

2 2

2

2 2 2 4

1
0

2

2

B B

A A

B

A

dx dx d x
d d g g g

cd cd c d

q dx q d dx q
d A A x x A A A

mc c

x g

d mc cd cd m
x

c
x

α
α µν

α

µ ν ν

µ να ν αµ

α
α

αν

σ α
σ σ σ

ασ σ α σ σ

δ τ τ
τ τ τ

τ δ δ
τ τ τ

δ

δ δ

 
= = − ∂∂

∂ ∂

− ∂ − 
 

  
+ + − ∂ +  

  

 



. (2.9) 

 

The term containing total integral in the above is equal to zero because of the boundary conditions 

on the definite integral in the variation.  Specifically, in the above: 

 

( ) ( ) ( ) 0
BB B

A A A

d
d A x d A x A x

d

σ σ σ
σ σ στ δ δ δ

τ
= = =  , (2.10) 

 

This is zero for the same reasons that (A.7) is zero when calculating the gravitational geodesics.  

Consequently, using (2.10) in (2.9) and with a renaming of summed indexes so there is a xαδ  with 

a common α  index in all terms, then factoring this out, (2.9) becomes: 

 

( )

( ) ( )

2

2 2

2

2 2 4

1

2
0

2

B B

A A

dx dx d x
g g g

cd cd c d
d d

q dx q
A A A A

mc cd m c

g

x

µ ν ν

µ να ν αµ αν

σ
σ

σ σ α σ

α µν
α

α α

δ τ τ τδ τ τ

τ

 
− ∂ − ∂ − 

 = =
 

+ − ∂ +


∂

∂ 


∂
  . (2.11) 

 

It is very important that the integration-by-parts produced both a sign reversal as well as an index 

reversal, because AF Aσ σα αασ − ∂= ∂  is the covariant-indexed electromagnetic field strength.   

 

 Now we are at (A.12) for the gravitational geodesics, but with some new terms.  For the 

same reasons as at (A.12), the expression inside the large parenthesis above must be zero.  So 

setting this to zero, using AF Aσ σα αασ − ∂= ∂ , multiplying all terms by g βα  to raise an index, using 

( )1
2

g g ggβ
µν α µ

βα
µ να ν αµν−Γ = − ∂∂ − ∂ , and segregating the acceleration, yields: 
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( )
2 2

2 2 2 2 42

d x dx dx q dx q
F A A

c d cd cd mc cd m c

β µ ν
β ββ

σν σµ

σ
σ

τ τ τ τ
= + ∂+−Γ . (2.12) 

 

 So it is possible to derive (2.12) from the variation 0
B

A
dδ τ=   using 21 / mcσ

σπ π=  from 

(2.2) which simply restates the locally U(1) gauge-symmetric relativistic energy-momentum 

relation 2 2m c σ
σπ π=  of (1.6).  Therefore the Lorentz Force motion which has been thoroughly 

validated empirically over the course of decades can indeed be understood as geodesic motion just 

like the gravitational motion.  This does not appear to have previously been reported in the 

literature, and so warrants attention at least from viewpoint of at least mathematical physics.   

 

 However (2.12) also has an extra term ( ) ( )2 2 4/ 2q m c A Aσβ
σ∂  which warrants physical 

attention.  As we shall later see, this term is naturally removed by a variant of the Lorenz gauge 

0Aσ
σ∂ =   when (1.5) is applied with the commutator , 0p Aσ

σ  ≠   i.e. 0≠ℏ  in accordance with 

quantum mechanics.  In other words, this added term arises precisely because we have neglected 

quantum mechanics by using (1.6) rather than (1.5) in the variation (2.3), and disappears once 

quantum mechanics is taken into account and the commutator not approximated to zero. 

 

3.  The Canonical Relativistic Energy-Momentum Relation, and the 

Apparently “Peculiar” Quadratic Line Element with which it is Synonymous 

 

 At (2.1) we took the relation 2 2m c σ
σπ π=  of (1.4) in the classical 0→ℏ  limit and divided 

through by 2 2m c  to arrive at (2.2) which, when used in the variation (2.3), yielded the geodesic 

equation (2.12).  This includes Lorentz Force motion plus an extra term containing ( )A Aσβ
σ∂ .  

Let us now take this same 2 2m c σ
σπ π=  of (1.4), (1.5) and use /p mdx dσ σ τ=  to obtain:  

 

2 2

2
2

2
2 ,

dx qA dx qA
m c m m

d c d c

dx dxdx qm dx q q
m A m A A A

d d c d c d c

σ σ
σ σ σ

σ

σ σ
σ σσ σ

σ σ

π π
τ τ

τ τ τ τ

  = = + +  
   

 = + + +  

. (3.1) 

 

In the classical 0→ℏ  limit of (1.6) where we neglect commutation by setting , 0p Aσ
σ  =  , using 

the approximation sign “ ≅ ” prior to the final expression as a reminder of this, we obtain: 

 
2

2 2 2

2
2

dx qA dxdx qA dx qm dx q
m c m m m A A A

d c d c d d c d c

σ σ σ σ
σ σσ σ σ

σ σ σπ π
τ τ τ τ τ

  = = + + ≅ + +  
  

. (3.2) 
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Then, also defining a gauge-covariant coordinate element ( )2/x dx q mc A cdµ µ µ τ≡ +D , we 

simply multiply through by 2 2/d mτ  and raise some selected indices to obtain: 

 
2

2 2

2 2 2

2
2 2

2 2 4
2

d q q
c d dx A cd dx A cd g x x

m mc mc

q q
g dx dx A dx cd A A c d

mc m c

σ σ σ µ ν
σ σ σ µν

µ ν σ σ
µν σ σ

ττ π π τ τ

τ τ

  = = + + =  
  

≅ + +

D D

. (3.3) 

 

 The above is simply the metric equation 
2 2c d g dx dxµ ν

µντ =  supplemented by new terms 

which come about because of gauge symmetry. These new terms are non-zero whenever there is 

a test charge with / 0q m ≠  situated in a gauge potential 0Aσ ≠ .  They arise because of the local 

U(1) gauge symmetry, and in fact reveal that the momentum space prescription pµ µπ֏  and the 

configuration space prescription  µ µ∂ ֏ D  previously reviewed also go hand-in-hand with a 

parallel prescription dx xµ µ
֏D  for the infinitesimal coordinate interval.  

 

 However, this metric (3.3) is unusual because it is quadratic in the line element ds cdτ= .  

This quadratic is seen if we rewrite the bottom line of (3.3) which contains the classical 0→ℏ  

line element, with the approximation sign removed, in the form: 

 
2

2 2

2 4 2
0 1 2

q q
A A c d A dx cd g dx dx

m c mc

σ σ µ ν
σ σ µντ τ 

= − − − 
 

, (3.4) 

 

and then use this in the quadratic equation to obtain the solution: 

 

2 2

2 2 4 2 4

2

2 4

1

1

q q q
A dx g A A A A dx dx

mc m c m c
cd

q
A A

m c

σ σ µ ν
σ µν σ µ ν

σ
σ

τ

  
± − +  

  =
−

. (3.5) 

 

 Now, on the one hand, the metric (3.3) is just another way of stating the well-established 

relation 2 2m c σ
σπ π=  which is merely the relativistic energy-momentum relation 2 2m c p pσ

σ=  

after imposing local U(1) gauge symmetry which causes the momentum space replacement 

pµ µπ֏ .  In (3.3) that relation is written as ( )2 2 2 2/c d d m σ
στ τ π π= , which is just another 

variant of 21 / mcσ
σπ π=  which was used in (2.3) to obtain the geodesic motion in (2.12).   

 

 On the other hand, when couched in the form of (3.3), and especially after obtaining the 

quadratic solution (3.5), this metric (3.3) appears to have some problems, and certainly, as a 

quadratic in dτ , it is an unusual line element.  One might notice that the metric (3.3), (3.5) is a 

function ( )/d q mτ  of the /q m  ratio of a test charge and suppose this to mean that the invariant 
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line element ds cdτ=  and the background fields Aµ and gµν  are actually not invariant when /q m  

is changed, which would not be permitted by field theory.  And, one may notice that the term 

A Aσ
σ  is not invariant under a local U(1) gauge transformation, giving the line element a gauge-

dependency.  One might even go so far as to believe that this is a “peculiar” or even “aberrant”  

line element that cannot be associated to a Riemannian geometry, and moreover, that geodesics 

calculated starting with this line element are strongly non-linear involving irrational functions of 

electromagnetic potential.  And one might then conclude that any development based on (3.3) can 

lead to no more than a chain of allegations and mistakes. 

 

 At the same time, however, (3.3) is simply (2.2) multiplied through by 2 2c dτ .  When (2.2) 

is used in the variation (2.3) the resulting geodesics are given by (2.12) which does contain both 

the gravitational motion and the Lorentz Force motion, differing only by the final ( )A Aσβ
σ∂  term 

which is a non-linear function of the electromagnetic potential, and which we still need to attend 

to.  So to dismiss (3.3) out of hand because of its unusual form or the foregoing conceptual 

challenges would be a mistake.  This is because if 2 2 2 2/c d d mσ
στ τ π π=  in (3.3) is a wrong 

equation then so too is 2 2m c σ
σπ π=  in (1.6), given that these are the very same equation obtained 

from one another by the elementary algebra of multiplying both sides of an equation by the same 

objects.  And if 2 2m c σ
σπ π=  is a wrong equation, this would precipitate an unwarranted crisis in 

gauge theory itself, because the prescription to go from 2 2m c p pσ
σ=  to 2 2m c σ

σπ π=  via 

pµ µπ֏  would also be wrong, yet this prescription is fundamental to local gauge theory as 

reviewed between (1.3) and (1.4).  Or, 2 2m c p pσ
σ=  would have to be wrong, which would be in 

collision with all the relativistic physics we know.  Therefore, we have little choice but to adopt 

the view that (3.3) though peculiar in appearance is actually just as correct as 2 2m c σ
σπ π=  with 

which it is synonymous.  And we now also know that the 21 / mcσ
σπ π=  variant of (3.3) which is 

(2.2) produces the well-established geodesic motion contain in (2.12), plus an extra term still to be 

studied.  Consequently, taking (3.3) as a challenge not than a mistake, we must find out more about 

the heretofore undiscovered physics which arises when the metric (3.3) is carefully studied in depth 

to all it its logical conclusions.  This study will now become the focus of the rest of this paper. 

 

4.  The Quadratic Line Element at Rest with no Gravitation 

 

 The metric (3.3) is unusual in appearance for the several reasons laid out above, and yet it 

is not incorrect unless 2 2m c σ
σπ π=  is incorrect, which it is not.  To make better sense of (3.3), it 

is helpful to place the vector potential and the test charge into a rest frame thus placing the test 

charge and the source of the potential at rest relative to one another, and to work in flat spacetime.  

To do so we take a classical vector potential ( ),Aµ φ= A  and transform this to a rest frame so that 

( )0 ,Aµ φ= 0  where 
0

φ  is the proper scalar potential.  Additionally, starting with the coordinate 

element ( ),dx cdt dµ = x  we set ( ),dx cdtµ = 0  to place the test particle in the same rest frame.  

Then then set gµν µνη=  to work in flat spacetime. Thus, at rest without gravitation, the classical 

0→ℏ  metric (3.3) becomes: 
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2 2

2 2 20 0

2 2 4
2

q q
d dt dtd d

mc m c

φ φτ τ τ= + + . (4.1) 

 

 It will be seen that this is quadratic in both dτ  and dt , so we can solve this equation either 

way and obtain the same result.   Choosing to write the quadratic in dt  we have: 

 
2 2

2 20 0

2 2 4
0 2 1

q q
dt d dt d

mc m c

φ φτ τ 
= + − − 

 
. (4.2) 

 

Via the quadratic equation this solves to: 

 
2 2 2 2

2 20 0 0 0 0

2 2 4 2 4 2 2
1 1

q q q q q
dt d d d d d d

mc m c m c mc mc

φ φ φ φ φτ τ τ τ τ τ   = − ± + − = − ± = ± −   
  

. (4.3) 

 

Then, imposing the condition that when 0q =  or 
0

0φ =  we must have dt dτ=  so that in the 

absence of any electromagnetic interaction (or motion or gravitation) the coordinate time flows at 

the same rate as the proper time, we can discard the minus sign in (4.3), obtaining the simplified: 

 

0

2
1

qdt

d mc

φ
τ

= − . (4.4) 

 

With dτ  segregated this is alternatively written as: 

 

0

2

1

1

d dt
q

mc

τ φ=
−

. (4.5) 

  

The above (4.5) is the exact quadratic solution for the “peculiar” line element (3.5) at rest and 

absent gravitation.  So (3.5) is the general case of (4.5), obtained by restoring motion via a Lorentz 

transform and gravitational fields by curving the spacetime.  And (3.3) to which (4.4), (4.5) is the 

at rest solution absent gravitation, is just an algebraic variant of the well-established 2 2m c σ
σπ π=  

which in turn is merely the relativistic relation 
2 2m c p pσ

σ=  with local U(1) gauge symmetry. 

 

 Now, it is well-established from Special and General Relativity that when two clocks are 

in relative motion and / or are differently-situated in a gravitational potential, the ratio of the time 

coordinate element to the proper time element / 1dt dτ ≠ .  This is time dilation, and when 

multiplied through by 2mc  to obtain 0 2 /E p mc dt dτ= = ⋅  this also gives us the total energy 

content of the material body with mass m.  Yet (4.4) and (4.5) indicate that even at rest and absent 

gravitation, whenever there is a test charge with / 0q m ≠  in a proper scalar potential 0 0φ ≠  we 

continue to have / 1dt dτ ≠ .  This result – which is brand new physics – teaches that there are 

also time dilations which occur whenever there are electromagnetic interactions.  So we now must 
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study these electromagnetic time dilations and come to understand their operational meaning and 

how they are observed in the natural world. 

 

5.  Derivation of Electromagnetic Interaction Time Dilations using an 

Inequivalence Principle 

 

 We observed earlier following (3.5) that one of the perplexing features of (3.3) and (3.5) 

is that they are functions ( )/d q mτ  of the /q m  ratio of a test charge.  But of course, the line 

element ds cdτ=  cannot change when /q m  changes, but must be invariant under such changes.  

So too, field theory mandates that the background fields Aµ and gµν  also be invariant when /q m  

changes.  So the question now arises, how do we ensure that (3.3) and (3.5) adhere to this mandate? 

 

 Ever since Galileo’s legendary Pisa experiment it has been known that if two different 

masses m and m m′ ≠  are dropped under the very same circumstances in the very same 

gravitational field, the motion will be exactly the same for each mass.  This came to be understood 

as signifying an experimental equality between gravitational and inertial mass.  By elevating this 

to the equivalence principle, Einstein was able to find a geometric way of formulating gravity.  

This is seen by the absence of the mass m in the gravitational motion that is part of (2.12).  But for 

electromagnetism – in fundamental contrast to gravitation – two different test charges with /q m  

and / /q m q m′ ′ ≠  do not exhibit identical motions even in identical electromagnetic fields under 

identical circumstances, as seen by the presence of this /q m  ratio in the Lorenz Force motion of 

(2.12).  This is understood to signify an experimental inequality between electrical mass a.k.a. 

charge and inertial mass.  So now, we formally elevate this to an inequivalence principle which 

plays the same role in electrodynamics that the equivalence principle plays in gravitation, by taking 

the affirmative step of postulating a brand new symmetry principle which mandates as follows: 

 

Charge-to-Mass Ratio Gauge Symmetry Postulate:  The metric interval dτ  

and background fields Aµ  and gµν , and by implication F A Aµν µ ν ν µ= ∂ − ∂ , must 

remain invariant under any and all transformations which re-scale, i.e. re-gauge 

the charge-to-mass ratio via a re-gauging transformation / / /q m q m q m′ ′→ ≠ .  

 

 To implement this principle, we first inventory all of the physical numbers and objects 

appearing in the “peculiar” quadratic metric (3.3).  These are the speed of light c, the line element 

dτ , the metric tensor gµν  containing the gravitational field, the gauge field Aµ  which is the 

electromagnetic potential, the /q m  ratio, and the coordinate elements dxµ .  So, under a re-

gauging / / /q m q m q m′ ′→ ≠  of the charge-to-mass ratio, we of course require the speed of light 

to remain invariant, c c c′→ ≡ .   But we also require, by the above symmetry principle, that 

d d dτ τ τ′→ ≡ , g g gµν µν µν′→ ≡  and A A Aµ µ µ′→ ≡  also remain invariant.  So the only objects 

remaining which may be transformed when we re-gauge / / /q m q m q m′ ′→ ≠  are the coordinate 

elements dxµ .  We know very well from the Special and General Theories of Relativity that the 

observed dx dx dxµ µ µ′→ ≠  do in fact change when two different observers are in relative motion 
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or have different placements in a gravitational field.  And (4.4), (4.5) already indicate that this is 

also true of at least the time element 0dx cdt=  when there are electrodynamic interactions.   

 

   So now we work from (3.3) to define a coordinate transformation dx dx dxµ µ µ′→ ≠  which 

occurs whenever we transform / / /q m q m q m′ ′→ ≠  in accordance with these symmetries, via: 

 
2

2 2

2 2 2

2
2 2 2 2

2 2 2

d q q
c d dx A cd dx A cd g x x

m mc mc

d q q
c d c d dx A cd dx A cd g x x

m m c m c

σ σ σ µ ν
σ σ σ µν

σ σ σ µ ν
σ σ σ µν

ττ π π τ τ

ττ π π τ τ τ

  = = + + =  
  

′ ′  ′ ′ ′ ′ ′ ′ ′→ = ≡ = + + =  ′ ′  

D D

D D

. (5.1) 

 

Note that ( ) ( )2 2/ /x dx q mc A cd x dx q m c A cdµ µ µ µ µ µτ τ′ ′ ′ ′= + → = +D D  is the transformation for 

the gauge-covariant coordinate elements xµ
D .  If we then apply the 0=ℏ  classical approximation 

from (1.6) which sets , 0p Aσ
σ  =  , the above transformation dx dx dxµ µ µ′→ ≠  becomes: 

 
2

2 2 2 2

2 2 4

2
2 2 2 2 2 2

2 2 4

2

2

q q
c d g dx dx A dx cd A A c d

mc m c

q q
c d c d g dx dx A dx cd A A c d

m c m c

µ ν σ σ
µν σ σ

µ ν σ σ
µν σ σ

τ τ τ

τ τ τ τ

= + +

′ ′′ ′ ′ ′→ ≡ = + +
′ ′

. (5.2) 

 

 Now we move to a rest frame and remove all gravitation to directly deduce what happens 

to the time coordinate when we re-gauge / / /q m q m q m′ ′→ ≠ .  This is the exact same calculation 

we did from (4.1) to (4.5), except now we have some transformed objects annotated with “primes.”  

So with ( )0 ,Aµ φ= 0  and ( ),dx cdtµ = 0  and gµν µνη=  the above becomes (contrast (4.1)): 

 
2 2 2 2

2 2 2 2 20 0 0 0

2 2 4 2 2 4
2 2

q q q q
d dt dtd d dt dt d d

mc m c m c m c

φ φ φ φτ τ τ τ τ
′ ′′ ′= + + = + +
′ ′

. (5.3) 

 

This contains a first quadratic for dt  and a second quadratic for dt′ .  We already have the solution 

for dt , which is (4.4).   So the solution for dt′ , shown together with (4.4) for dt , is: 

 

0 0

2 2
1 ; 1

q qdt dt

d mc d m c

φ φ
τ τ

′′
= − = −

′
. (5.4) 

 

 Now, because of the above symmetry postulate, dτ  is the same invariant object in each of 

/dt dτ  and /dt dτ′  above.  Likewise, c and 
0

φ  are also the same.  And we used the same µνη  to 

derive each of (5.4).  Therefore, with two different massive charged bodies both at rest in the same 

proper potential 
0

φ , one with /q m  and the other with /q m′ ′ , we deduce from (5.4) that the ratio: 
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2

0

2

0

1 /

1 /

q mcdt

dt q m c

φ
φ

−=
′ ′ ′−

. (5.5) 

 

 Because the above compares measurements of time, we should be more specific about what 

is meant by the rate at which time flows for various charged bodies.  The meaning and construction 

of so-called “geometrodynamic clocks” has been widely developed in the literature, see, e.g. 

section 5.2 of Ohanian’s [11].  What (5.5) tells us is that if we start with an electrically-neutral 

material body which qualifies as a true geometrodynamic clock (g-clock), for example, a cesium 

oscillator through which a second is defined in the International System of Units (SI) by the 

standard of 9,192,631,770 oscillation “ticks,” then if that clock is charged and placed into an 

electromagnetic proper potential 
0

φ , the rate of time signaling will be altered based on (5.5).  So 

suppose that we wish to measure the ratio (5.5).  One experiment we might do is to start with two 

identical, electrically-neutral g-clocks.  We leave the first g-clock neutral so it maintains 0q = .  

We then charge the second g-clock to 0q′ ≠ .  We then use the neutral 0q =  g-clock as a laboratory 

clock to measure the laboratory time element dt , and compare this to the dt′  element measured 

by oscillations of the second 0q′ ≠  clock.  So for this experiment, with 0q =  (5.5) becomes: 

 

0

2

1

1

dt

qdt

m c

φ= ′′ −
′

. (5.6) 

 

 In Relativity Theory the time dilation factors 2 2
/ 1/ 1 /v dt d v cγ τ≡ = −  for motion and 

00/ 1/g dt d gγ τ≡ =  for gravitational interaction associate dt  with the time ticked off by the 

laboratory clock of an observer at rest or outside a gravitational field, and dτ  with the proper time 

ticked off by an observed clock in relative motion or inside the gravitational field.  The derivations 

of these two relativistic relations are reviewed in Appendix B.  So in (5.6), we make a parallel 

association of dt  with the neutral laboratory clock resting with an observer.  Then, absent any 

gravitation or motion we now equate dt′  with dτ  so that d dtτ ′≡  becomes the proper time ticked 

off by the charged /q m′ ′  clock being observed.  With this we have: 

 

0

2

1

1

dt

qd

m c

φτ
= ′

−
′

. (5.7) 

 

 Finally, as a matter of notational convention, because (5.7) compares a neutral 0q =  

laboratory g-clock with dt , to a charged 0q′ ≠  g-clock with dτ , the primes are no longer needed, 

so we re-denote q′  to q and m′  to m.  We then use (5.7) so re-notated to define an electromagnetic 

time dilation factor 
e

γ  comparing the ratio of time ticked off by the neutral g-clock of an observer 

to time ticked off by an observed charged g-clock, as follows: 
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2 3 4

0 0 0 0 0

2 2 2 2 20
0

2

1
1

1

n

em n

q q q q qdt

qd mc mc mc mc mc

mc

φ φ φ φ φγ φτ
∞

=

       ≡ = = + + + + + =       
       −

… . (5.8) 

 

Above, 2

0 /q mcφ  is the key dimensionless ratio which determines the numerical size of 
em

γ .  

Because 
0e

E qφ=  is the energy of electromagnetic interaction between the test charge q and the 

source of the potential 
0

φ , we see that 2

0 0/ /eq mc E Eφ =  is the dimensionless ratio of this 

electromagnetic interaction energy to the rest energy 2

0E mc=  of the test charge. 

 

 It is illustrative to examine (5.8) in the special case where a positive charge Q generates a 

Coulomb proper scalar potential 
0

/
e

k Q rφ = , with 
2 7 2 2

001/ 4 / 4 10 N/Aek c cπµπε −= = =  being 

the Coulomb constant.  For a test body with positive charge q and mass m at rest in the potential 

at a distance r from Q, the electromagnetic interaction energy 
0

/
e e

E q k Qq rφ= =  is repulsive 

because lower energy states are achieved by two like-charges moving farther apart.  The ratio of 

this interaction energy to the test charge rest mass is 2 2

0 / /eq mc k Qq mc rφ = .  Here, (5.8) becomes: 

 
2 3 4

2 2 2 2 20

2

1
1

1

n

e e e e e
em n

e

k Qq k Qq k Qq k Qq k Qqdt

k Qqd mc r mc r mc r mc r mc r

mc r

γ
τ

∞

=

       ≡ = = + + + + + =       
       −

… . (5.9) 

 

Because / 1dt dτ >  when Q and q both have the same sign and are therefore repelling, the neutral 

laboratory g-clock will emit more “tick” signals during a given time than the observed charged g-

clock being observed.  So we learn that time dilates for a repulsive electromagnetic interactions 

between two like-charges, just as it dilates for the attractive gravitational interaction between what 

are always two like-masses.  That is, time dilation occurs for interactions between like charges, 

which interactions for gravitation are attractive and for electromagnetism are repulsive, owing to 

the respective spin-2 gravitons and spin-1 photons that quantum-mediate these interactions.  This 

also means that time contracts for attractive electromagnetic interactions between unlike charges. 

 

 As a numeric benchmark for classical interactions, consider that the two charges each have 

1CQ q= = , the test particle has a rest mass 1kgm = , and the separation 1mr = .  Therefore, the 

dimensionless ratio of interaction to rest energy 2 2 7

0 / / 10eq mc k cφ −= = , and the time dilation is 

71 10emγ −≅ +  (to parts per 1410− , from the next-higher-order term in (5.9)).  At the same time, this 

interaction energy 7 2 9

0 10 J 8.897 10 Jeq k cφ −= = = ×  is exceedingly large.  The release of this 

much energy per second would yield a power of approximately 8.897 GW, which roughly 

approximates seven or eight nuclear power plants, or four times the power of the Hoover Dam, or 

the power of about seventy five jet engines, or the power output of a single space shuttle launch, 

or of a single lightning bolt.  So it takes tremendously large electromagnetic interactions to produce 

very small time dilations.  For electromagnetic interactions encountered in daily experience, this 

dilation will be much smaller.  For example, a kW-order interaction would dilate time to about one 
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part in 1410 .  For a cesium clock ticking every 101.09 10−×  seconds, the discrepancy for a kW-order 

interaction would be about 1 tick per ten thousand seconds – about 2.75 hours. 

   

 Knowing from (5.8) that time dilates for repulsive electromagnetic interactions, one can 

design an even-simpler experiment to test for these time dilations, at least qualitatively: take a first 

neutral g-clock, and synchronize it with a second neutral g-clock.  Then charge the second g-clock 

and use the first g-clock as a control to measure its time oscillations.  Because there will now be 

an internal repulsive self-interaction energy between and among the various elemental parts of the 

charged clock, the mere charging of the clock should cause the oscillatory period to dilate. 

 

As we now also show, the well-known energy content of electromagnetically-interacting 

bodies provides direct empirical evidence time really does dilate in accordance with (5.8) and (5.9).  

 

6.  The Energy Content of Electromagnetically-Interacting, Moving and 

Gravitating Material Bodies  

 

 Einstein’s pioneering paper [12] first used a time dilation factor 
v

γ  in the simple calculation 

2 2 2 2 2 2 21
2

/ / 1 /vE mc mc dt d mc v c mc mvγ τ= = ⋅ = − ≅ +  to uncover the rest energy relation now 

known as 2

0E mc= .  In this calculation, the Newtonian kinetic energy 21
2vE mv=  is shown to be 

a comparatively tiny addition to the huge rest energy 2

0E mc=  of a mass m, for non-relativistic 

velocities / 1v c≪ .  Moreover, the kinetic energy in general is seen to be the nonlinear 

( ) ( )2 2 2 2/ 1 1/ 1 / 1
v

E mc dt d mc v cτ= ⋅ − = − −  in which the Newtonian 21
2

mv  is the lowest-order 

term in the McLaurin series ( ) ( )( ) ( )2 2 21
kin 02

2 1 !!/ 2 1 ! /
n

n

n
E mv n n v c∞

== Σ + + , with 21
2

mv  

multiplied by higher order terms 2 2/v c , 4 4/v c , 6 6/v c , etc. times a series of numeric coefficients. 

 

 Einstein later showed in [3] that this carries over to gravitational energies, but now with a 

gravitational time dilation 00/ 1 /g dt d gγ τ= =  which leads to the energy content relation 

2 2 2

00/ /gE mc mc dt d mc gγ τ= = ⋅ = .  For a Schwarzschild metric with 
2

00 1 2 /g GM c r= −  this 

produces 
2 2 2/ 1 2 / /E mc GM c r mc GMm r= − ≅ + .  Here, the negative* Newtonian gravitational 

interaction energy /
g

E GMm r− =  is seen to be a comparatively tiny addition to the rest energy 

2mc  for weak gravitational interactions in which the ratio of gravitational energy to rest energy 

( )2 2/ / / 1GM c r GMm r mc= ≪ .  Here too, ( ) ( )2 2 2/ 1 / 1/ 1 2 / 1
g

E mc dt d mc GM c rτ− = − = − −  

is a nonlinear energy, with a series ( ) ( ) ( )( )( )2

0
/ 2 1 !!/ 1 ! /

n

g n
E GMm r n n GM c r∞

=− = Σ + + . In this 

                                                 
* Even though the mass m gains energy in the gravitational field and thus increases its ability to do work, e.g., by 

falling toward M, the gravitational interaction energy must be negative.  This is because gravitation is an attractive 

interaction so that lower energy states must correlate with the two masses moving closer. 
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situation, the Newtonian /GMm r  is multiplied by a higher-order succession of terms 2/GM c r , 

( )2
2/GM c r , ( )3

2/GM c r  etc. terms times a series of coefficients. 

 

 As it happens, the electromagnetic time dilation (5.8) when multiplied through by the rest 

energy 2mc  yields similar information about the energy content of electromagnetically-interacting 

bodies.  Working from (5.8) in the same way as reviewed just above, it is readily calculated that: 

 
22

2 2 2 20 0 0
0 02 2 20

0

2

1

1

n

em n

q q qdt mc
E mc mc mc q mc q

qd mc mc mc

mc

φ φ φγ φ φφτ
∞

=

    = = = = + + + + = +         −
… . (6.1) 

 

Here, the known interaction energy 
0e

E qφ=  is seen to be a comparatively tiny addition to the rest 

energy 2mc  for interactions in which the dimensionless ratio of electromagnetic interaction energy 

0
qφ  to rest energy 2mc  is very small, 2

0 / 1q mcφ ≪ .  Here, when 2

0 /q mcφ  grows measurably 

larger – in a new result that does not appear to have been reported in the literature at least for 

classical electromagnetic interactions – the electromagnetic interaction energy becomes non-

linear just like special and general relativistic energies.  Now, in general, electromagnetic 

interaction energy is given by the non-linear series ( )2

0 0 0
/

n

e n
E q q mcφ φ∞

== Σ , and the higher order 

multipliers of the known energy 
0

qφ  are 2

0 /q mcφ , ( )2
2

0
/q mcφ , ( )3

2

0
/q mcφ  etc.  So for a 

Coulomb potential 
0

/
e

k Q rφ =  (6.1) above becomes: 

  
2 32

2 2 2

2 2 2

2

2

20

1

1

e e e e
em

e

n

e e

n

k Qq k Qq k Qq k Qqdt mc
E mc mc mc

k Qqd r mc r mc r mc r

mc r

k Qq k Qq
mc

r mc r

γ
τ

∞

=

    = = = = + + + + +         −

 = +  
 



…

. (6.2) 

 

Just as with 21
2vE mv=  for motion and /

g
E GMm r− = , the Coulomb interaction energy 

/e eE k Qq r=  is likewise a tiny correction to the to the rest energy 2mc , precisely as is observed.  

But the complete energy ( ) ( )2

0/ /
n

e e n eE k Qq r k Qq mc r∞
== Σ  is non-linear.  For the classical 

benchmark 2 2 7

0 / / 10eq mc k cφ −= =  given at the end of the last section, the interaction energy 

7 2 9

0 10 J 8.897 10 Jeq k cφ −= = = ×  is increased by a scant one part in 710  owing to the first 

correction term 2/ek Qq mc r  in the series.  Nonetheless, (6.2) gives a precise prediction of the 

magnitude of these newly-predicted non-linear corrections. 

 

 When there are both motion and gravitation, the special and general relativistic time 

dilations are compounded by multiplication, so the total time dilation / v gdt dγ τ γ γ= = , with a 

total energy content 2

v gE mc γ γ= .  We may therefore expect that when there are electromagnetic 
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interactions in addition to motion and gravitation, / v g emdt dτ γ γ γΓ ≡ =  will be the complete time 

dilation, and the total energy content of the material body will be 2 2

v g emE mc mc γ γ γ= Γ = .  If we 

compute this using while also showing the linear limit, we obtain: 

 

2 2 2 2

2

222

2
2

2 2 2

2 2 2 2 2

2 2 2 2 2

1 1 1

2 111

1
1 1 1

2

1 1 1 1

2 2 2 2

v g em
e

e

e e e e

dt
E mc mc mc mc

k Qqd GMv
mc rc rc

k Qqv GM
mc

c c r mc r

k Qq k Qq k Qq k QqGMm GMm GM GM
mc mv v v v

r c r r c r r c r c r c r

γ γ γ
τ

= Γ = = =
−−−

    ≅ + + +   
   

= + + + + + + +

. (6.3) 

 

What we see here, in succession, are 1) the rest energy 2mc , 2) the kinetic energy of the mass m, 

3) the gravitational interaction energy of the mass, 4) the kinetic energy of the gravitational energy, 

5) the Coulomb interaction energy of the charged mass, 6) the kinetic energy of the Coulomb 

energy, 7) the gravitational energy of the Coulomb energy and 8) the kinetic energy of the 

gravitational energy of the Coulomb energy.  Numbers 1 through 4 above are standard results that 

are obtained when one applies the Special and General theories at the same time.  Numbers 1 

through 4 are well-established in relativity theory.   Numbers 5 through 8 incorporate the new 

findings (5.8) and (5.8) of an electromagnetic time dilation.  All of these accords entirely with 

empirical observations of the linear limits of these same energies. 

 

 Of course, 0E p c=  in (6.3) is the time component of the energy-momentum four-vector 

( ), /cp E c mcdx dµ µ τ= =p .  By the chain rule, the relativistic four velocity 

( )( )/ / /dx d dx dt dt dµ µτ τ= , and because ( ),dx cdt dµ = x  the ordinary four-velocity 

( ) ( )/ , / ,dx dt c d dt c vµ µ= = ≡x v .  Because the composite time dilation / v g emdt dτ γ γ γΓ ≡ =  is 

validated at least at lowest order by the energy content shown in (6.3), we may combine the 

foregoing to deduce that / v g edx d v vµ µ µτ γ γ γ= = Γ .  Therefore, when all of motion and gravitation 

and electrodynamic interactions are present, the Lorentz four-vector pµ  in (1.6), of which (6.3) 

sits in the time component, is deduced to be: 

 

( ) / v g emcp E c mcdx d mcv mcvµ µ µ µτ γ γ γ= = = = Γp . (6.4) 

 

Likewise, we may deduce that in the “peculiar” quadratic metric of (3.3), the coordinate elements 

with all of motion and gravitation and electrodynamics are v g emdx v d v dµ µ µγ γ γ τ τ= = Γ .  This is a 

way to reintroduce motion and gravitation and Lorentz covariance into the quadratic solution (4.4) 

obtained at rest and absent gravitation, and into the consequent (5.8) for a neutral laboratory g-

clock used to measure time signals from an identical g-clock which is charged. 
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 Finally, because gauge symmetry results in replacing /p p qA cµ µ µ µπ→ = + , it is 

necessary for Aµ  to transform in the same general covariant manner as pµ .  Absent gravitation, 

and absent being aware of electromagnetic time dilations, the four-potential is normally defined in 

relation to motion by ( )0 0/ / /vA v dt d c v cµ µ µφ τ φ γ= = , where ( ),v cµ = v .  But when all time 

dilations are considered, energy content is changed, and general covariance requires that this now 

be extended to: 

 

( ) ( )( )0 0 0
/ / / /

v g em
A v c dt d v c v cµ µ µ µφ φ τ φ γ γ γ φ= = = = ΓA . (6.5) 

 

We see that both (6.4) and (6.5) contain the same time dilation and motion kernel  vµΓ .  

 

7.  Energy-Momentum Gradients, and Heisenberg Rules for Momentum 

Commutation in view of Electromagnetic Time Dilations  

 

 When the energy-momentum of a particle depends only on its rest mass and its motion, 

then 1gγ =  and 1emγ = , so (6.4) of course becomes the special relativistic  vp mvµ µγ= .  Because 

0vαγ∂ =  and 0vµ
α∂ = , this has no spacetime dependency, which may be expressed differentially 

via ( ) 0
v

p m vµ µ
α α γ∂ = ∂ = .  When there is a gravitational field, then v gp mvµ γ γ=  and there is a 

spacetime dependency, because ( ) ( )00, 1/ ,g t g tγ =x x  is a function of space and time.  Thus, the 

four-gradient  ( )1.5
1

00 002
/ 0

g
g gα αγ∂ = − ∂ ≠  and ( ) 0

v g
p m vµ µ

α α γ γ∂ = ∂ ≠ .  However, because 

00g  is a component of the metric tensor with gravitational-covariant derivative 
; 0gα µν∂ = , the 

gravitational covariant derivative ( ); ;
0

v g
p m vµ µ

α α γ γ∂ = ∂ =  of the energy-momentum is still zero. 

 

 For electromagnetic interactions, this is no longer the case.  Now, the energy-momentum 

( ) ( ), ,v g emp t mv t
µ µγ γ γ=x x  takes on an explicit spacetime dependency, because as deduced in 

(5.8), the electromagnetic time dilation is a function ( ) ( )( )2

0
, 1 / 1 , /

em
t q t mcγ φ= −x x  of 

spacetime, because the proper potential ( )0 ,tφ x  is (or may be) a function of space and time.  

Expressed differentially, 
; 0em emα αγ γ∂ = ∂ ≠ , so that 0pµ

α∂ ≠  and even ; 0p
µ

α∂ ≠ .  This 

spacetime dependency of the energy momentum stemming from ( )0 ,tφ x  has a number of useful 

and important properties that it now behooves us to explore. 

 

 Absent gravitation, with gµν µνη=  thus 1gγ = , the complete time dilation 

/ v emdx dµ τ γ γΓ = = .   From the time component of (6.5) we find that 0 v emφ φ γ γ=  which we invert 

to 0 / v emφ φ γ γ= .  We then use this to write the electromagnetic time dilation (5.8) as: 
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2 2 2

0

1 1

1 / 1 / /

v em
em

v em v em
q mc q mc q mc

γ γγ
φ φ γ γ γ γ φ

= = =
− − −

. (7.1) 

 

Upon dividing through by emγ  then taking the reciprocal of both sides we obtain:  

 
2

2

/
1 v em

em

v v

q mc q

mc

γ γ φ φγ
γ γ

−= = − , (7.2) 

 

which easily restructures into an alternative expression for emγ , namely: 

 

2
1em

v

q

mc

φγ
γ

= + . (7.3) 

 

 The time component of (6.4) contains the total energy 2

v emE mc γ γ=  with 1gγ = , see also 

(6.3), which energy, in view of (7.3), may be written as: 

 

2 2

2
1v v

v

q
E mc mc q

mc

φγ γ φ
γ

 
= + = + 

 
. (7.4) 

 

So the total energy 2

v emE mc γ γ=  is alternatively written as the rest-plus motion energy 2

vmc γ , 

plus the electromagnetic interaction potential energy qφ .  So if we take the space-gradient 

α α−∂ = ∇ = ∇  of the above, then apply the relation ( )/ cφ = − +E Aɺ∇  between the potential 

gradient and the electric field E and time derivative / t= ∂ ∂A Aɺ  of the three-potential, we obtain:  

 

( ) ( )/ /j j j jE E q q q E A c q cφ φ∂ = − ∂ = = − + = − +E Aɺ ɺ− = ∇ ∇ . (7.5) 

 

It is also useful to separately take the gradient of the time dilation (7.3), namely: 

 

( ) ( )2 2 2 2

1 1
/ /j j j j

em em

v v v v

q q
q E A c q c

mc mc mc mc
γ φ φ γ

γ γ γ γ
∂ = ∂ = + = − = +E Aɺ ɺ∇ = −∇ . (7.6) 

 

We will find it useful to include vγ  inside the gradient and write this as a gradient of the total time 

dilation 2/ /v emdt d E mcτ γ γ= = , as such:  

 

( ) ( )2 2 2
/j j j j j j

v em

dt E q q
E A c

d mc mc mc
γ γ φ

τ
   ∂ = ∂ = ∂ = ∂ = +   
   

ɺ . (7.7) 
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 Having deduced the time component of (6.4) in flat spacetime, now we turn to the space 

components 
i i

v emc cp mcv γ γ= =p .  Using (7.6), we find that: 

 

2

1j i i j i j

v em v

v

c cp mcv mcv q
mc

γ γ γ φ
γ

= −∂ = − ∂ = − ∂p∇ . (7.8) 

 

Multiply through by 2

v emE mc γ γ− = −  then applying i i

em vcp mc vγ γ=  and /j j jE A cφ∂ = + ɺ  yields:  

 

( ) ( )
2

/ /

j i i j

v em v em

j i j i j j i

mc cp mcv q

E cp q cp q E A c cp E c q c q c c

γ γ γ γ φ

φ φ

∂ = ∂

= ∂ = ∂ = + = − = − = +p p E A pɺ ɺ∇ ∇
. (7.9) 

 

With ( )cp E cµ = p  we then assemble equations (7.5) and (7.9) into spacetime-covariant form: 

 

( ) ( )/ /j j j jE cp q cp q E A c cp E cp q cp q c cpµ µ µ µ µ µφ φ∂ = ∂ = + = − = − = +E Aɺ ɺ∇ ∇ . (7.10) 

 

This now reveals the heuristic rule ( )/E q q cφ− − +E Aɺ֏ ֏∇ ∇  for when a gradient is applied 

to the flat spacetime four-momentum 
v emcp mc vµ µγ γ=  of (6.4) with electromagnetic time dilation. 

 

 Another important and useful consequence of the relation 
v emcp mcvµ µγ γ=  is that the 

three-momentum ip = p  no longer commutes as between momenta oriented along orthogonal 

spacetime axes, that is, , 0i j i j j ip p p p p p  = − ≠   when i j≠ .  Written in vector notation, this 

means that the momentum self-cross product 0≠p p× .  To derive this with specificity, we begin 

with Heisenberg’s canonical commutation relation [ , ]xp x i= − ℏ  which of course underlies the 

uncertainty principle.  It is easily calculated that 1[ , ]n n

xp x i nx −= − ℏ .  Moreover, because 

elementary calculus teaches that 1n n

x x nx −∂ =  we may combine the foregoing into 

1[ , ]n n n

x xp x i nx i x−= − = − ∂ℏ ℏ .  Therefore, for any function ( )b x  expansible as a Maclaurin series 

in x, noting that ( ), ,i

x y z
∂ = − ∂ ∂ ∂∇ = − , we may generalize this in well-known fashion to the 

well-established relation ,i ip b i b  = ∂  ℏ .  This is then generalizable to any vector, tensor, etc. 

object ( )O x  whereby ,i ip O i O  = ∂  ℏ  and , j jO p i O  = − ∂  ℏ .  Thus, if we generalize to a vector 

( )jb b x֏ , with the momentum to the left of the commutator, this becomes ,i j i jp b i b  = ∂  ℏ .  

With momentum to the right of ( )jb x , and with renamed indexes, the right-side relation is 

,i j j ib p i b  = − ∂  ℏ . 
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 Now, the space components of i i

v emp mv γ γ=  include both the non-relativistic momentum 

i i

NRp mv=  and the time dilation multiplier / v emdt dτ γ γ= , that is, i i

NR v emp p γ γ= .  However, the 

Heisenberg operator (op) matrices for momentum correspond to the non-relativistic momentum 

only, 
i i

NR opp p⇔ .  With this in mind, were we to assign j jb p֏  then the left-side commutator 

relation would become ,i j i jp p i p  = ∂  ℏ .  But, were we to instead assign i ib p֏  then the right-

side commutator this would become ,i j j ip p i p  = − ∂  ℏ .  So both relations together would imply 

that i j j ii p i p∂ = − ∂ℏ ℏ  is an antisymmetric tensor, which is not necessarily so.  However, this 

overlooks the fact that unlike any other vector, the space-component momentum vector 
i i

v emp mv γ γ=  is a hybrid momentum and spacetime vector.  This is because it includes both 

i i i

NR opmv p p= ⇔  which is a pure momentum against which functions of the space coordinates jx   

are commuted, and because it also includes ( ) ( )2

0
, 1 / 1 /

em
t q mcγ φ= −x  which is a function of 

spacetime because the proper scalar potential ( )0 ,tφ x  is a function of spacetime.  Specifically, 

( ) ( ), ,i i

NR v emp t p tγ γ=x x .  Consequently, there is a self-commutativity wherein when we commute 

,i jp p   , we are commuting the space-dependent portion of jp  to the left past the i

NRp  portion of 

ip , while simultaneously commuting the space-dependent portion of ip  to the right past the j

NRp  

portion of jp .  It is only the pure non-relativistic momentum which is self-commuting along all 

orthogonal pairs of space coordinates, , 0i j

NR NR
p p  =  .   

 

 Given the foregoing, if we write the two commuting momentum vectors as  

( )i i i

v em NR v emcp mcv cpγ γ γ γ= =  and ( )j j j

v em NR v emcp mcv cpγ γ γ γ= = , and if we write the left-

momentum and right-momentum commutativity relations as ( )0
,i i

v em v em
cp i cγ γ γ γ  = ∂  ℏ  and 

( )0
, j j

v em v em
cp i cγ γ γ γ  = − ∂  ℏ , then also making use of , 0i j

NR NR
p p  =  , we may calculate:  

 

( )
( ) ( )

( ) ( )

i j i j j i i j

NR v em NR v em v em NR NR v em v em NR v em

j i j i i j

NR v em NR v em v em NR v em v em NR v em

j i j i i j

v em v em

cp cp cp cp cp cp i c cp

cp cp i c cp i c cp

cp cp i c cp i c cp

γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ

= = + ∂

= − ∂ + ∂

= − ∂ + ∂

ℏ

ℏ ℏ

ℏ ℏ

. (7.11) 

 

Recasting this as a commutator, and then using (7.7), this becomes: 

 

 

( ) ( )

( ) ( )2 2 2 2

,

/ /

i j j i i j

v em v em

j i i j j j i i i j

cp cp i c cp i c cp

q q cq cq
i c cp i c cp i E A c cp E A c cp

mc mc mc mc

γ γ γ γ

φ φ

  = − ∂ + ∂ 

= − ∂ + ∂ = − + + +

ℏ ℏ

ℏ ℏɺ ɺℏ ℏ

. (7.12) 
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So the momentum self-commutator actually contains the gradient φ∇  of the scalar potential, and, 

via ( )/ cφ = − +E Aɺ∇ , the electric field E and time derivative / t= ∂ ∂A Aɺ  of the three-vector 

potential.  Note that , 0i jcp cp  =   when i j= , so that this commutation relation only becomes 

non-zero, , 0i jcp cp  ≠  , as to orthogonal pairs of space coordinates where i j≠ .   

 

 Now let us additionally consider the circumstance where ip  is the momentum of an 

individual charged lepton (i.e., the electron, or the mu or tau lepton), the mass m is lepton rest 

mass, and the charge q e= −  is the electric charge quantum.  With the Bohr magneton 

/ 2B e mcµ = ℏ , given the specific emergence of 2/cq mcℏ  in (7.12), we may rewrite the 

commutator as: 

 

( ) ( ) ( )( ), 2 2 / /i j j i i j j j i i i j

B Bcp cp i cp cp i E A c cp E A c cpµ φ φ µ  = ∂ − ∂ = + − + 
ɺ ɺ . (7.13) 

 

 Now let’s return to (7.9), which contains terms very similar to those in the commutator 

(7.13).  This gradient may be specialized to a dot (inner) product by forming  

   

( ) ( )/ /i i i i i i iE cp q cp q E A c cp E c q c q c cφ φ∂ = ∂ = + = − ⋅ = − ⋅ = + ⋅p p E A pɺ ɺ∇ ∇ . (7.14) 

 

But it is especially of interest to form the cross product: 

 

( )
( ) ( ) ( )( )

/

/

kji j i kji j i kji j j i

kk k

E cp q cp q E A c cp

E c q c q c c

ε ε φ ε

φ φ

∂ = ∂ = +

= − × = − × = + ×p p E A p

ɺ

ɺ∇ ∇
. (7.15) 

 

This is because (7.13) contains j i i jcp cpφ φ∂ − ∂  which is also a cross product.  Specifically, given 

that ( ), 2 2
kkij i j kij i j kij j i kij i jcp cp cp cp cp cp cp cp c cε ε ε ε  = − = = ×  p p , we may turn (7.13) into an 

explicit cross product by multiplying through by kijε  to form (recall j j∂ = −∇ ):  

 

( ) ( ) ( )( )
( )

( ) ( ) ( )( )

, 2 2 / /

2 4 4 /

2 2 2 /

kij i j kij j i i j kij j j i i i j

B B

kij i j kij i j kij i i j

B B

kk k

B B

cp cp i cp cp i E A c cp E A c cp

cp cp i cp i E A c cp

c c i c i c c

ε ε µ φ φ ε µ

ε ε µ φ ε µ

µ φ µ

  = ∂ − ∂ = + − + 

= = ∇ = − +

= × = × = − + ×p p p E A p

ɺ ɺ

ɺ

ɺ∇

. (7.16) 

 

If we now set q e= −  in (7.15) and so apply this to the charged leptons, then multiply through by 

2/i c mcℏ  and use / 2B e mcµ = ℏ , we separately obtain: 
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( ) ( ) ( )( )2
2 2 /

kk k

B B

E
i c c i c i c c

mc
φ µ φ µ− × = × = − + ×p p E A pɺℏ ∇ ∇ . (7.17) 

 

Dropping the k superscript which is absorbed into k× = × , we than combine (7.16) and (7.17) into: 

 

( ) ( )
( )

22 / /

2 2 /

em

B B

c c E mc i c c dt d i c c i c c

i c i c c

νφ τ φ γ γ φ

µ φ µ

= − = − = −

= = − +

p p p p p

p E A p

ℏ ℏ ℏ

ɺ

× ∇ × ∇ × ∇ ×

∇ × ×
. (7.18) 

 

So as previewed in the paragraph following (7.10), we see that indeed, the momentum self-cross 

product 0≠p p× .  And we have learned that this arises because the electromagnetic time dilation 

( ) ( )( )2

0
, 1 / 1 , /

em
t q t mcγ φ= −x x  is included in flat spacetime within the total energy momentum 

v em NR v emcp mcv pµ µ µγ γ γ γ= =  of (6.4).  This is the first of numerous quantum mechanical results 

that we shall now begin to explore as we turn from classical to quantum electrodynamics. 

 

PART II:  COVARIANT GAUGE FIXING TO REMOVE TWO DEGREES 

OF FREEDOM FROM THE GAUGE POTENTIAL, YIELDING A 

MASSLESS PHOTON WITH TWO HELICITY STATES 
 

8.  Heisenberg / Ehrenfest Equations of Time Evolution and Space 

Configuration 

 

 Thus far all the development has been based on (1.6), which is the relativistic energy-

momentum relation 2 2m c p pσ
σ=  turned into 2 2m c σ

σπ π=  via the prescription pσ σπ֏  which 

arises from imposing local U(1) gauge symmetry, taken in the classical 0=ℏ  limit by regarding 

the commutator relation to be , 0p Aσ
σ  =  .  Now, we return to the commutator ,p Aσ

σ    in (1.5) 

and no longer approximate this to zero, but instead treat this quantum mechanically. 

 

 It was reviewed early in section 1 how when operating on a Fourier kernel ( )exp /ip xσ
σ− ℏ  

with the spacetime gradient µ∂ , we obtain ( ) ( ) ( )exp / / exp /ip x ip ip xσ σ
µ σ µ σ∂ − = − −ℏ ℏ ℏ , where 

we assume that 0pµ σ∂ =  i.e. that the components of energy momentum are not functions of 

spacetime.  So when we form a function such as ( )exp /s ip xσ
σφ = − ℏ  with ( )s pν  a function of 

momentum but, importantly, not of spacetime because ( ) 0s pν
µ∂ = , or such as 

( )exp /u ip xσ
σψ = − ℏ  with ( )u pν  and ( ) 0u pν

µ∂ = , then we obtain i pµ µφ φ∂ =ℏ  in the former 

and i pµ µψ ψ∂ =ℏ  in the latter case.  Then for the Klein-Gordon and Dirac equations respectively, 

these operations allow for toggling between momentum and configuration space via i pµ µ∂ ↔ℏ .   
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We now add to this, that energies 2 0 2W E mc cp mc= − = −  are eigenstates H s W s=  

of a Hamiltonian operator H operating on a ket s .  Therefore, we may similarly form a 

Hamiltonian-momentum four-vector defined as ( )2 ,H H mc cµ ≡ + p  for which H s cp s
µ µ= , 

then use this in a Fourier-type kernel ( )exp /iH x cσ
σ− ℏ  with the derivative 

( ) ( ) ( )exp / / exp /iH x c iH c ip x cσ σ
µ σ µ σ∂ − = − −ℏ ℏ ℏ , likewise assuming that 0Hµ∂ =  i.e. that the 

Hamiltonian is spacetime-independent, whole of course ( )2 0mcµ∂ = .  This is of interest because 

( ) ( )( ) ( )( ) ( )2 2exp / exp / / exp / exp /iH x c i H mc t i i H mc t iσ
σ− = − + + ⋅ = − + ⋅p x p xℏ ℏ ℏ ℏ ℏ  and 

because ( ) ( )exp /U t iHt= − ℏ  is the time evolution operator used in both the Heisenberg and 

Schrödinger pictures of quantum mechanics.  The separation of this exponential into time and 

space operators via ( )exp exp exp exp expA B A B B A+ = =  is allowed because each of the four 

terms in ( )2/ x y zH x c H mc t p x p y p z Htσ
σ = + − − − = − ⋅p x  commutes with all other three. 

 

 Now, we generalize all of the foregoing by defining a ket ( ) 0
exp /s iH x c sσ

σ≡ − ℏ .  This 

ket is a generalized state object including both a Fourier-type kernel ( )exp /iH x cσ
σ− ℏ  which 

contains the Hamiltonian 0 2H H mc= + , and a fixed-state ket 0s  defined to be independent of 

spacetime, 0 0sµ∂ ≡ , as designated by the subscript 0.  The definition 0 0sµ∂ ≡  is important, 

and is the generalization of how we use ( ) 0s pν
µ∂ =  and ( ) 0u pν

µ∂ =  with 0pµ σ∂ =  to toggle 

between configuration and momentum space for the Klein-Gordon and Dirac equations, 

respectively.  As a consequence of these definitions, we may deduce that H s i c sµ µ= ∂ℏ .   

  

Given that †H H=  is a Hermitian operator, we may also obtain the Hermitian conjugate 

of s  which is the bra ( )
0
exp /s s iH x cσ

σ= ℏ .  As is customary we normalize the bra and ket 

to 1s s = .  We then start by forming the operator relation: 

  

( ) ( )0 0exp / exp /A s A s s iH x c A iH x c sν ν σ ν σ
σ σ= = −ℏ ℏ . (8.1) 

 

This is the expectation value for the gauge field Aν , given that A s A sν ν= .  Now, our goal 

is to deduce the time-dependency /d A dtν , and thereafter, the space-dependency /d A dν
x . 

 

 The first step is to separate ( ) ( )( ) ( )2exp / exp / exp /k

kiH x c i H mc t ip xσ
σ− = − + −ℏ ℏ ℏ  

into time and space components with k

kp x− = ⋅p x , via the standard ( )exp exp expA B A B+ =  

because the commutator [ ], 0Ht ⋅ =p x .  So for the ket we obtain the relation
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( ) ( )( ) ( )2

0 0exp / exp / exp /iH x c s i H mc t i sσ
σ− = − + ⋅p xℏ ℏ ℏ , with a conjugate relation for the 

bra.  Then, for convenient notation we define the bra ( )0, 0
exp /s i s≡ ⋅

x
p x ℏ .  Because 

0 0t s∂ =  by definition, it is easy to see that 
0,

0
t

s∂ =
x

, but that 

0, 0, 0, 0,
0

k k
s s ip s i s∂ = = − = ≠

x x x x
pℏ ℏ∇ , so that 

0,
s

x
 varies in space but not over time.  The 

subscripts 0, x  thus mean that ( ) ( ), 0,x ct
µ = =x x .  If we view all of physics as describing the 

evolution over time of configurations of matter in space, then because ( )exp /iHt− ℏ  is the time 

evolution operator, we may regard ( )exp /i ⋅p x ℏ  as a space configuration operator.  Likewise, 

now we may write ( ) 0,
exp /s iHt s= −

x
ℏ .  Likewise, also because [ ], 0Ht ⋅ =p x , the bra 

( )( )2

0, exp /s s i H mc t= +
x

ℏ .  In this notation, we may then rewrite (8.1) as: 

 

( ) ( )0, 0,exp / exp /A s A s s iHt A iHt sν ν ν= = −x xℏ ℏ , (8.2) 

 

with the rest mass term in 2H mc+  cancelling out because ( ) ( )2 2exp / exp / 1imc t imc t− =ℏ ℏ .  The 

above will be recognized as the usual starting point for deriving the Heisenberg equation of motion. 

 

 Because 
0,

0
t

s∂ =
x

, the total derivative of (8.2) with respect to time is the following: 

 

( ) ( )( )

( ) ( )

0, 0,

0, 0,

exp / exp /

exp / , exp /

, ,

d d d
A s A s s iHt A iHt s

dt dt dt

i A
s iHt H A iHt s

t

i A i A
s H A s H A

t t

ν ν ν

ν
ν

ν ν
ν ν

= = −

 ∂
 = + −   ∂ 

 ∂ ∂
   = + = +    ∂ ∂ 

x x

x x

ℏ ℏ

ℏ ℏ
ℏ

ℏ ℏ

. (8.3) 

 

This is recognizable as Ehrenfest’s theorem, which is merely the expectation value of the 

Heisenberg equation of motion in the Heisenberg picture.  Also applying the eigenvalue relations 

H s E s=  and s H s E= , we may rewrite this overall result, retaining bras and kets, as: 

 

, ,
A d

s H A s s E A s i s s i s A s
t dt

ν
ν ν ν∂

   = = −    ∂
ℏ ℏ . (8.4) 

 

Note that all of the above are also equal to ( )2 ,s H mc A sν +  , and it is really 

( )2H mc s E s+ =  which enables us to interchange E H↔  in this context.  We then 

reintroduce spacetime indexes in flat spacetime, to rewrite the above using 0 /p E c=  as:  
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0 0 00 0
,

A d
s p A s i s s i s A s i s A s i d s A s

x dx

ν
ν ν ν ν∂

  = − = ∂ −  ∂
ℏ ℏ ℏ ℏ . (8.5) 

 

Because our interest is the commutator 0

0
, , , k

k
p A p A p Aσ

σ     = +       in (1.5), we find that when 

sandwiched between a bra and a ket as defined above, the term 0

0
,s p A s    is the 0ν =  

component of (8.5) above. 

 

 Next, let us obtain the space-dependency /d A dν
x  for (8.1).  We can sample, say, the z 

axis, then generalize to x and y.  First, we segregate the z-axis term to the front of the kernel

( ) ( ) ( ) ( )( )3 2,1 2 0

3 2,1 0exp / exp / exp / exp /iH x c ip x ip x i H mc x cσ
σ− = − − − +ℏ ℏ ℏ ℏ .  Again, this is 

permitted because all four terms in ( )2/ x y zH x c H mc t p x p y p zσ
σ = + − − −  mutually commute.  

Then, we define ( ) ( )( )2,1 2 0

, , ,0 2,1 0 0exp / exp /t x ys ip x i H mc x c s≡ − − +ℏ ℏ  to be another ket which 

varies over time and over x and y but not over z, thus 
, , ,0

0
z t x y

s∂ = .  Therefore, 

( )3

3 , , ,0
exp /

t x y
s ip x s= − ℏ . Given that 3 zp p= −  in flat spacetime, using this and its conjugate 

bra s  in (8.1) yields: 

 

( ) ( ), , ,0 , , ,0exp / exp /t x y z z t x yA s A s s ip z A ip z sν ν ν= = − ℏ ℏ . (8.6) 

 

Then, using 
, , ,0

0
z t x y

s∂ = , we take the z-axis total derivative of (8.6) to obtain: 

 

( ) ( )

( ) ( )

, , ,0 , , ,0

, , ,0 , , ,0

exp / exp /

exp / , exp /

, ,

t x y z z t x y

t x y z z z t x y

z z

d d d
A s A s s ip z A ip z s

dz dz dz

i A
s ip z p A ip z s

z

i A i A
s p A s p A

z z

ν ν ν

ν
ν

ν ν
ν ν

= = −

 ∂
 = − − +   ∂ 

 ∂ ∂
   = − + = − +    ∂ ∂ 

ℏ ℏ

ℏ ℏ
ℏ

ℏ ℏ

. (8.7) 

 

This is an Ehrenfest-type equation for the z evolution.  Then generalizing to the other two space 

dimensions and also using kp = −p , we rewrite this in the form of (8.5), as: 

 

,k k kk k

A d
s p A s i s s i s A s i s A s i d s A s

x dx

ν
ν ν ν ν∂

  = − = ∂ −  ∂
ℏ ℏ ℏ ℏ . (8.8) 

 

 Comparing (8.5) with (8.8), we see that these are simply the time and space parts of a 

Lorentz-covariant relation, and so may be combined into a single relation: 
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( ), ,s p A s i s A s i s A s p A i A Aν ν ν ν ν ν
µ µ µ µ µ µ   = ∂ − ∂ = = ∂ −∂   ℏ ℏ ℏ . (8.9) 

 

Above, we have also replaced what were originally the total derivatives into partial derivatives, 

d ∂֏ , because we now have combined the  /d d dxσ
σ =  taken in all four spacetime dimensions 

into one relation.  Now, even with the same µ∂  in both terms on the right hand side above, we see 

with clarity that the expected value of the commutator, ,p Aν
µ   , measures iℏ  times the 

difference between the expected value of the four-gradient, Aν
µ∂ , and the four-gradient of the 

expected value, Aν
µ∂ .  Summing indexes this becomes: 

 

( ), ,s p A s i s A s i s A s p A i A Aσ σ σ σ σ σ
σ σ σ σ σ σ   = ∂ − ∂ = = ∂ − ∂   ℏ ℏ ℏ . (8.10) 

 

 Now we have derived the correct quantum mechanical treatment of the commutator 

,p Aσ
σ    in (1.5):  When this commutator is sandwiched within ,s p A sσ

σ    using s  and s  

developed above, it is evaluated according to the Ehrenfest-type equation (8.10) above, which 

contains the expected value of the Heisenberg-picture equation of motion in its time term, and 

three space-component terms containing expectation values for Heisenberg-picture equations of 

configuration.  Combined in the summed form of (8.10), these terms Lorentz transform as a scalar.  

Although derived in flat spacetime, we can generalize to curved spacetime by simply writing the 

commutator term as , ,p A g p Aσ µ ν
σ µν   =    . 

 

9.  Arriving at a Massless Photon by Gauge-Covariant, Lorentz-Covariant 

Gauge Fixing of the Klein-Gordon Equation to Remove Two Degrees of 

Freedom from the Gauge Field 

 

With the result (8.10), we return to (1.5) with A p A pσ σ
σ σ=  and p p p pσ σ

σ σ= , but now 

sandwich this between the bra s  and the ket s  developed in the previous section, to write:  

 

( )
2

2 2 2 2

2
0 2 ,

q q q
s m c s s p p A p m c p A A A s

c c c

σ σ σ σ σ
σ σ σ σ σπ π  

 = − = + − + +  
 

. (9.1) 

 

This is just the Klein-Gordon equation ( )( )( )2 2 20 / /iqA c iqA c m cσ σ
σ σ φ= ∂ − ∂ − +ℏ ℏ ℏ  restated 

in momentum space as ( ) ( )( )2 20 / /p qA c p qA c m c sσ σ
σ σ= + + −  with the earlier s turned into a 

ket s  and with a front-appended bra s .  For two random variables A and B, the expectation 

value is linear, A B A B+ = + .  So the commutator term in (9.1) may be separately treated as 

( )/ ,q c s p A sσ
σ   , enabling us to directly substitute (8.10) into (9.1).  The result is: 
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2
2 2

2
0 2

q q q q
s p p A p m c i A A A s i s A s

c c c c

σ σ σ σ σ
σ σ σ σ σ

 
= + − + ∂ + − ∂ 

 
ℏ ℏ . (9.2) 

 

Again, this is still the Klein-Gordon equation, in momentum space, with a bra in front.  In (9.2), 

( ) ( ) ( ) ( )( )2
/ / / /q c i A q c A A q c i q c A Aσ σ σ

σ σ σ σ∂ + = ∂ +ℏ ℏ , which contains the gauge-covariant 

derivative in the form /i qA c iσ σ σ∂ + =ℏ ℏD .  Thus (9.2) becomes: 

 

2 20 2
q q q

s p p A p m c i A s i s A s
c c c

σ σ σ σ
σ σ σ σ

 = + − + − ∂ 
 

ℏ ℏD . (9.3) 

 

Now, it is very common practice in U(1) gauge theory to remove one degree of freedom 

by imposing the Lorenz gauge 0Aσ
σ∂ = .  However, a priori, the gauge field Aσ  has four 

independent components, while the photon which this represents in quantum theory is massless 

and so only has two transverse degrees of freedom.  Because s A s Aσ σ
σ σ=D D  and 

s A s Aσ σ
σ σ∂ = ∂ , (9.3) affords us the opportunity to remove two degrees of freedom.  First, 

we may impose the Lorentz-covariant and gauge-covariant Lorenz gauge fixing condition: 

 

0
q

s A s A A i A A
c

σ σ σ σ
σ σ σ σ= = ∂ − =

ℏ
D D , (9.4) 

 

which sets the expected value Aσ
σD  of the gauge-covariant derivative Aσ

σD  of the gauge field 

Aσ  to zero.  Second, we may impose the Lorentz-covariant gauge fixing condition: 

 

0s A s Aσ σ
σ σ∂ = ∂ =  (9.5) 

 

which is the usual Lorenz gauge used to set the expected value Aσ  of the gauge field Aσ  to 

zero.  If we impose both (9.4) and (9.5) on (9.3), then we can remove two of the four degrees of 

freedom from the gauge field, in a covariant manner, ensuring that Aσ  will only retain two degrees 

of freedom which is precisely what is needed for this to represent massless photon quanta.  

 

Therefore, we now proceed to impose both (9.4) and (9.5) on (9.3), to simplify this to: 

 

2 2 2 20 2 2
q q

s p p A p m c s p p A p m c
c c

σ σ σ σ
σ σ σ σ

 = + − = + − 
 

, (9.6) 

 

while the gauge field loses two of its four degrees of freedom.  We may also again apply the 

heuristic rule p iσ σ∂֏ ℏ  in the above to write this, with sign flip and the bra removed, as: 
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2 2 20 2i qA m c s
c

σ σ
σ σ

 = ∂ ∂ − ∂ + 
 

ℏ
ℏ . (9.7) 

 

We have removed the bra in the above and so not written this as an expected value equation, 

because when σ∂  appears in the equation, it needs to operate on a ket to its right, as sσ∂ .  This 

is now a gauge-fixed Klein-Gordon equation in configuration space, in which the gauge field Aσ  

contains two not four degrees of freedom, precisely as is required for a massless photon.  By the 

Correspondence Principle, the classical equation obtained from (9.6) is: 

 

2 2
2

q
m c p p A p

c

σ σ
σ σ= + . (9.8) 

 

This should be contrasted with (1.5) from which the final two ,p Aσ
σ    and A Aσ

σ  terms have 

been removed using s  and s  to turn (1.5) from a classical into a quantum mechanical equation, 

and then imposing the gauge conditions (9.5) and (9.6).  What we learn from all this is that quantum 

mechanics, combined with two covariant gauge fixing conditions removing two degrees of 

freedom from the gauge fields, has brought about a wholesale change to the classical equation 

(1.5) by removing two of its terms. 

 

10.  Classical and Quantum Mechanical Geodesic Equations of Gravitational 

and Electromagnetic Motion  
 

 Now, let s work from the expectation value equation in (9.6), apply /p mdx dσ σ τ=  

throughout, and raise an index in the first term, and move the term with 2 2m c   to the left, thus:   

 

2 2 2 2
dx dx qm dx

m c m g A
d d c d

µ ν σ

µν στ τ τ
= + . (10.1) 

 

It will be seen that this is the parallel equation to (2.1), but that two things have now changed:  

First, the term with A Aσ
σ  is gone as a consequence of the gauge conditions (9.4) and (9.5).  Second 

the entire equation is an expectation value equation.  By the Correspondence Principle and 

Ehrenfest’s theorem, we know that the classical equation implied by (10.1) is simply (10.1) with 

the expectation brackets removed, which is (2.1) without the A Aσ
σ  term.  Therefore, it is easy to 

see that if start with the classical equation implied by (10.1) via Correspondence, and repeat all the 

same steps earlier taken from (2.1) through (2.12) starting with the variational equation 0
B

A
dδ τ=   

of (2.3) for geodesic motion, we will end up with the classical equation of motion: 

 
2

2 2 2

d x dx dx q dx
F

c d cd cd mc cd

β µ ν

σ
β

µν

σ
β

τ τ τ τ
+−Γ= . (10.2) 
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This has the gauge-dependent ( )A Aσβ
σ∂  term removed as a consequence of the gauge fixing in 

(9.4) and (9.5), it accords precisely with the known classical physical motions for gravitation and 

electrodynamics, and it is entirely geodesic motion because of its derivation from a variation. 

 

 Now, however, we can also obtain the quantum mechanical equation of motion based on 

(10.1).  First, we note that the mass term may be written as 2 2 2 2m c m c=  because m and c are 

numbers with definite values and zero variance, not statistical values.  So too for q.  Second, dxµ  

are coordinate elements and dτ  is a proper time element which also represent definite, not 

statistical measurement numbers against which we measure statistical spreads.  That is, even when 

we graph a probability distribution, we still do so against definite measurement axes.  The 

statistical objects in (10.1) are the gravitational fields in gµν , and the gravitational fields and 

electromagnetic potential in A g Aτ
σ στ= , though for now it will be convenient to retain the 

lower-indexed form Aσ  to absorb the gravitational field.  As a result, we may refine (10.1) into: 

 

2 2 2 2
dx dx qm dx

m c m g A
d d c d

µ ν σ

µν στ τ τ
= + . (10.3) 

 

We then divide both sides through by 2 2m c  to write this as: 

 

2
1 2

dx dx q dx
g A

cd cd mc cd

µ ν σ

µν στ τ τ
= +  (10.4) 

 

Contrasting to (2.2), the difference is that the A Aσ
σ  term is now gone, and the two fields gµν  and 

Aσ  are now expectation values gµν  and Aσ .   

 

So if we now employ this “1” in a minimized variation as in (2.3), it turns out that all the 

steps taken from (2.3) through (2.11) will be exactly the same, except that gµν  will end up 

wherever there was a gµν , and Aσ  wherever there was a Aσ , in (2.11).  Therefore, the 

counterpart to (2.11) based on (10.4) now turns out to be: 

 

( )
( )

2

2 2

2

1

2
0

B B

A A

dx dx d x
g g g

cd cd c d
d d

q dx
A A

mc c

g

d

x
α µν

α

µ ν ν

µ να ν αµ αν

σ

σ σα α

τ τ τδ τ τ

τ

δ

 
− ∂ − ∂ − 

 = =
 

+ − ∂ 
 

∂

∂
  . (10.5) 

 

As before, and for the same reasons, the term inside the large parenthesis must be zero, so that: 

 

( ) ( )
2

2 2 2

1

2

d x dx dx q dx
g g g A A

c d cd cd mc cd
g

ν µ ν σ

αν µ ναα µν αν αµ σ σ ατ τ τ τ
= − ∂ − ∂ + − ∂∂ ∂ . (10.6) 
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 In contrast to its counterpart (2.12), the above needs to be treated with some care, because 

( )1
2

g g ggβ
µν α µ

βα
µ να ν αµν− Γ = − ∂∂ − ∂  and AF Aσ σα αασ − ∂= ∂  contain expectation 

values of derivatives, while (10.6) is distinguished by having the terms 

( )1
2

g gg µ να αα µ µν ν− ∂ −∂ ∂  and A Aσα σ α− ∂∂  containing derivatives of expectation 

values.  This is where the Heisenberg equation of time evolution and space configuration comes 

back into play, because this very same distinction is measured by the commutators of the fields 

with energy momentum.  So, from (8.9): 

 

[ ], /A A i p Aα σ α σ α σ∂ = ∂ + ℏ . (10.7) 

 

And because this applies generally to field operators, not only to Aσ ,  for gµν  we may also write:  

 

, /i pg g gα α αµν µν µν ∂ = ∂ +   ℏ . (10.8) 

 

Then, using (10.7) and (10.8) in (10.6) and rearranging somewhat yields: 

 

[ ] [ ]

2

2 2 2

2

1

2

, , , , ,
2

d x dx dx q dx
g g g g A A

c d cd cd mc cd

i dx dx iq dx
p g p g p g p A p A

cd cd mc cd

ν µ ν σ

αν α µν µ να ν αµ α σ σ α

µ ν σ

α µν µ να ν αµ α σ σ α

τ τ τ τ

τ τ τ

= ∂ − ∂ − ∂ + ∂ − ∂

     + − − + −     ℏ ℏ

. (10.9) 

 

 Now, we have a term A FAσ σα ασα∂∂ − =  placed inside expectation values.  Moreover, 

with simple re-indexing, we also find 1
2

g ggg µ να ν
β

α αµµν αβ µν− ∂ − ∂ − Γ=∂ .  So with these 

replacements (10.9) becomes: 

 

[ ] [ ]

2

2 2 2

2
, , , , ,

2

g F
d x dx dx q dx

g
c d cd cd mc cd

i dx dx iq dx
p g p g p g p A p A

cd cd mc cd

ν µ ν σ

αν

µ ν σ

α µ

β
αβ µν ασ

ν µ να ν αµ α σ σ α

τ τ τ τ

τ τ τ

= +

     + − − + −   

−



Γ

ℏ ℏ

. (10.10) 

 

To further simplify, we raise the free index α  inside the expectation brackets.  Although raising 

an index, for example, via X g Xµ µσ
σ=  for some Xσ  involves multiplying by g µσ , we may still 

perform this entirely within the brackets because if X Y=   then g X g Yµσ µσ=  for any 

objects X, Y.  When we raise an index for gαν  we have α α
ν νδ δ=  which removes the 

expectation value because the Kronecker delta α
νδ  is just a 4x4 identity matrix; likewise for 

g β
αβ µνΓ  we have α β α β

β µν β µνδ δΓ = Γ .  And when we do this for e.g. ,p gν αµ    we obtain 

, 0p α
ν µδ  =  .  So this removes the two commutators ,p gµ να    and ,p gν αµ  which have an 
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index α  in the metric tensor.  With all of this, also raising the remaining indexes to explicitly 

show all appearances of the gravitational field, we arrive at our final result: 

 
2

2 2 2

2
, , ,

2

d x dx dx q dx
g

c d cd cd mc cd

i dx dx iq dx
p g g p A g p A

cd cd mc c

F

d

α µ ν σ
αβ

σβ

µ ν σ
α α β β α

µν σ

α
µν

β σβ

τ τ τ τ

τ τ τ

= +

     + + −     

− Γ

ℏ ℏ

. (10.11) 

 

 For classical theory, where all the commutators become zero and the expectation values 

are removed via the Correspondence Principle, (10.11) becomes the well-settled classical equation 

(10.2).  So – very importantly – using the gauge conditions (9.4) and (9.5) to remove two terms 

from (9.3) which descended from (1.5), has caused the gauge-dependent term ( )A Aσβ
σ∂  to vanish 

from (2.12) in favor of (10.2), which accords entirely with the robustly confirmed motions of 

particles in gravitational and electromagnetic fields, and which motions are now seen to both be 

geodesic motions.  When a classical system approaches a scale where quantum commutation 

cannot be neglected, (10.11) applies.  And in a fully-quantum setting, where the commutators are 

large enough so the classical terms with α
µνΓ  and g Fαβ

σβ  become negligible due to the very 

tiny ℏ  in the denominator of the commutator terms, (10.11) becomes a quantum motion equation: 

 
2

2 2 2
, , ,

2

d x i dx dx iq dx
p g g p A g p A

c d cd cd mc cd

α µ ν σ
α α β β α

µν σβ σβτ τ τ τ
     = + −     ℏ ℏ

. (10.12) 

 

 Finally, in (10.12) we can make good use of the generalized uncertainty relation 

( ) ( ) [ ]1
2

,A B i A Bσ σ ≥  for any two objects which are non-commuting, where σ  represents 

statistical standard deviation.  By this relation, ( ) ( ) ( )/ / 2 ,p g i p gα α
µν µνσ σ  ≥  ℏ ℏ .  

Therefore, when we consider gravitation alone by setting 0q =  or 0Aα = , (10.12) becomes: 

 

( ) ( )
2

2 2
,

2

dx dx d x i dx dx
p g p g

cd cd c d cd cd

µ ν α µ ν
α α

µν µνσ σ
τ τ τ τ τ

 ≥ =  ℏ , (10.13) 

 

which is an uncertainty relation for quantum gravitational interactions.  Conversely, when we 

consider electromagnetic interactions alone in flat spacetime, (10.12) becomes: 

 

( ) ( ) ( ) ( )( )
2

2 2 2 2
, ,

2 2

q dx d x iq dx
p A p A p A p A

mc cd c d mc cd

σ α σ
α β β α α β β α

σβ σβη σ σ σ σ η
τ τ τ

   − ≥ = −   
ℏ

.

 (10.14) 

 

This is an uncertainty relation for quantum electromagnetic interactions.  Both (10.13) and (10.14) 

are actually four independent equations, with the free index α .  In both of these relations, the 

lower bound on the uncertainty spread is established by the four-acceleration 2 2 2/d x c dα τ .  For 

gravitation, the coefficient of the acceleration is ℏ .  And for electromagnetism, it is noteworthy 



Jay R. Yablon, April 25, 2018 

35 

 

that the coefficient is / 2ℏ  which is also the magnitude of fermion spins.  And it is again worth 

noting that because of the gauge conditions (9.4) and (9.5) all unphysical gauge freedom has been 

removed from Aµ , so that there is no gauge ambiguity in ( ) ( ) ( ) ( )p A p Aα µ µ ασ σ σ σ− . 

 

 Finally, it is helpful to directly contrast the classical equations of motion with the quantum 

equations of motion uncertainty.  For gravitation absent electromagnetism this contrast is: 

 

( ) ( )
2 2

2 2 2 2
versus

dx dx d x dx dx d x
p g

cd cd c d cd cd c d

µ ν α µ ν
α

µν

α
α

µνσ σ
τ τ τ τ τ τ

= ≥−Γ ℏ . (10.15) 

 

For electromagnetism absent gravitation, mindful that F A Aαµ α µ µ α= ∂ − ∂ , this is: 

 

( ) ( ) ( ) ( )( )
2 2

2 2 2 2 2 2
versus

2

q dx d x q dx d x
F p A p A

mc cd c d mc cd c d

ν α ν α
αµ α µ µ α

µν µνη η σ σ σ σ
τ τ τ τ

= − ≥ ℏ . (10.16) 

 

In (10.15) we see that for a given acceleration, as the momentum uncertainty ( )pασ  for the mass 

in the gravitational field becomes smaller the field uncertainty ( )gµνσ  grows larger, and vice 

versa.  In (10.16) we see a similar incompatibility between momentum uncertainty and 

electromagnetic potential uncertainty. 

  

11.  The Simplified Quadratic Line Element following Gauge Fixing 

 

 If we again start with (10.4) and multiply each side through by 2 2c dτ  we obtain the metric: 

 

2 2

2
2

q
c d g dx dx A dx cd

mc

µ ν σ
µν στ τ= +  (11.1) 

  

It will be seen that this is the “unusual” quadratic metric (3.3) from earlier, but with the same two 

changes reviewed after (10.4):  the A Aσ
σ  is gone, and we now have expectation values gµν  and 

Aσ .  This remains quadratic in 2 2c dτ , as is seen if we write this as (contrast (3.4)): 

 

 
2 2

2
0 2

q
c d A dx cd g dx dx

mc

σ µ ν
σ µντ τ= − −  (11.2) 

 

But now the quadratic solution takes on a much simpler form that its counterpart (3.5), namely: 

 

2

2 2 4

q q
cd A dx g A A dx dx

mc m c

σ µ ν
σ µν µ ντ  

= ± + 
 

. (11.3) 

 

In particular, this no longer contains the ratio form of (3.5), and the term inside the square root is 

significantly simplified.  In fact, if we make the two definitions: 
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2

2 2

2 4
;

q
G g A A c G dx dx

m c

µ ν
µν µν µ ν µν≡ + Τ ≡ , (11.4) 

 

then also employing A A dx
σ

σ=  which is the expected value of the differential one-form 

A A dxσ
σ=  for the gauge field, we see that (11.3) can be written in the very simple form: 

 

2 2

q q
cd A dx G dx dx A cd

mc mc

σ µ ν
σ µντ = ± = ± Τ . (11.5) 

 

 The above have several very interesting properties.  First, the object 
2 2

c d G dx dx
µ ν

µνΤ ≡  

has a form very similar to the metric scalar 
2 2

c d g dx dx
µ ν

µντ = .  Of course, Gµν  defined above 

cannot be formally regarded as a metric tensor because it does not have the metricity properties of 

gµν  whereby 
; 0gµν σ =  and g gµσ µ

σν νδ= .  Nor is dΤ  (necessarily) invariant; rather, the invariant 

is 
2

/cd q A mc cdτ = ± Τ  with the possibility of some sub-relation between 
2

/q A mc  and cdΤ  

which leaves cdτ  unchanged.   But what makes this of keen interest is that we may still think of 

of Gµν  as being a “quasi-geometric” object in the manner of gµν  merely because G dx dxµ ν
µν±  

standing alone still does define a line element cdΤ  (which differs from cdτ  precisely by 
2

/q A mc ).  Further, the G dx dxµ ν
µν±  square root is very reminiscent of how Dirac’s equation 

( ) 0i mcµ
µ ψΓ ∂ − =ℏ  is developed in flat spacetime from p pµ ν

µνη±  and then generalized into 

curved spacetime using a tetrad a

aeµ µγ ≡ Γ , as earlier reviewed in section 1. 

 

 This point will be of keen interest here, because while Dirac’s equation teaches about how 

individual electrons behave in an electromagnetic field, (11.5) will lead us to a variant of Dirac’s 

equation which can be used to understand how individual photons interact with individual 

electrons.  And in fact, (11.5) only has the form that it does (versus the earlier (3.5)), because at 

(9.4) and (9.5) we removed two of the four degrees of freedom from Aσ  giving it precisely the 

properties expected of a massless photon.  Indeed, the foregoing is why, following Dirac, part of 

the title of this paper is “Quantum Theory of the Electron and the Photon.” 

 

12.  The Electromagnetic Time Dilation and Energy Content Relations, 

following Gauge Fixing  
 

 Before we proceed to this new variant of Dirac’s equation, we first wish to determine the 

impact of the foregoing quantum development and gauge fixing on the electromagnetic time 

dilations (5.8) and (5.9).   To do so, we develop the quadratic solution for the metric (11.1) when 

taken at rest in flat spacetime, just as we earlier did for the metric (3.3).  To place (11.1) into flat 

spacetime, we need to set gµν µν µνη η= = .  So following the same steps that led to (4.1), it is 

easy to see that (11.1) will become: 
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02 2

2
2

q
d dt dtd

mc

φ
τ τ= + . (12.1) 

 

Following the development from (4.1) to (4.4), again choosing to solve for dt , we see that in place 

of (4.4) we now have: 

 

0

2
1

qdt

d mc

φ
τ

= − . (12.2) 

 

So the only difference is that now the scalar potential appears as an expectation value.  Otherwise 

there is no change to the overall form of the equation.  This is because when we had the earlier 

terms with 2

0φ  that have now been eliminated because of the gauge fixing at (9.4) and (9.5), these 

terms nonetheless ended up cancelling inside the square root term in (4.3). 

 

 So if we repeat the development from (4.4) to (5.8), nothing else changes, and the earlier 

(5.8) and (6.1) for the time electromagnetic time dilation at rest in flat spacetime and its energy 

content via the relation 2

emE mcγ= , now becomes: 

 
2 3 4

0 0 0 0 0

2 2 2 2 2 20
0

2

1
1

1

n

em n

q q q q qdt E

qd mc mc mc mc mc mc

mc

φ φ φ φ φ
γ

φτ
∞

=

       
≡ = = = + + + + + =       

       −
… . (12.3) 

 

Now, the time dilation is based on the expected value of the scalar potential.  When we employ a 

Coulomb potential, this will enter as 0 1/ek Q rφ =  where 1/ r  is the expectation value of the 

inverse separation between the two charges.  Note, we have not used 1/ r  because statistically, 

1/ 1/r r≠ .  Rather, as is well known, 1/ 1/r r≥  for positive random variable r.  The only 

distribution with 1/ 1/r r=  is a Dirac delta ( )rδ .  So the (5.9), (6.2) counterpart is: 

 
2

2 2 2 20

2

1 1 1 1
1

1
1

n

e e e
em n

e

k Qq k Qq k Qqdt E

k Qqd mc mc r mc r mc r

mc r

γ
τ

∞

=

   ≡ = = = + + + =   
   −

… . (12.4) 

 

So we naturally find ourselves in a situation where must use an expected separation between Q 

and q, which is precisely where we do end up once we talk about interactions between electrons, 

protons, etc. which do not have positions with classical certainty.  Thus, (12.4) naturally embeds 

the existence of Heisenberg position uncertainty via the appearance of 1/ r .  In general, cf. (6.3), 

the energy content relation 
2 2

v g emE mc mcγ γ γ= Γ =  holds for both classical and quantum systems.  

The expectation values of quantum systems are embedded in the individual 
v

γ , 
gγ , 

em
γ .  The 
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energy in excess of 2mc , is then ( )2 2
1W E mc mc= − = Γ − .  This means as well that the relation 

v g emp m v m v
µ µ µγ γ γ= Γ =  obtained at (6.4) also continues to hold for a quantum system.   

 

PART III:  THE HYPER-CANONICAL DIRAC EQUATION FOR 

INDIVIDUAL ELECTRON AND PHOTON INTERACTIONS 

 

13.  Dirac’s Equation with Electromagnetic Tetrads 

 

 Now we turn to Dirac’s equation.  As reviewed in section 1, to obtain Dirac’s equation, we 

start with the entirely-classical relation 
2 2

m c p p
µν

µ νη=  in flat  spacetime, define a set of 4x4 µγ  

operator matrices { }1
2

µ ν ν µ µνγ γ γ γ η+ ≡ , then use ( ) { }2
1
2

p p p p pµ µ ν ν µ µν
µ µ ν µ νγ γ γ γ γ η= + =  to 

take the square root equation mc p p pµν µ
µ ν µη γ= ± =  with the ±  sign absorbed in the µγ  

definitions.  Finally, because this result only makes sense if it operates on a spinor ( )u pν  which 

following the development in section 8 we represent as the ket 0u  with 0 0uµ∂ = , we are able 

to form ( ) 0
0p mc uµ

µγ − = .  If we then use the ket ( ) 0
exp ip x uσ

σψ ≡ −  this readily becomes 

( ) 0i mcµ
µγ ψ∂ − =ℏ .  We then introduce electromagnetic interactions by requiring local U(1) 

electromagnetic interactions which provides us with the gauge-covariant derivative 

/iqA cµ µ µ µ∂ ≡ ∂ −֏ ℏD .  Finally, in curved spacetime, where the underlying equation is 

mc g p pµν
µ ν= ± , we also employ tetrads defined such that ab

a bg e eµν µ νη= .  In this way, we turn 

mc p pµν
µ νη= ±  or mc g p pµν

µ ν= ±  which is a classical equation, into the quintessentially 

quantum mechanical operator equation of Dirac. 

 

 As also reviewed in section 1, a similar process occurs with the Klein Gordon equation.  

Here we start with the same classical 
2 2

m c p p
µ ν

µνη= , have this operate on what we now write as 

the ket 0s  with 0 0sµ∂ =  in the form ( )2 2

0
0p p m c sσ

σ − = , then use ( ) 0
exps ip x sσ

σ≡ −  

to advance this to ( )2 2 20 m c sσ
σ= ∂ ∂ +ℏ , then use µ µ∂ ֏D  to add interactions.  Here too, we 

turn a purely classical equation 
2 2

m c p p
µ ν

µνη=  into a quantum mechanical equation.  The key 

point of both these examples for the discussion to follow is this:  the tried and true recipe of both 

Klein-Gordon and Dirac teaches us that we can start with a classical equation such as 

mc p pµν
µ νη= ±  or 

2 2
m c p p

µ ν
µνη= , use it to operate on a ket such as ψ  or s , and thereby 

produce a valid quantum mechanical equation. 

 

 With this in mind, we return to (11.3) which is the quadratic solution for the metric (11.1), 

which in turn descends from (9.6) which in turn is the Klein-Gordon equation in the form (1.5) 

sandwiched between a bra and a ket after applying the gauge conditions (9.4) and (9.5).  By the 
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Ehrenfest/Correspondence Principle, the classical equation we may extract from (11.3) by turning 

all expectation values into ordinary classical objects is: 

 

2

2 2 4 2

q q q
cd A dx g A A dx dx A dx G dx dx

mc m c mc

σ µ ν σ µ ν
σ µν µ ν σ µντ  

= ± + = ± 
 

, (13.1) 

 

Above, we also insert the classical value ( )2 2 4/G g q m c A Aµν µν µ ν= +  from (11.4), so this is (11.5) 

in its classical limit.  This is also the “peculiar” quadratic solution (3.5), once its Klein-Gordon 

counterpart is converted to a quantum operator equation and its gauge fixed using (9.4) and (9.5).   

 

 Because our present interest is in Dirac’s equation, we multiply this classical result (13.1) 

through by /m dτ  and swap upper and lower indexes, to obtain: 

 

2

2 2 4 2

q q q
mc A p g A A p p A p G p p

mc m c mc

σ µν µ ν σ µν
σ µ µ σ µ µ

 
= ± + = ± 

 
, (13.2) 

 

so we have the square root in the exact same form as the classical curved spacetime equation

mc g p pµν
µ ν= ± .  Just as we do for Dirac’s equation in curved spacetime, we now turn (13.2) 

above into an alternative form of Dirac’s equation which applies specifically to the quantum 

interactions between individual electrons and individual photons, because the covariant removal 

of two degrees of freedom to produce a massless photon is structurally embedded in (13.2).  

Specifically, in the same way we generalize Dirac’s equation into flat spacetime by defining a set 

of µΓ  in terms of g µν  by { }1
2

gµ ν ν µ µνΓ Γ + Γ Γ ≡  and in terms of the tetrads 
aeµ  by a

aeµ µγ ≡ Γ  so 

that { }1
2

a b b a ab

a b a b
g e e e eµν µ ν µ νγ γ γ γ η= + = , let us now use exactly the same approach to (13.2).  

From (11.4), we may extract classical equation: 

 

( )2 2 4/G g q m c A Aµν µν µ ν= +  (13.3) 

 

from the expectation value.  To start we will work in flat spacetime so that gµν µνη=  and

( )2 2 4/G q m c A Aµν µν µ νη= + .  Later, we will generalize back to curved spacetime.  

 

 Just as the gravitational tetrads 
aeµ  contain both an upper Greek spacetime index and a 

lower early-in-the-alphabet Latin Lorentz index, we begin by defining a similar electromagnetic 

tetrad 
y

µε  (ε  denoting electromagnetism) with an upper Greek spacetime index and a lower late-

in-the alphabet Latin electromagnetic index.  We also use these in flat spacetime to define a set of 

electromagnetic gamma matrices by the relation ( )
y

y

µ µ
ε ε γΓ ≡ .  Finally, we further define these ( )

µ
εΓ  

in terms of G µν  by ( ) ( ) ( ) ( ){ }1
2

Gµ ν ν µ µν
ε ε ε εΓ Γ + Γ Γ ≡ , then combine all these definitions by writing: 
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( ) ( ) ( ) ( ){ } { }
2

1 1
2 22 4

y z y z yz

y z y z

q
G A A

m c

µν µν µ ν µ ν ν µ µ ν µ ν
ε ε ε εη γ γ γ γ ε ε η ε ε= + ≡ Γ Γ +Γ Γ = + = , (13.4) 

 

Just as ( )2

p p p
µ µν

µ µ νγ η=  in flat spacetime and ( )2

p g p p
µ µν

µ µ νΓ =  in curved spacetime, it is 

simple to deduce from the above definitions that ( )( )2

p G p p
µ µν

µ µ νεΓ = .  Then, the square root in 

(13.2) may be written as ( )G p p p
µν µ

µ µ µε± = Γ  which, as with pµ
µΓ  in Dirac’s equation, is a 4x4 

matrix.  So this will now have to operate on a 4-component column vector.   

 

 For Dirac’s momentum space flat spacetime equation ( )( ) 0/ 0p qA c mc uµ
µ µγ + − =  we 

employ a Dirac spinor ( )u pµ  that is independent of space and time which, in accord with the 

conventions developed in section 8, we denote as 0u .  Here, we use a similar four-component 

fixed-state ket 0U  defined to be independent of spacetime, 0 0Uµ∂ ≡ .  Then, appending 0U  

to the right of (13.2), using ( )G p p p
µν σ

µ µ σε± = Γ  and setting everything to a zero (13.2) becomes: 

 

( )
2

02
0

q
A cp mc U

mc

σ σ
σε

  Γ + − =  
  

. (13.5) 

 

This is to be contrasted (13.6) with Dirac’s ( ) ( )( )0 0
/ 0mc u p qA c mc uσ σ

σ σ σγ π γ− = + − = .  In 

the absence of electromagnetic fields, where either 0q =  or 0Aσ = , the tetrad y

µε  becomes a 4x4 

unit matrix, and ( )
y

y

σ σ µ
ε ε γ γΓ ≡ = , so that (13.5) this reduces to ( ) 0

0p mc Uσ
σγ − = .  Likewise, 

Dirac’s momentum space equation reduces to ( ) 0
0p mc uσ

σγ − = .  Because these two equations 

now have exactly the same operator p mcσ
σγ − , this also means that 0 0U u→  when 

electromagnetic interactions vanish.  Thus (13.5) becomes synonymous with Dirac’s momentum 

space equation for free fermions.  However, when there are electromagnetic interactions, (13.5) is 

a somewhat different equation from ( )( ) 0
/ 0p qA c mc uσ

σ σγ + − = .  Shortly, we shall study these 

differences.  As a result of appending 0U , the classical (13.2) is now a quantum mechanical 

equation (13.5).  

 

 If the further define a ket ( ) 0
exp /iH x c Uσ

σΨ ≡ − ℏ  which is a function of space and 

time due to the kernel ( )exp /iH x cσ
σ− ℏ , then we may deduce H cp i cσ σ σΨ = Ψ = ∂ Ψℏ  just 

as we did previously prior to (8.1) for s .  With this (13.5) can be turned into: 

 

( )
2

2
0

q
i c A mc

mc

σ σ
σε

  Γ + ∂ − Ψ =  
  

ℏ . (13.6) 
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This is the new variant of Dirac’s equation in configuration space in flat spacetime, which should 

be contrasted to the usual ( ) ( )( )0 /i mc i qA c mcµ µ
µ µ µγ ψ γ ψ= − = ∂ + −ℏ ℏD  for Dirac’s 

configuration space equation in flat spacetime, as reviewed in section 1.  As with (13.5), the two 

operators become identical when  0q =  or 0Aσ =  so that ψΨ → , in which circumstance, 

(13.6) becomes synonymous with Dirac’s configuration apace equation for free fermions. 

 

 Importantly, (13.5) and (13.6) also answer the question how to make sense of the “peculiar” 

line element in (3.3) and its equally perplexing solution (3.5):  The quadratic solution (3.5) is in 

fact a new variant (13.5) of Dirac’s equation in thick disguise, which is unmasked once we use the 

Heisenberg/Ehrenfest equations of motion and configuration, then remove two degrees of freedom 

from the gauge field Aσ  via (9.4) and (9.5), thereby turning Aσ into a true massless photon.  So as 

we shall also shortly see, (13.5) allows us to study interactions between individual electrons and 

individual photons.  For pedagogic reference, given that the Dirac equation ( )0 i mcµ
µγ ψ= −ℏ D  

is the canonical result of applying local U(1) gauge symmetry to the ordinary 

( )0 i mcµ
µγ ψ= ∂ −ℏ , we shall refer to equations (13.5) and (13.6) as Dirac’s equation with 

electromagnetic tetrads embedded in ( )
y

y

µ µ
ε ε γΓ ≡  as the “hyper-canonical” Dirac equation. 

 

14.  The Electromagnetic Interaction Tetrad 

  

 Now we wish to derive the electromagnetic tetrad y

µε , in explicit component representation.  

The key relation for doing so is ( )2 2 4/yz

y z
q m c A Aµ ν µν µ νη ε ε η≡ +  in (13.4).  For compact notation 

we define the substitute variable 
2/q mcρ ≡ .  Given that y y

µ µε δ=  is a 4x4 identify matrix when 

0q =  or Aµ , it also helps to define y

µε ′  via y y y

µ µ µε δ ε′≡ + , to represent how y

µε  differs from the 

unit y

µδ .  With these definitions we write the salient portion of (13.4) as: 

 

( )( ) ( )yz yz yz

y z y y z z y z y z y z y z
A Aµ ν µ µ ν ν µ ν µ ν µ ν µ ν µν µ νη ε ε η δ ε δ ε η δ δ ε δ δ ε ε ε η ρ ρ′ ′ ′ ′ ′ ′= + + = + + + = + . (14.1) 

 

With 
yz

y z

µ ν µνη δ δ η=  and 
yz y

z

ν νη δ η=  and 
yz z

y

µ µη δ η= , and also subtracting 
µνη  from each side, 

this easily simplifies to: 

 
y z yz

y z y z A Aν µ µ ν µ ν µ νη ε η ε η ε ε ρ ρ′ ′ ′ ′+ + = . (14.2) 

 

 The above contains sixteen (16) equations for each of 0,1, 2, 3µ =  and 0,1, 2, 3ν = .  But, 

this is symmetric in µ  and ν so in fact there are only ten (10) independent equations.  Moreover, 

because Aµ  has only four independent components, and also because we have already removed 

two degrees of freedom from Aµ  via the gauge conditions (9.4) and (9.5), we anticipate that (14.2) 
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will highlight this limited freedom by imposing definitive constraints on Aµ .  Given that 

( ) ( )diag 1, 1, 1, 1yzη = − − − , the four µ ν=  “diagonal” equations in (14.2) produce the relations: 

 
0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 2 2 3 3

1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 1 2 2 3 3

2 2 2 2 2 2 2 2 2 2 2

2 0 0 1 1 2 2 3 3

3 3 3 3 3 3 3 3 3 3 3

3 0 0 1 1 2 2 3 3

2

2

2

2

A A

A A

A A

A A

ε ε ε ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ε ε ε ρ ρ

′ ′ ′ ′ ′ ′ ′ ′ ′+ − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′− + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′− + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′− + − − − =

. (14.3a) 

 

Likewise the three 0µ = , 1, 2, 3v =  mixed time and space relations in (14.2) are: 

 
0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 0 1 1 2 2 3 3

0 2 0 2 0 2 0 2 0 2 0 2

2 0 0 0 1 1 2 2 3 3

0 3 0 3 0 3 0 3 0 3 0 3

3 0 0 0 1 1 2 2 3 3

A A

A A

A A

ε ε ε ε ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ε ε ε ε ρ ρ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + − − − =

. (14.3b) 

 

Finally, the pure-space relations with , 1, 2µ ν = , , 2, 3µ ν =  and , 3,1µ ν =  are: 

 
1 2 1 2 1 2 1 2 1 2 1 2

2 1 0 0 1 1 2 2 3 3

2 3 2 3 2 3 2 3 2 3 2 3

3 2 0 0 1 1 2 2 3 3

3 1 3 1 3 1 3 1 3 1 3 1

1 3 0 0 1 1 2 2 3 3

A A

A A

A A

ε ε ε ε ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ε ε ε ε ρ ρ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − + − − − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − + − − − =

. (14.3c) 

 

 Now, the right hand side of all ten of (14.3) have nonlinear products A Aµ νρ ρ  of two field 

terms.  On the left of each there is a mix of linear and nonlinear expressions containing the y

µε .  In 

(14.3a) the linear appearances are of 
0

0ε′ , 
1

1ε′ , 
2

2ε′  and 
3

3ε′  respectively.  Given that the complete 

tetrad y y y

µ µ µε δ ε′≡ + , let us require that y y

µ µε δ=  for the four yµ =  components, therefore, 

0 1 2 3

0 1 2 3ε ε ε ε′ ′ ′ ′= = =  for yµ = .  This is consistent with y y

µ µε δ=  generally when 0q =  or Aµ , and 

it means that the field components Aµρ  will all appear in off-diagonal components of y

µε .  In 

(14.3b), let us eliminate the linear terms by requiring 
0 1

1 0ε ε′ ′= , 
0 2

2 0ε ε′ ′= , and 
0 3

3 0ε ε′ ′= , which is 

symmetric in µ  and y.  In (14.3c) we likewise remove the linear terms by requiring 
1 2

2 1ε ε′ ′= − , 

2 3

3 2ε ε′ ′= −  and 
3 1

1 3ε ε′ ′= −  which is antisymmetric in µ  and y.  With all of this (14.3) reduce to: 

 
0 0 0 0 0 0 0 0

1 1 2 2 3 3

1 1 1 1 1 1 1 1

0 0 2 2 3 3

2 2 2 2 2 2 2 2

0 0 1 1 3 3

3 3 3 3 3 3 3 3

0 0 1 1 2 2

A A

A A

A A

A A

ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ρ ρ
ε ε ε ε ε ε ρ ρ

′ ′ ′ ′ ′ ′− − − =
′ ′ ′ ′ ′ ′+ − − =
′ ′ ′ ′ ′ ′+ − − =
′ ′ ′ ′ ′ ′+ − − =

, (14.4a) 
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0 1 0 1 0 1

2 2 3 3

0 2 0 2 0 2

1 1 3 3

0 3 0 3 0 3

1 1 2 2

A A

A A

A A

ε ε ε ε ρ ρ
ε ε ε ε ρ ρ
ε ε ε ε ρ ρ

′ ′ ′ ′− − =
′ ′ ′ ′− − =
′ ′ ′ ′− − =

, (14.4b) 

 
1 2 1 2 1 2

0 0 3 3

2 3 2 3 2 3

0 0 1 1

3 1 3 1 3 1

0 0 2 2

A A

A A

A A

ε ε ε ε ρ ρ
ε ε ε ε ρ ρ
ε ε ε ε ρ ρ

′ ′ ′ ′− =
′ ′ ′ ′− =
′ ′ ′ ′− =

. (14.4c) 

 

 Next, for the space components of Aµ , we assign 
1 1

0 Aε ρ′ = − , 
2 2

0 Aε ρ′ = −  and 
3 3

0 Aε ρ′ = −  

for the components of the tetrad which have a space world index and a time Lorentz index.  By the 

earlier symmetric relations 
0 1

1 0ε ε′ ′= , 
0 2

2 0ε ε′ ′= , and 
0 3

3 0ε ε′ ′=  this means 
0 1

1 Aε ρ′ = − , 
0 2

2 Aε ρ′ = −  

and 
0 3

3 Aε ρ′ = −  as well.  Substituting this in (14.4) and reducing then brings us to: 

 
1 1 2 2 3 3 0 0

1 1 1 1 1 1 1 1

2 2 3 3

2 2 2 2 2 2 2 2

1 1 3 3

3 3 3 3 3 3 3 3

1 1 2 2

A A A A A A A A

A A A A

A A A A

A A A A

ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ε ε ε ε ρ ρ
ρ ρ ε ε ε ε ρ ρ
ρ ρ ε ε ε ε ρ ρ

− − − =
′ ′ ′ ′+ − − =
′ ′ ′ ′+ − − =
′ ′ ′ ′+ − − =

, (14.5a) 

 
2 1 3 1 0 1

2 3

1 2 3 2 0 2

1 3

1 3 2 3 0 3

1 2

A A A A

A A A A

A A A A

ρ ε ρ ε ρ ρ
ρ ε ρ ε ρ ρ
ρ ε ρ ε ρ ρ

′ ′− − =
′ ′− − =
′ ′− − =

, (14.5b) 

 
1 2

3 3

2 3

1 1

3 1

2 2

0

0

0

ε ε
ε ε
ε ε

′ ′− =
′ ′− =
′ ′− =

. (14.5c) 

 

Because (14.4) all contain products of two tetrads it would be possible to make the oppositely-

signed assignments 
1 1

0 Aε ρ′ = + , 
2 2

0 Aε ρ′ = +  and 
3 3

0 Aε ρ′ = +  without changing the results (14.5) 

at all, because as to this sign ambiguity, ( )2
1 1± = + .  As we shall later see at (19.13) supra, we 

choose the minus sign because this is required to ensure that (13.5) produces solutions identical to 

Dirac’s usual ( )( ) 0
/ 0p qA c mc uσ

σ σγ + − =  in the weak field linear limit. 

 

 Next, one way to satisfy the earlier relation 
1 2

2 1ε ε′ ′= − , 
2 3

3 2ε ε′ ′= −  and 
3 1

1 3ε ε′ ′= −  following 

(14.3) is to set all six of these to zero.  This will satisfy all of (14.5c) identically, and will also 
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satisfy the last three relations (14.5a) identically.  We may also divide out 
2ρ  from the first relation 

(14.5a), and all of (14.5b) may be combined into one, so now all we have left to satisfy are: 

 
0 0 1 1 2 2 3 3 0A A A A A A A A+ + + = , (14.6a) 

 
0 1 0 2 0 30 A A A A A Aρ ρ ρ ρ ρ ρ= = = . (14.6b) 

 

If we posit that at least one of the three 1 0A ≠ , 2 0A ≠  and 3 0A ≠ , then we are required by 

(14.6b) to set 0 0A = .  The only relation we now have left to satisfy is (14.6a), which is the 

00µν =  pure-time component of (14.2).  Because of (14.6b), (14.6a) becomes: 

 
1 1 2 2 3 3 2 0A A A A A A+ + = ⋅ = =A A A . (14.7) 

 

Consolidating (14.6) and (14.7) into generally covariant form, we obtain: 

 
0 2

0 0; 0; 0k

kA A A A A Aσ
σ= = − = ⋅ = = =A A A . (14.8) 

 

 Now, subject to (14.8) which we shall review in depth momentarily, we obtained each 

component of the tetrad y

µε .  Collecting all of the results from (14.3) through (14.8), reassembling 

the complete tetrad y y y

µ µ µε δ ε′≡ + , and restoring 
2/q mcρ = , what we have deduced is that the 

simultaneous equations in (14.1) are solved by: 

 
1 2 3 1 2 2 2 3 2

1 1 2

2 2 2

3 3 2

1 1 / / /

1 0 0 / 1 0 0

0 1 0 / 0 1 0

0 0 1 / 0 0 1

y

A A A qA mc qA mc qA mc

A qA mc

A qA mc

A qA mc

µ

ρ ρ ρ
ρε
ρ
ρ

   − − − − − −
   − −   = =
   − −
      − −   

. (14.9) 

 

The 1A , 2A  and 3A  above subject to the further constraint (14.8) which means that only two of the 

three kA  in (14.9) are truly independent.  Thus, there are indeed only two degrees of freedom in 

the original Aµ   which again is a downstream result of the gauge conditions (11.4) and (11.5). 

 

15.  Massless Photons with Two Helicity States and Coulomb Gauge  

 

 Equation (14.7) also part of (14.8), which is the 00µν =  pure-time component of (14.2) 

shown expressly in the top line of (14.3a), is consequential.  First, because the Pythagorean sum 

in (14.7) is equal to zero, it is impossible for all three of 1A , 2A  and 3A  to simultaneously be non-

zero and real.  In fact, if any of these is real, then at least one other must be imaginary.  This means 

that Aµ  under conditions (14.8) no longer represents a classical field ( ),Aµ φ= A  with four real 

components and inherent gauge ambiguity, but rather a massless photon quantum with two degrees 

of freedom and no gauge ambiguity.  This all is confirmed by the fact that 0 0A = , making it 
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impossible for a massive gauge field travelling along the z axis (denoted ẑ ) to keep a longitudinal 

polarization ( ) ( ) 2ˆ ,0,0, /z c E Mcµε = p , see, e.g., section 6.12 of [13] at [6.92].  In the discussion 

to follow, we shall use “γ ,” a customary photon notation, as a subscript to designate when 

particular fields are those of an individual photon.  This will distinguish from classical fields 

external to the photon, for which shall use the subscript “c”.  

 

  Second, if this photon propagates along the z axis and has energy 0cq E hν ω= = = ℏ  also 

using 2h π= ℏ  and the radian frequency 2ω πν= , then its energy-momentum four-vector is 

 

( ) ( ) ( ) ( )ˆ 0 0 0 0 0 0z z zcq z E cq h cq cqµ ν ω= = = ℏ . (15.1) 

 

Also, because the photon is massless, we must have 
2 4 20 m c c q qσ
γ σ= =  (we shall now use the 

subscript “γ ” to denote photon).  Together with the above, this implies that ( )22c hν⋅ =q q .  With 

(15.1), the longitudinal orthogonal polarization component must be 3 0ε = , thus 3 0A = .  Now 

(14.7) reduces given (15.1), to 1 1 2 2 0A A A A+ =  which in turn means 1 2A iA= ± .  Then, the relation 
1 2A iA= ±  is solved by the right- and left-polarization vectors: 

 

( ) ( ),
ˆ 0 1 0 / 2R L z iµε ≡ −∓ , (15.2) 

 

again, [13] at [6.92].   In general, this means that: 

 

( )exp /A A iq xµ µ σ
γ σε= − ℏ , (15.3) 

 

with a dimensionless polarization vector µε  and an amplitude A having dimensions of energy-per-

charge to keep balance because those are the dimensions of Aµ
γ .  So not only have the two covariant 

gauge conditions (9.4) and (9.5) forced Aµ
γ  to be massless photons, but they have also forced Aµ

γ  

to assume the known right- and left-handed photon helicities.  This is what has become of our 

remaining two degrees of freedom, precisely in accord with known theory and observation.  The 

above (15.2) and (15.3) represent a real photon, not a “virtual” photon, because the longitudinal 

and scalar polarizations have been entirely eliminated and all that is left are the two transverse 

polarizations.  And, because of (15.2), the gauge potential now introduces imaginary terms into 

the Riemannian geometry above and beyond the Fourier kernels often used to transform between 

configuration and momentum space, thus producing a type of Kähler Geometry.  Because the only 

part of (15.3) which is a function of spacetime is the Fourier kernel ( )exp /iq xσ
σ− ℏ , this means 

that in general: 

 

( ) ( )ti c A cq A i i c A c Aµ µ µ µ
σ γ σ γ γ γω∂ = = ∂ = − qℏ ℏ ℏ ℏ∇ . (15.4) 

 

 Third, it is clear from the above that 0q σ
σ ε = , which is a form of the Lorentz gauge that 

emerges from the classical rendition of (9.5).  But because 0 0Aγ =  thus 0 0ε =  we may also deduce 
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that ⋅q ε = 0  which is the Coulomb gauge.  Ordinarily this is a non-covariant gauge choice, see 

section 6.9 of [13] at [6.67].  Yet here, this is a covariant gauge, because it is a consequence of the 

covariant gauge conditions (9.4) and (9.5).  Indeed, (9.4) and (9.5) are responsible for the very 

structure of (13.5), having caused the peculiar quadratic solution (3.5) to eventually turn into (13.5) 

via the definitions (13.4) that led among other results, to 0 0 0A Aγ= =  in (14.6).  Assembling this 

with other immediate corollaries and (15.2), we find that: 

 

0; 0; 0; 0; 0;k k k k k

kq q q A q A A Aσ σ σ
σ σ γ γ γ σ γ γ γε ε= = ⋅ = = = ⋅ = ∂ = ∂ = ⋅q q A Aε ∇ = 0 . (15.5) 

 

The above, together with (14.8), will be used extensively to zero out many contracted terms in 

subsequent calculations. 

 

Finally, let us consider the relation =B A∇ ×  between the vector potential A and the 

magnetic field B, which via (15.4) may be written as ( )iγ γ=B q Aℏ ×  for an individual photon.  

Referring to just prior to (15.3), it is helpful to note that ( ) ( )ˆ 0,0, zz q=q  and 

( ) ( ),
ˆ 1, ,0 / 2R L z i= −∓ε .  Thus, ( )0 / 2z ziq q× = −q ∓ε  and ( )2

0× =q ε .  Because 

( )exp /A A iq xµ µ σ
γ σε= − ℏ , this also means that ( )2

2 2 0γ γ= − =q A Bℏ× .  Recognizing that we can 

rotate to propagate any other direction without changing the invariant features of this result, this 

leads to several important observations: 

 

First, this emphasizes how γ=A A  has now been fully converted to the quantum potential 

for a photon, and is not and can no longer be regarded as a classical potential c=A A .  Second, 

as the mediator of electromagnetic interactions, the z-traversing photon must have a magnetic field 

which we now know has the components 

 

( )( ) ( ) ( )ˆ 0 exp / / 2
z z

i z A q iq iq xσ
γ γ σ= × = −B q Aℏ ∓ ℏ . (15.6) 

 

Just as γA  is orthogonal to q, so too γB  is orthogonal to q.  Third, although the photon magnetic 

field is nonzero, this γB  has imaginary components just like γA , over and above the complex 

kernel ( )exp /iq xσ
σ− ℏ .  Fourth, from (15.6) we may calculate that 2 0γ =B , which stems directly 

from 
2 2 0γ= =A A  found in (14.8).  Thus, just as a photon carries energy even though as a luminous 

boson it is massless, so too a photon has a non-zero magnetic field even though the magnitude of 

that magnetic field is zero, 0γ =B .  Fifth, the fact that a classical magnetic field can have a non-

zero magnitude c 0≠B  is one clear indicator why γ=A A  must be regarded as a photon rather 

than a classical potential.  Sixth, the magnetic field still carries the kernel ( )exp /iq xσ
σ− ℏ .  As a 

result, also using (15.1), the four-gradient has the identical form to (15.4) for the photon: 

 

( ) ( )ti c cq i i c cσ γ σ γ γ γω∂ = = ∂ =B B B q Bℏ ℏ ℏ ℏ∇ −  (15.7) 
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Seventh, although the classical ( )c c,A µ φ= A  which is an amalgamation of countless 

individual photons can always be Lorentz transformed into a rest frame ( )c 0 ,A µ φ= 0 , the photon 

with ( )exp /A A iq xµ µ σ
γ σε= − ℏ  as a luminous particle can never be so-transformed.  No matter 

what direction the photon travels, its time component 0 0Aγ =  as we deduced at (14.8).   

 

Eighth, although there is no Lorentz transformation cA Aµ µ
γ →  that can place the photon 

into a rest frame, it is formally possible to use a U(1) gauge transformation  

qA qA qA cµ µ µ µ′→ ≡ + ∂ Λℏ  to do transform a photon potential into a classical potential.  .  

Specifically, we assign A Aµ µ
γ=  and 

cA Aµ µ′ =  and write the transformation as 

cqA qA qA cµ µ µ µ
γ γ→ ≡ + ∂ Λℏ , whereby the arbitrary gauge parameter ( ),tΛ x  is defined by 

( )c c
c qA qA e A Aµ µ µ µ µ

γ γ∂ Λ ≡ − = −ℏ  for q e= −  .  For the time component, because 
0 0Aγ =  and 

0

cA φ= , rather simply, we obtain 0c qφ∂ Λ ≡ℏ .  For the space components, we find an interesting 

wrinkle, owing to the fact that (15.2) and (15.3) are complex, not real, because 

( ) ( )2 0, 1, ,0 exp /A A i iq xµ σ
γ σ= − −∓ ℏ  for a z-traversing photon is a complex vector.  Therefore, 

together with 0c qφ∂ Λ ≡ℏ  above, and mindful that ( ), ,k

x y z
∂ = − ∂ ∂ ∂ = −∇   whereby 

cc q q γ− Λ ≡ −A Aℏ ∇ , we find: 

 

( )
( )

0

1 1

c

2 2

c

3 3

c

/

/ exp / / 2

/ exp / / 2

/

c c t q

c c x qA qA iq x

c c y qA iqA iq x

c c x qA

σ
σ

σ
σ

φ∂ Λ = + ∂Λ ∂ ≡

∂ Λ = − ∂Λ ∂ ≡ ± −

∂ Λ = − ∂Λ ∂ ≡ + −

∂ Λ = − ∂Λ ∂ ≡

ℏ ℏ

ℏ ℏ ℏ

ℏ ℏ ℏ

ℏ ℏ

 (15.8) 

 

Because the above sets 1∂ Λ  and 2∂ Λ  to complex numbers stemming from Aµ
γ  being a 

complex vector, the gauge parameter ( ),tΛ x  used in this transformation must also be a complex 

number, a ibΛ = + , once again signifying a type of Kähler Geometry.  This is also of interest 

because historically, Weyl spent over a decade [6], [7], [8] pursuing the ultimately incorrect view 

that equations of nature should be invariant under a true “gauge” transformation 

( )expϕ ϕ ϕ′→ ≡ Λ  rather than what we know is the correct ( )exp iϕ ϕ ϕ′→ ≡ Λ .  Writing Weyl’s 

original misconception as ( )( )exp i iϕ ϕ ϕ′→ ≡ − Λ , we see that what we understand today to be a 

real gauge angle was in Weyl’s original view equivalent to an imaginary gauge angle.  What (15.8) 

shows is that when we wish to transform between cA Aµ µ
γ ↔ , we actually require a hybrid of both 

Weyl’s original view and his eventual result:  a complex gauge parameter a ibΛ = + , with an 

underlying transformation ( ) ( )( )exp expi i a ibϕ ϕ ϕ ϕ′→ ≡ Λ = + .  And it is very luminosity of 

non-material, massless photons with complex components, which is the cause of this.  The 
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imaginary part of a ibΛ = +  only becomes non-zero for transformations between a material 
cA µ  

and a luminous A µ
γ .  

 

Ninth, although it is formally possible to transform between cA Aµ µ
γ ↔ , physically we 

cannot do so:  At (9.4) and (9.5) we removed two degrees of freedom from Aµ , thereby removing 

any remaining freedom to transform cA Aµ µ
γ ↔ .  Equivalently, once two degrees of freedom were 

covariantly removed from the unrestricted Aµ  turning it into the Aµ
γ  of (15.3) with the properties 

(14.8) and (15.5) of a photon which is restricted to the Lorenz and Coulomb gauges, we “broke” 

the gauge symmetry, and can no longer transform A µ
γ  back to 

cA µ .  In other words, we cannot 

“unbreak” a broken gauge symmetry.  But we can always trace back the breaking. 

 

Tenth, and finally, although we cannot transform between cA Aµ µ
γ ↔ , the electric and 

magnetic fields contained in the field strength F A Aµν µ ν ν µ= ∂ − ∂  are invariant under a gauge 

transformation, as has long been well known, because the antisymmetry of F µν  washes out any 

gauge transformation.  Although gauge theory was not known in the late-19th century, in retrospect 

one reason that Heaviside reformulated Maxwell’s equations to eliminate the potential, and went 

so far as to erroneously argue that physics ought not even bother with a potential and should only 

use electric and magnetic fields, was because of what we now understand to be the gauge symmetry 

of E and B.  Therefore, the electric and magnetic fields are invariant under a gauge transformation 

between cA Aµ µ
γ → , and so the transformation from 0γ =B  to c 0≠B  is gauge invariant.  

However, knowing this, whenever we start with γA  and end up with a quantity such as 
2

γB  in an 

equation, it is best to leave this as is rather than set 
2 0γ =B , in order to preserve the ability to let 

conduce a gauge transformation cA Aµ µ
γ →  from which 

2 2

c0 0γ = → ≠B B . 

 

This is important to keep in mind, because in the next several sections we will be 

developing a Dirac Hamiltonian using (14.8) and (15.1) through (15.7) to reduce terms containing 

A, and will set 0 0A φ= =  throughout using (14.8), (15.2) and (15.3), effectively removing the two 

degrees of gauge freedom from Aµ  as a downstream consequence of the gauge fixing conditions 

(9.4) and (9.5).  Again, this may be thought of as “breaking” the gauge symmetry.  Once this is 

done, however, those terms in the Hamiltonian which contain A will not be invariant under the 

quantum-to-classical potential gauge transformation cA Aµ µ
γ → .  So A must be interpreted as the 

gauge potential for a single individual photon. Conversely, A cannot be regarded as part of a 

classical external potential ( )c c,A µ φ= A , because the symmetry breaking conditions we will have 

imposed using (14.8) and (15.1) through (15.7) are conditions that are not followed by a classical 

potential which has a rest frame, but only by a luminous photon which can never be at rest.  Again, 

this is why, contrasting Dirac’s original theory, this paper is titled a “Quantum Theory of 

Individual Electron and Photon Interactions.” 

 

This is also important to keep in mind because although A cannot be interpreted as an 

external potential owing to how the gauge symmetry has been broken, in terms which will also 
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arise containing the electric and magnetic fields E and B, these fields can in interpreted as either 

classical or quantum fields, precisely because E and B are invariant under gauge transformations.  

Thus, E and B will enter the Hamiltonian in exactly the same form whether the gauge potentials 

are classical cA µ
 or quantum mechanical A µ

γ , cf. earlier reference to Heaviside.  Put differently, 

the Hamiltonian terms containing E and B sans A are invariant under gauge transformations and 

so are invariant under transformations between classical and quantum potentials.  Thus, the E and 

B which appear, regardless of how we interpret the Aµ  from which they arise via 

/ c tφ = + ∂ ∂E A−∇  or by B A= ∇ ×  (which of course have the generally-covariant formulation 

F A Aµν µ ν ν µ= ∂ − ∂ ), can be interpreted and used either as the E, B fields of an individual photon, 

or as classical external E, B fields arising from the stationary linear amalgamation of a countless 

multitude of individual luminously-propagating photons. 

 

Additionally, it will be of use to examine the electric and magnetic fields associated with 

a single photon quantum.  As with a classical field, the photon field strength is F A Aµν µ ν ν µ= ∂ − ∂  

which is of course gauge symmetric and thus invariant under a gauge transformation cA Aµ µ
γ ↔ .  

Using (15.4) we write this as: 

 

i cF i c A i c A cq A cq Aµν µ ν ν µ µ ν ν µ
γ γ γ γ γ= ∂ − ∂ = −ℏ ℏ ℏ . (15.9) 

 

Using (15.5) and 0q qσ
σ =  for a luminous photon, the photon current density four-vector is then: 

 

( ) ( )
( ) ( )

2 2 2

0

0

4 4

0

em

k

k

J c c F i c i A i A

i c q A q A cq q A cq q A cq q A q A

ν µν µ ν ν µ
γ γ γ µ γ µ γ γ

µ ν ν µ µ ν ν µ ν
µ γ γ µ γ µ γ γ γ

π π ρ− = − = − ∂ = ∂ ∂ − ∂

= ∂ − = − = − + =

Jℏ ℏ ℏ ℏ ℏ ℏ

ℏ
, (15.10) 

 

that is, ( ) 0emρ =J , using the notation 
em

ρ  to distinguish this charge density from the substitute 

variable 2/q mcρ = .  Note that this zero arises from 0q qµ
µ =  because of the massless photon, 

from 
0 0Aγ =  in (14.8), and from 0γ⋅ =q A  in (15.5).  So as expected, the photon is not an 

electromagnetic source, but rather is the electromagnetic mediator.  But the electric and magnetic 

fields are still not zero.  Specifically, using (14.8) and (15.1) in (15.9) we find: 

 
0 0 0 0 0j j j j j j ji c i cE i cF i cF i cF cq A cq A Aγ γ γ γ γ γ γ γ γω ω= = = = = − = − = −E Aℏ ℏ ℏ ℏ ℏ ℏ ℏ , (15.11) 

 

i.e., i cγ γω = −A Eℏ ℏ  which simplifies to icγ γω = −A E .  Using the over-dot notation tγ γ= ∂A Aɺ  

and combining (15.11) with i γ γω=A Aɺ  from (15.4), we also deduce that:  

 

i cγ γ γω= − = −A A Eɺ . (15.12) 

 

Next, from (15.11) and (14.8), the magnitude 2 0γ =E .  For the magnetic field: 
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( )1 1
2 2

i ijk jk ijk j k ijk k j ijk j ki i B i F q A q A q A iγ γ γ γ γ γ γ γε ε ε ε− = − = = − = = = −B q A Aℏ ℏ ℏ ℏ× ∇ × , (15.13) 

 

which is the usual relation =B A∇ × .   However, when we take the magnitude using (14.8) and 

(15.5) we likewise obtain what we already saw at (15.6) namely: 

 
2 2 2 0i i ijk ilm j k l m j k j k j k k jB B q A q A q A q A q A q Aγ γ γ γ γ γ γ γ γε ε− = − = = − =Bℏ ℏ . (15.14) 

 

So, an individual photon has energy but no mass, and has electric and magnetic fields which are 

non-zero but have zero magnitude.  Additionally, writing (15.11) as 2c ih iγ γ γν π ν= =E A Aℏ ℏ , 

then taking the spacetime gradient of each side and using (15.4), we obtain (contrast (15.7) for B): 

 

( ) ( )ti c i q cq i i c cσ γ σ γ σ γ σ γ γ γω ω ω∂ = − ∂ = = = ∂ = −E A A E E q Eℏ ℏ ℏ ℏ ℏ∇ . (15.15) 

 

Again, what will be of particular interest is that while γA  for the photon is not invariant 

under the quantum-to-classical gauge transformation cA Aµ µ
γ → , the electric and magnetic fields 

in F µν  are invariant.  Therefore, when we encounter composite terms such as i cγ γω =A Eℏ ℏ  

where the gauge-dependent γA  is multiplied by the photon energy ωℏ , or such as i γ =q A Bℏ×  

where the gauge-dependent γA  is crossed with the photon momentum q, these composite terms 

are invariant under gauge transformations.  This means that these composite terms, and the field 

strength F µν  generally, are gauge-invariant whether they represent the electric and magnetic fields 

of a single photon, or classical electric and magnetic fields externally-applied to a single photon.  

Thus, wherever E and B appear, whether obtained from a classical potential cA µ
 or a single-photon 

A µ
γ , these E and B fields (but not the A alone) may be regarded at will (under some carefully-

proscribed restraints) as either classical fields or as individual photon fields.  We shall see all of 

this in detail over the next several sections. 

 

Finally, on occasion we shall encounter the commutator of a luminous photon momentum 

q with functions of spacetime ( ),b t x .  Specifically, unlike p which does not commute with 

functions of x as a result of the Heisenberg commutation relation reviewed following (7.10), the 

photon momentum q does commute with functions of x.  To establish this, first recall from (15.1) 

that 0q qσ
σ =  a.k.a. ( )22c hν⋅ =q q  because a photon is massless, which is well-established.  Thus, 

let us rotate our choice of space coordinates so that the photon propagates in the +z direction, 

whereby (15.1) becomes ( ) ( )ˆ , 0,0,cq zµ ω ω= ℏ ℏ  because 
z

cq hω ν= =ℏ .  Next, we posit a ( )b z  

which is a function of z, expansible as a Maclaurin series in z, and which this appears adjacent 
z

q  

in the form ( ) ( )zb z cq b z ω= ℏ .  Clearly, because the photon energy ωℏ  commutes with ( )b z , 

we find that ( ) ( ) ( ) ( )z zb z cq b z b z cq b zω ω= = =ℏ ℏ , which we may write as the commutator 

relation ( ) , 0
z

b z q =   .  Then, deconstructing the series, we learn that [ ], 0zz q =  for a luminous 

particle momentum commutator, in contrast to Heisenberg’s [ ], zz p i= ℏ  for a material particle 
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momentum commutator.  By rotational symmetry, we then obtain the general relation 

( ) , 0O =  x q  for any object ( )O x  which is a function of the space coordinates, and the 

deconstructed relation [ ], , 0i jx q = = x q  in contrast to Heisenberg’s [ ], ,i j ijx p iδ = = x p ℏ . 

 

16.  Maxwell’s Equations for Individual Photons 
 

 To illustrate the foregoing considerations about the relation between a classical potential 

cA µ  and the potential ( )exp /A A iq xµ µ σ
γ σε= − ℏ  for an individual photon, in this section we shall 

apply Maxwell’s equations to individual photons.  Not only is this study of independent value in 

its own right, but it will illustrate how to properly navigate between classical fields and those of a 

single photon quantum.  This will be indispensable when we return to developing the hyper-

canonical Dirac equation, starting in the next section.  

 

 The relation between a four-potential A and the electric and magnetic fields E and B is 

covariantly-formulated by F A Aµν µ ν ν µ= ∂ − ∂ , which separates into the component equations 

/ /c t cφ = − − ∂ ∂ = − −E A E Aɺ∇  and =A B∇ × .  In turn, Maxwell’s equations are covariantly-

formulated by 4 J Fµ αµ
απ = ∂  and 0F F Fα µν µ να ν αµ∂ + ∂ + ∂ = , a.k.a. * 0Fαµ

α∂ =  using the dual 

fields 1
2!

*F Fστ
µν στµνε= .  The former separates into the component equations 4

em
πρ⋅ =E∇  and 

( ) ( )4 / / 4 /t c cπ π= + ∂ ∂ = +B J E J Eɺ∇ ×  which are Gauss’ and Ampere’s Laws for electricity.  

The latter separates into 0⋅ =B∇  and / /c t c= −∂ ∂ = −E B Bɺ∇ ×  which are Gauss’ and Faraday’s 

Laws for magnetism.  The absence of a magnetic field divergence in 0⋅ =B∇  – colloquially 

expressed as the non-existence and non-observation of magnetic monopoles – is a mathematical 

identity that results from inserting the antisymmetric F A Aµν µ ν ν µ= ∂ − ∂  into the cyclic field 

combination 0F F Fα µν µ να ν αµ∂ + ∂ + ∂ = .  Using vectors, this is expressed by the identity 

( ) 0⋅ = ⋅ =B A∇ ∇ ∇ × , namely, the divergence of the curl is zero.  In the language of exterior 

calculus, this has the simplified form 0ddA = , and exemplifies the geometric rule 0dd =  that the 

exterior derivative of an exterior derivative, or the boundary of a boundary, is zero.   

 

Most importantly for the present development, these relations apply invariantly, whether 

cA Aµ µ=  is a classical material potential or A Aµ µ
γ=  is the quantum potential for a single photon.  

Thus, 
c c cF A Aµν µ ν ν µ= ∂ − ∂ , 

c4 J Fµ αµ
απ = ∂  and 

c c c 0F F Fα µν µ να ν αµ∂ + ∂ + ∂ =  for a classical 

potential, and F A Aµν µ ν ν µ
γ γ γ= ∂ − ∂ , 4 J Fµ αµ

α γπ = ∂  and 0F F Fα µν µ να ν αµ
γ γ γ∂ + ∂ + ∂ =  for an 

individual quantum photon potential.  First, let us study these equations as applied to an individual 

photon, with the energy-momentum four-vector of (15.1) and the photon potential (15.3), absent 

any external potentials or fields or charge densities.   

 

 For an individual photon, for which the scalar potential 0 0A φ= =  because of (14.8) as 

represented in (15.2) and (15.3), the curl equation =B A∇ ×  remains the same, but the gradient 
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equation reduces to 0 / cφ = = − −E Aɺ∇  or, more directly, / c= −E Aɺ .  Employing (15.4) which 

contains both i hν ω= =A A Aɺℏ ℏ  and i = −A qAℏ∇ , we multiply through by i cℏ , then convert into 

momentum space, to obtain: 

 

i c i

i c i c c

γ γ γ

γ γ γ

ω= − = −

= = −

E A A

B A q A

ɺℏ ℏ ℏ

ℏ ℏ ∇ × ×
. (16.1) 

 

This relates the fields γE  and γB  of an individual photon, to the photon three- potential γA .  We 

showed via 2 0γ =E  at (15.11) and 2 0γ =B  at (15.6) how these two fields, although nonzero, do 

have zero magnitudes, just as a photon has non-zero energy hν ω= ℏ  but zero rest mass.  Now 

let’s turn to Maxwell’s equations. 

 

 Still for an individual photon, (15.10) teaches that ( ) 0emcρ =J , i.e., that the luminous 

photon does not act as an electromagnetic source but only as an interaction mediator.  Therefore, 

in covariant form Maxwell’s equations reduce to the source-free, duality-symmetric 0Fαµ
α∂ = , 

and 0F F Fα µν µ να ν αµ∂ + ∂ + ∂ =  a.k.a. * 0Fαµ
α∂ = .  In component form, this produces 0γ⋅ =E∇  

and 0γ⋅ =B∇  for the divergence equations, and c γ γ= −E Bɺ∇ ×  and c γ γ=B Eɺ∇ ×  for the curl 

equations.  To convert these into momentum space, we turn to (15.7) and (15.15), which again 

using ω , contain i γ γω=B Bɺℏ ℏ  and i γ γ=B qBℏ∇ − , i γ γω=E Eɺℏ ℏ  and i γ γ=E qEℏ∇ − .  As a 

result, Maxwell’s equations for an individual photon convert to momentum space as follows: 

 

0

0

i c c

i c c

c

c

i c i

i c i

γ γ

γ γ

γ γ γ γ

γ γ γ γ

ω

ω

⋅ =

= = − =

=

= ⋅

⋅ = ⋅ =

−

= =

q E

B q B

q

E

E B

B E

E B

q B E

ℏ

ℏ

ℏ ɺ

ɺ

ℏ ℏ

ℏ ℏ ℏ

−

∇ −

−

∇

× ×

∇ × ×−

∇
. (16.2) 

 

Equations (16.2) establish paired relations c γ γω=q E Bℏ×  and c γ γω= −q B Eℏ×  between the 

electric and magnetic fields γE  and γB  of a photon.   Again, these are non-zero, but have zero 

magnitude. 

 

It is further possible to use (16.1) to write (16.2) multiplied through by another i cℏ  in terms 

of the photon three-potential γA  as: 
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( )
( )

( ) ( )
( ) ( ) ( )

2 2

2 2

2 2

2 2

0

0c i cc c

c i cc c c

c i cc i c c

c i cc i c c c

γ γ γ

γ γ γ

γ γ γ γ

γ γ γ γ γ

ω

ω ω

ω ω ω

⋅ =

= − = − =

= − = = = −

− = − ⋅ = ⋅

− ⋅ = − ⋅ = ⋅ =

−

−

q E q A

B q B q q A

q E B q A

q

E

B E q q A A

E

B

ℏ ℏ ℏ

ℏ ℏ

ℏ ℏ ℏ ℏ ℏ

ℏ ℏ ℏ ℏ ℏ ℏ

∇

∇ × ×

∇ ×× × ×

∇ ×

×
. (16.3) 

 

The first equation contains 0γ⋅ =q A , which is merely (15.5) for the Coulomb gauge which 

characterizes a photon.  Again, it is of consequence that is was covariantly derived from (9.4) and 

(9.5).  The second equation contains ( ) 0γ⋅ =q q A× , which is the momentum space formulation 

of the identity that the divergence of the curl is zero.  From the latter two equations in (16.3) we 

may extract the momentum space relations: 

 

( )
( )/

ic

c ci

γ γ

γ γ

ω

ω ω

=

= −

q E q A

q B Aℏ×

××
 (16.4) 

 

between the fields γE  and γB  of a photon, and the photon three-potential γA .  Taken together, 

these are the Maxwell’s equations in momentum space, for an individual photon, absent any 

external potentials or fields or sources. 

 

 Second, starting with the individual photon studied in (16.1) through (16.4), we next 

introduce a classical external potential φ , which of course is the time component of the four-vector 

( )c cAµ φ= A .  We also place an observer at rest in the potential so that ( ) ( )c c 0Aµ φ φ= =A 0  

or that observer.  We further introduce a classical external charge density having the four-vector 

( )emJ cµ ρ= J .  And finally, we shall have the have the photon traverse a region of spacetime in 

which these 
cAµ  and J µ  are non-zero.  Under these new circumstances, let us now repeat the 

calculations of equations (16.1) through (16.4). 

 

 As to (16.1), the photon magnetic field continues γB  to bear the relation γ γB A= ∇×  to 

the photon three-potential γA .  However, the photon electric field γE  will now bear the relation 

/ cγ γφ= − −E Aɺ∇  to γA , and specifically, this relation will now be modified by the new term φ∇  

which was zero in (16.1).  As such, given the non-zero 0φ φ= , (16.1) now becomes: 

 

0 0i c i c i c

i c i c c

γ γ γ

γ γ γ

φ φ ω= − − = −

= = −

E A q A

B A q A

ɺℏ ℏ ℏ ℏ

ℏ ℏ

∇

∇ × ×
 (16.5) 

 

Clearly, this will revert to (16.1) when 0 0φ = , as it must. 
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 As to (16.2), because we are now allowing a non-zero source J µ
, we must use the complete 

Maxwell equations with sources, so that (16.2) now becomes: 

 

( )

4

4

0

4

emi c c i c

i c c

i c i

i c i i

c

c

γ γ

γ γ

γ γ γ γ

γ γ γ γ

ω

ω

π ρ

π π

⋅ = =

= = −

− ⋅

⋅ = ⋅ =

+

−

= +−

=

= =

q E

B q B

E

E B

B J E J

q E B

q B E

ℏ ℏ

ℏ

ℏ ℏ ℏ

ℏ ℏ ℏ ℏ

ɺ

ɺ

∇

∇ × ×

∇ × ×

∇ −

−
. (16.6) 

 

It is easily seen that when 0J µ = , the above will revert to (16.2), as it must. 

 

 Now, as we did at (16.3), let us again multiply the above through by another i cℏ  and then 

combine with (16.5).  This produces: 

 

( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

22 2 2 2

0 0

2 2

2 2

0

2 2 2

2

4

4

0

emc i cc c c c c

c i cc c c

c i cc c c i c c

c i cc c i c c c

c c c c

γ

γ

γ γ

γ

γ γ

γ γ

γ γ

γ γ γ

γ γ γ

γ

φ ω ω φ

φ ω ω ω

ω

ω

π ρ

π

⋅ = = − = −− − ⋅ ⋅ = −

= = = =

= = −

+ ⋅

− ⋅ = ⋅ = ⋅ =

+ =

= ⋅ − ⋅ =

− + −

− −

−

q E q q q A

B q B q q A

q E q q A B q A

q B E q q A

q q A A

B J

q q A

E

E

ℏ ℏ ℏ ℏ ℏ

ℏ ℏ

ℏ ℏ ℏ ℏ ℏ ℏ

ℏ ℏ ℏ ℏ ℏ

ℏ

∇

∇ × ×

∇ − ×

− ×

×

×

∇ × × ×

( )2 2

0 4c cγω ω πφ= − + −A q Jℏ ℏ ℏ

. (16.7) 

 

To reduce, we use ( ) ( )2 2
c c hν ω⋅ = =q q ℏ  from (15.1) and 0γ⋅ =q A  from (15.5) in the first line.  

We see the identity 0 0c c φ =q q×  in the third line.  In the final equation we use the triple cross 

identity ( ) ( ) ( )c c c c c cγ γ γ× × = ⋅ − ⋅q q A q q A A q q , then ( )2
c c ω⋅ =q q ℏ , again together with 

0γ =⋅q A  from (15.5).  It is easily seen that (16.7) reverts to (16.3) when 0J µ =  and 0 0φ = , as it 

must. 

 

Finally, as we did at (16.4), we isolate the momentum space relations in the above.  But 

first, we reorder the final equation in (16.7) above into the second position in (16.8) below, so as 

to group together the Maxwell’s equations pairs which are generally covariant, also showing 

underlying the covariant equation.  The result is: 

 

( )
( )

0

0

4

4

/
4

/ /

/ 0
0

emc c ci i

i i
F J

c c i c i

c ic
F F F

ic

αµ µ
α

γ γ

γ α µν µ ν

γ

γ

γ

γ

α ν αµ

γ

ω ωφ
π

ω ω ω
π

ω π

ω

ρ
ω φ

= − = − 
= − = − 

⋅
∂ =

− +

⋅ = ⋅ =  ∂ + ∂ + ∂ =
=

q E

q B A A q

q B q q A

q E q

J

A

ℏ ℏ

ℏ ℏ ℏ

ℏ×

×

× ×

. (16.8) 
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Following this reordering, we see that the second and fourth equations above are respectively 

identical to the lower and upper equations in (16.4).   

 

Further, from the first and second 4 J Fµ αµ
απ = ∂  equations, we may deduce: 

 

( )
( )

2 2

0

2

0

4

4

emc

c c

ω ωφ

ω

π

π φ

ρ =

=J q

ℏ ℏ

ℏ

ℏ

ℏ
, (16.9) 

 

which combines with clarity into the covariant relation: 

 

( ) ( )2 2

0 04 4 emcJ q c c cµ µπ π ρωφ ωφ ω= = =J qℏ ℏ ℏ ℏ ℏ . (16.10) 

 

This, as it must be, is manifestly the same as (15.10) written as 2 0

04 cJ cq cq Aν νπ =ℏ  after the 

replacement 
0 0

c 00A Aγ φ φ= = =֏  of the photon potential with an external potential at rest.  This 

occurred prior to (16.5) when we placed the photon in the external potential ( )c 0Aµ φ= 0  and also 

introduced a non-zero ( )emJ cµ ρ= J .  The offsetting terms /i cγω ω− Aℏ  in the second line of 

(16.8) which cancel in (16.9), stem from the relation 0q qµ
µ =  for a luminous photon, which was 

applied in (15.10).  We see from (16.10) that as soon as 0 0φ = , so too does 0J µ = .  So, introducing 

the external scalar potential 0φ φ=  is synonymous with introducing J µ .  On reflection, this is 

obvious:  Equations (16.1) through (16.4) describe source-free electromagnetic fields.  But a scalar 

potential must have a material electrical source.  Equation (16.10) says exactly that. 

 

 Third, let us next Lorentz transform the external potential out of the rest frame and into 

some relative motion, so that  ( ) ( )c 0 cAµ φ φ= →0 A .  What happens to equations (16.7)?  

Because F A Aµν µ ν ν µ= ∂ − ∂  and Maxwell’s 4 J Fµ αµ
απ = ∂  and 0F F Fα µν µ να ν αµ∂ + ∂ + ∂ =  have 

identical form whether applied to a classical material cAµ
 potential or a quantum luminous 

potential Aµ
γ  related thereto by the gauge transformation reviewed at (15.8), nothing at all changes 

in the form of equations (16.7).  Because electromagnetism is a linear, abelian interaction, 

potentials are additive, so that the photon potential add to the external potential, yielding an overall 

potential cA A Aµ µ µ
γ= + .  (For practical purposes, c cA A A Aµ µ µ µ

γ= + ≅  because the individual 

photon potential is swamped by the external potential.)  So in (16.7), all we need to do as to form, 

is replace 0φ φ֏  (to take this out of rest) and replace γA A֏  (to add the motion components 

cA  to the photon components γA ).  As to substance, however, there is an important change:  

Whereas 0γ⋅ =q A  for an individual photon from (15.5), this is generally not true for an external 

classical three-potential.  Rather, we must regard c 0⋅ ≠q A  to be nonzero.  So, we no longer 
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remove this term.  As a result, (16.7), rearranged to have the covariant orderings of (16.8), now 

becomes: 

 

( )
( ) ( ) ( )
( )

( )

22 2 2 2

2 22 2 2

2 2

2 2

4

4

0

em
c i cc c c

c i cc c c c c

c i cc c c

c i cc c c

γ γ

γ γ

γ γ

γ γ

π ρω φ

ω ω ω

ω

π

ω

φ

⋅ = = − = −

= = −

− − ⋅ + ⋅

− − − +

−

= − + ⋅

= =

⋅ = ⋅ = ⋅ =

−

q E q A

q B A q A q q A

B q B q q A

q E q

E

J

E A

B

ℏ ℏ ℏ ℏ ℏ

ℏ ℏ ℏ ℏ ℏ ℏ

ℏ ℏ

ℏ ℏ ℏ

∇ −

∇

∇ × ×

∇ × ×

×

− ×

. (16.11) 

 

 The source equations contained in the first two lines above are now: 

 

( )
( )

2 2

2

4

4

emc c

c c c

ω ωφ

ωφ

π ρ

π

= − ⋅

⋅= −

q A

q q AJ

ℏ ℏ ℏ

ℏ ℏ
, (16.12) 

 

which, as they must, reduce to (16.9) when 0⋅ =q A   and the external is Lorentz transformed to a 

rest frame, 0φ φ→ .  This are, and also must be, the same as ( )2 0

04 k

kcJ cq cq A cq Aν νπ = +ℏ  

from (15.10), with cA A A Aµ µ µ µ
γ γ= +֏ . 

 

 Fourth and finally, the electric and magnetic fields γE  and γB  in (16.11) are still those of 

an individual photon.  Now, let us introduce classical, external electric and magnetic fields cE  and 

cB , and ask: what now happens to (16.11)?  Again, because electromagnetism is abelian, these 

fields are additive to those of the photon, so that the total c cF F F Fµν µν µν µν
γ= + ≅ , again with the 

photon’s F µν
γ  swamped by the external classical 

cF µν .  Moreover, although the photon potential 

( )exp /A A iq xµ µ σ
γ σε= − ℏ  of (15.3) has broken gauge symmetry and is not invariant under the 

transformation cA Aµ µ
γ → , the electric and magnetic fields E and B are gauge-invariant fields.  

Again, although unknown in the late 19th century, this was central though unbeknownst to 

Heaviside’s reformulation of Maxwell’s Treatise to contain only electric and magnetic fields 

without potentials.  So, the introduction of external cE  and cB  does not in any way change the 

form of equations (16.11).  All we need do is replace 
cγ γ= +E E E E֏  and 

cγ γ= +B B B B֏  

throughout.  Therefore, with these external electromagnetic fields, (16.11) finally becomes: 

 

( )
( ) ( ) ( )
( )

( )

22 2 2 2

2 22 2 2

2 2

2 2

4

4

0

emc i cc c c

c i cc c c c c

c i cc c c

c i cc c c

ω φ ω

ω

ω

πω

ρ

φ

π

ω

⋅ = = − = −

= = −

− − ⋅ + ⋅

− − − +

−

= − + ⋅

= =

⋅ = ⋅ = ⋅ =

−

q E q A

q B A q A q q A

B q B q q A

q E

E

E q A

B J

ℏ ℏ ℏ ℏ ℏ

ℏ ℏ ℏ ℏ ℏ ℏ

ℏ ℏ

ℏ ℏ ℏ

∇ − ×

−

∇

× ×

∇ × × ×

∇
. (16.13) 
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 In (16.13), all of the fields and potentials are now classical and external, added to and 

swamping those of the individual photon.  All that remains to represent the individual photon is its 

energy-momentum vector cqµ  which, via (15.10), is ( ) ( ) ( )ˆ ,0,0, ,0,0,zcq z h cqµ ν ω ω= = ℏ ℏ  for 

propagation along the positive z axis.  So (16.13) now characterizes the behavior of the luminous 

photon energy-momentum cqµ  propagating through external potentials A and fields E and B, and 

even through spacetime regions with non-zero charge densities emρ  and currents J. 

 

 Before we conclude, there are a few other lessons we may learn from the foregoing 

development which will be important as we momentarily return to the development of the hyper-

canonical Dirac equation.  First, and of great usefulness, the relations i A q Aµ µ
σ γ σ γ∂ =ℏ  in (15.4), 

i qσ γ σ γ∂ =B Bℏ  in  (15.7) and  in (15.15) all allow the heuristic replacement 

i qσ σ∂ℏ ֏  whenever the spacetime gradient σ∂  operates on any of φ , γA , γB  or γE .  But this is 

not a general replacement that can be used indiscriminately; its use depends integrally on the 

operand of σ∂ .  For counterexamples, consider i pσ σ∂ Ψ = Ψℏ  thus i pσ σ∂ℏ ֏  used at (13.6) 

when the operand is a fermion wavefunction, and ( )( )/ /p q c E pµ µ= − +E Aɺ∇  from (7.10) when 

the operand is a material energy-momentum pµ .  This leads to the question: can we still apply 

i qσ σ∂ℏ ֏  when the operand is an external classical field cA , cE  or cB ?    

 

We need look no further than (16.13) above to directly see that i = −qEEℏ∇  and 

i = −qBBℏ∇  from (15.15) and (15.7) remain fully intact.   Likewise, because =B A∇ × , we may 

discern from the cq A× terms that so too does i = −qAAℏ∇  from (15.4).  Thus, although the 

classical fields do not contain a Fourier kernel ( )exp /iq xσ
σ− ℏ , the symmetry relations applied 

above to go from (16.2) to (16.13) lead us to conclude that that (15.4), (15.7) and (15.15) do 

generalize to external classical fields, without the γ  designation.  Therefore, generally: 

 

; ;i c A cq A i c cq i c cqµ µ
σ σ σ σ σ σ∂ = ∂ = ∂ =B B E Eℏ ℏ ℏ . (16.14) 

 

In sum, from the development that led from (16.2) to (16.13), we may conclude that i qσ σ∂ℏ ֏  

can still be used as a heuristic rule whenever the operand is a classical cA , cE  or cB . 

 

 Second, while the relations 
0 0Aγ φ= =  and 

2 0γ =A  from (14.8), and 0γ⋅ =q A  and 

0γ⋅ =A∇  from (15.5) apply to individual photons and will be very helpful to reduce many terms 

from the Dirac equation when we are considering individual photon behavior, these relations all 

do not apply for a classical potential.  Specifically, 0

c 0A φ= ≠  and 2

c 0≠A  and c 0⋅ ≠A∇ for a 

classical potential, and for a photon in a classical potential, c 0⋅ ≠q A .  Therefore, although the 

i qσ γ σ γ∂ =E Eℏ
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symmetry relations reviewed and used to go from (16.2) to (16.13) do enable the heuristic 

replacement i qσ σ∂ℏ ֏  to be inherited by the classical cA , cE  or cB  whenever they are operands 

of σ∂  as generalized in (16.14), we will wish to leave 0γ⋅ =q A  as is without zeroing it out, in 

those situations where we anticipate later wishing to generalize to a classical potential for which 

c 0⋅ ≠q A .  For example, consider ( )22 2 2 24
em

c i cc c cω φ π ρω− − ⋅ + ⋅⋅ = = − = −q E q AEℏ ℏ ℏ ℏ ℏ∇  

from the top line of (16.13), which includes i ⋅ = − ⋅E q Eℏ∇ .  For an individual photon, 0φ =  and 

0⋅ =q A , which would imply that 0emρ = , which is the time component of (15.10).  But if we 

encounter a γ⋅E∇  such as in (16.2) but anticipate wanting to examine ⋅E∇  generally, we will 

refrain from setting 0φ =  and 0⋅ =q A  even when these are zero.  Simply put, it is easier to set 

0φ =  and 0⋅ =q A  in (16.13) and revert to (16.2), than to start with (16.2) and generalize to 

(16.13) (as we have done here to illustrate this very point).  We shall keep this in mind as we now 

return to the hyper-canonical Dirac equation (13.6) and seek to develop this in the most general 

form so we can study the interactions of individual fermions and photons in external classical fields 

and with external sources. 

 

17.  The Hyper-Canonical Dirac Equation Generalized to Curved Spacetime  

 

 As it stands, while hyper-canonical Dirac equation (13.6) is modeled after Dirac’s equation 

in curved spacetime because of its use of the tetrad y

µε  with components deduced in (14.9), it does 

not yet apply to gravitation.  To advance (13.6) to gravitation, let us consider the electromagnetic 

y

µε  alongside the ordinary gravitational tetrad 
aeµ , as well as the electromagnetic gamma matrices 

( )
y

y

µ µ
ε ε γΓ ≡  alongside the ordinary gravitational ( )

a

ag
eµ µγΓ ≡ .  Now, when we have both 

electromagnetism and gravitation, we are required to define a set of complete µΓ  containing both 

electromagnetism and gravitation which generalize (13.4) from gµν µνη ֏  and also satisfy (13.3), 

and so are defined such that ( ) { }2 2 4 1
2

/G g q m c A Aµν µν µ ν µ ν ν µ≡ + ≡ Γ Γ + Γ Γ . 

 

 Given the two separate tetrad definitions ( )
y

y

µ µ
ε ε γΓ ≡  and ( )

a

ag
eµ µγΓ ≡ , there are two 

possible choices for constructing the complete µΓ .  The first is to start with the electromagnetic 

( )
a a y

yε ε γΓ ≡  developed above (note index switch from µ  to a), then compound this with gravitation 

by defining ( )
a a y

a a ye eµ µ µ
ε ε γΓ ≡ Γ = .  The second is to start with the usual gravitational ( )

y y a

ag
e γΓ ≡  

(note index switch from µ  to y), then compound this with electromagnetism by defining 

( )
y y a

y y ag
e

µ µ µε ε γΓ ≡ Γ = .  If we place no restrictions on the ordinary metric tensor g µν  (other than 

its usual µ ν↔  symmetry), then these two choices are not the same, because (again with some 

index renaming) 
a y a y

a y a ye eµ µε γ ε γ≠  i.e. 0a a y

a y a y
e eµ µε ε γ − ≠  .  Formally stated: the electromagnetic 

and gravitational tetrads operating on the Dirac gamma do not commute, [ ], 0e ε γ ≠ .  Generally, 

two objects not commuting means they are not independent; presently, [ ], 0e ε γ ≠  tells us that the 
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electromagnetic interaction energies contained in ε  gravitate thus changing the gravitational e, as 

they should.  Now, let us examine these two possible choices. 

 

 Choosing y a

y aeµ µε γΓ ≡  would yield 
y z ab yz

y z a b y zG e e gµν µ ν µ νε ε η ε ε= = .  A simple calculation 

shows that this is the incorrect choice:  Sample 
00 0 0 yz

y zG gε ε=  and insert the tetrad (14.9) for z axis 

photon propagation, thus 3 0A = .  Then set g µν µνη= .  Because ( )2 2 4/G g q m c A Aµν µν µ ν= +  and 

using 0 0A =  from (14.8), we must have Gµν µνη= .  But in fact this ordering of the tetrads 

produces the contradictory 00 00 1 1 2 2G A A A Aη ρ ρ ρ ρ= − − .  So this is wrong.   

 

 The correct choice is rather to define a complete tetrad 

 
a

y a yeµ µεΕ ≡ , (17.1) 

 

and likewise to define the complete µΓ  for electromagnetism and gravitation are by: 

 

( )
a a y y

a a y ye eµ µ µ µ
ε ε γ γΓ ≡ Γ = = Ε . (17.2) 

 

Importantly, because { }1
2

,µν µ νη γ γ= , it is the electromagnetic tetrad which directly couples to 

flat Minkowski spacetime via ( )
a a y

yε ε γΓ = .  This is in turn coupled to curved spacetime thus 

gravitation by the subsequent ( )
a

aeµ µ
εΓ ≡ Γ . 

 

 Combining these definitions and the ( ) { }2 2 4 1
2

/G g q m c A Aµν µν µ ν µ ν ν µ≡ + ≡ Γ Γ + Γ Γ  

requirement, we obtain: 

 

{ } { }
( )
1 1
2 2

a b y z z y a b yz yz

a b y z a b y z y z

ab a b ab a b a b

a b a b a b a b

G e e e e

e e A A e e e e A A g e e A A g A A

µν µ ν ν µ µ ν µ ν µ ν

µ ν µ ν µ ν µν µ ν µν µ ν

ε ε γ γ γ γ ε ε η η

η ρ ρ η ρ ρ ρ ρ ρ ρ

≡ Γ Γ + Γ Γ = + = = Ε Ε

= + = + = + ≡ +
. (17.3) 

 

For this to all be correct, it is necessary via the final definition that: 

 
a b

a bA A e e A Aµ ν µ ν= . (17.4) 

 

be true.  It will be seen making use of (14.9) for each of the sixteen pairwise ,µ ν  combinations, 

as well as 0 0A =  from (14.8), that (17.4) is indeed true; thus so is (17.3). 

 

 We may then use µΓ  from (17.2) in place of ( )
σ
εΓ  to advance (13.6) to: 

 

2

2
0

q
i c A mc

mc

σ σ
σ

  Γ + ∂ − Ψ =  
  

ℏ . (17.5) 
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Clearly, when gµν µνη=  thus 
a aeµ µδ=  the above will revert to (13.6).  The above is the hyper-

canonical Dirac equation encompassing electromagnetism and gravitation, via the successive 

couplings of the electromagnetic and gravitational tetrads in 
a y

a yeµ µε γΓ = .  But it does not yet have 

a proper spin connection.  We now review why this is needed and how it is introduced. 

 

18.  The Hyper-Canonical Spin Connection 

 

 As reviewed in section 1, in curved spacetime, in order to couple the spinor fields ψ  to 

gravitation, we must advance µ∂  in the Dirac equation ( ) 0i mcµ
µ ψΓ ∂ − =ℏ  to a spin-covariant 

derivative 
4

abi
abµ µ µ µω σ∂ ∇ ≡ ∂ −֏  using a spin connection 

;

ab a be eν
µ ν µω ≡ ∂ , whereby Dirac’s 

equation becomes ( ) 0i mcµ
µ ψΓ ∇ − =ℏ , and where 

;

b b be e eν ν ν
σµ

σ
µ µ + Γ∂ ∂=  is the gravitational 

covariant derivative of beν .  More formally, in the usual Dirac equation in curved spacetime, µ∇  

in µψ∇  does correctly operate as a covariant vector because it contains the covariant 
;µ∂ , while 

σ∂  in σψ∂  does not.  This is why the spin connection is required.  The same considerations must 

now be applied to µ∂  in the hyper-canonical Dirac equation with gravitation, (17.5). 

 

 To guide us on how to construct the required spin connection for (17.5), let us briefly 

review in more detail how this is ordinarily done for Dirac’s equation.  First, we note from the 

product rule that ( ); ; ; ;

a b a b a b a b abe e e e e e e eν ν ν ν
µ ν µ ν ν µ µ ν µω∂ = ∂ ∂+ += ∂ .  So 

ab

µω  is actually one of the 

two terms in the covariant derivative 
;µ∂  of 

a b a be e e egµν
ν µ ν

ν = .  With this in mind, we start with 

ab

a bg e eµν µ νη=  and calculate that ab b a a

a b a b ag e e e e e eµν µ ν µ ν µ νη δ= = = .  This true because abη  is used 

to raise and lower the flat spacetime Lorentz indexes.  We may now lower a world index to obtain 
a

ae eµ µ
ν νδ = .  Then, we again start with ab

a bg e eµν µ νη=  but this time we form the identity 

ab

a bg g e eµν µ ν στ µ ν
σ τδ δ η= = .  We then use a

ae eµ µ
ν νδ =  with renamed indexes to write this identity 

as a b ab

a b a bg e e e e g e eµν µ ν στ µ ν
σ τ η= = .  We then divide out the two tetrads common to each side to deduce 

ab a be e gστ
σ τη = , which is the inverse of ab

a bg e eµν µ νη= .  By simple rearrangement of indexes in this 

inverse we obtain ab a be eν
νη =  which is the term for which the derivative is taken at the start of this 

paragraph using the product. 

 

Therefore, because abη  is a constant, ; ; ;0 ab a b a be e e eν ν
µ µ ν ν µη= ∂ = ∂ + ∂ .  This in turn leads us 

with some further rearrangement to deduce that ; ;

a bab bb a ae e e eν ν
ν ν µµµ µω ω= ∂ = − ∂ = − , from which we 

learn that 
ab

µω  is antisymmetric in its a, b indexes.  This is important, because antisymmetric 

tensors [ ]
A

µν
 can always be constructed by [ ] 1

2
A A A

µν µν νµ ≡ −   from arbitrary tensors Aµν , 

which in the present context would have us defining 1
; ;2

ab a b b ae e e eν ν
µ ν µ ν µω ≡ ∂−∂   .  However, this 

construction is unnecessary here, because ; ;

a bab bb a ae e e eν ν
ν ν µµµ µω ω= ∂ = − ∂ = −  shows how 
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;

ab a be eν
µ ν µω ≡ ∂  is naturally antisymmetric without special construction.  Therefore, we also deduce 

that ( ); ; ;
0a b a b a b ba abe e e e e eν ν ν

µ ν µ ν ν µ µ µω ω+ += ∂ ∂ = =∂ . 

 

 Now we turn to the spin-covariant derivative 
4

abi
abµ µ µω σ∇ = ∂ − .  Starting with 

( ) ( ) ( ) ( ){ }1
2 g g g g

g µ ν µµ νν Γ Γ + Γ Γ=  with ( ) ag
eµ µ αγΓ =  we see that ( ) ( ) 4

g g

ν ν
ν νδΓ Γ = =  and via the product 

rule that ( ) ( )( ) ( ) ( ) ( ) ( ); ; ; 0
g g g g g g

ν ν ν
µ µ µν ν ν∂ Γ Γ = ∂ Γ Γ + Γ ∂ Γ =  thus ( ) ( ) ( ) ( ); ;g g g g

ν ν
µ µν ν−∂ Γ Γ = Γ ∂ Γ .  So 

writing the derivative out fully and using ( )
a

g a
eνν γΓ =  and ( ); ;

b

bg
eν ν

µ µ γ∂ Γ = ∂ , and with the Dirac 

covariants [ ]2
i

a bab b aγ γ γ γσ = − , we obtain: 

 

( )[ ] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

; ; ;
1 1

4 8

1
4 4;

8

1 1
4

a b

g g g g

g g g g

abi
ab a a

g

b b

g

e e
ν ν ν

ν µ µ µν ν

ν ν ν σ
µ µ σ

µ µ µ µ

µ µν

µ

µ ν ν

ω σ γ γ γ γ∂ Γ ∂ Γ ∂ ∇ Γ Γ

Γ ∂ Γ Γ ∂ Γ

= ∂ − = ∂ + − = ∂ + − 

= ∂ + = Γ Γ∂ + Γ+
, (18.1) 

 

where ( )1
2

g g g gν
σµ σ µβ µ βσ β µ

νβ
σΓ = − ∂∂ + ∂  are the Christoffel connections.  With the derivative 

written in this way, Dirac’s free-fermion equation in curved spacetime now becomes: 

 

( )( ) ( ) ( ) ( ) ( )( )2 21
;4

0
g gg g g

i c mc i c i c mcν
σν

σ σ σ
σ σψ ψΓ ∇ − = Γ ∂ + Γ −Γ ∂ =Γℏ ℏ ℏ . (18.2) 

 

It is easier to calculate using this form of µ∇  because the Lorentz indexes a, b are entirely hidden.  

Furthermore, we see that the factor of ¼ in (18.1) simply normalizes the ( ) ( );
1
4 g g

ν
µνΓ ∂ Γ  term to 

( ) ( )
1
4

1
g g

ν
νΓ Γ =  deduced just above.  And, we see clearly why the spin connection containing 

( ) ( ) ( ); g g g

ν ν ν τ
σ σ στ∂ Γ = ∂ Γ + Γ Γ  rather than merely ( )g

ν
σ∂ Γ  is needed to ensure that the derivative µ∇  

operates covariantly on ψ .  Then, when we reduce to flat spacetime, ( ); g

ν
σ∂ Γ  of course becomes 

( )g

ν
σ∂ Γ .  But also, ( ) 0

g

ν
σ

ν
σ γ∂ Γ → ∂ =  because 

b beν νδ→ .  As a consequence, the entire σ σ∇ → ∂  

and Dirac’s free-fermion equation reduces to the usual familiar ( )2 0i c mcσ
σγ ψ∂ − =ℏ . 

 

 With the foregoing in mind, we return to (17.3) and specifically the relation 
yz

y zG
µν µ νη= Ε Ε  

which is analogous to ab

a bg e eµν µ νη=  which was central to the review just concluded.  Now, our 

objective is to obtain a spin connection analogous to that in  

( ); ; ; ;

a b a b a b a b abe e e e e e e eν ν ν ν
µ ν µ ν ν µ µ ν µω∂ = ∂ ∂+ += ∂ .  To focus for the moment simply on the 

electromagnetic tetrad, we set gµν µνη=  thus 
a aeµ µδ=  thus 

yz

y zG A A
µν µν µ ν µ ν

γ γη ρ ρ ε ε η= + = , 

including the subscript γ  to make clear that A
µ
γ  is for individual photons.  Similarly to the above, 

the Lorentz indexes are raised and lowered with yzη , so we may write 
y

yG A A
µν µν µ ν µ ν

γ γη ρ ρ ε ε= + = , i.e., 
y

y A A
µ ν µν µ ν

γ γε ε η ρ ρ= + .  This differs from the form of the 
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earlier a

ae e gµ ν µν=  because of the extra A A
µ ν
γ γρ ρ  term, so we cannot calculate the inverse in the 

same way.  Instead, because a be eν
ν  is the starting point for the relation 

( ); ; ;
0a b a b a b ba abe e e e e eν ν ν

µ ν µ ν ν µ µ µω ω+ += ∂ ∂ = =∂ , let us simply start by using (14.9) to explicitly 

construct y zν
νε ε .  As in the above we may use 

yzη  to operate on the Lorentz indexes and gµν µνη=  

to operate on the spacetime indexes, so that 
y wy

w

µ
µνν ηε η ε=  and xzz

x

ννε η ε= , thus, 

y wy xzz

w x

ν
ν

µ ν
µνη η η εε εε = .  After we do this explicit construction, we obtain 2y yz yz zA Aγ γ

ν
ν η ρε ε = + , 

which is the inverse of 
y

y A A
µ ν µν µ ν

γ γε ε η ρ ρ= + .  So the inverse again swaps Lorentz and spacetime 

indexes, but there is now an extra term with 
2 y z
A Aγ γρ .   

 

As a consequence, using the ordinary derivative because we are presently considering 

gµν µνη=  thus 
;σ σ∂ = ∂ , we obtain: 

 

( ) 2 2y y y y zz z z y zA A A Aν ν ν
γ γ γσ ν σ ν ν σ γσ σε ε ε ρε ε ε ρ+ =∂ = ∂ ∂+∂ ∂ . (18.3) 

 

We may rewrite this to define an electromagnetic tetrad spin connection by: 

 
2 2yz y y z z z y zyz yA A A Aσ γ

ν ν
ν σ σ ν γσ σσγ γε ε ερ ρε∂ ∂Ω ≡ − = + = −Ω∂ ∂ . (18.4) 

 

This is naturally antisymmetric in the Lorentz indexes, yz zy

σ σΩ = −Ω , but only with the extra term 
2 y zA Aγ γσρ ∂  included. 

 

Contrasting (18.1), we then define a spin-covariant derivative for the electromagnetic 

tetrads by  
4

yzi
yzσ σ σ σ∇ ≡ ∂ − Ω .  Using ( ) ye

y

νν ε γΓ =  and [ ]2
,ab

i
ba γσ γ= ,  this is rewritten as: 

 

( )

( ) ( ) ( ) ( )

( ) ( )

21
4 8

21 1
8 8

21 1
8 8

21 1
4 8

yz y y zi
yz y z z y

y y y z z y

y z z y y

z

z z

z

y

e e

z z y

y z

y z

e e

e e

A A

A A A A

A A A A

i

ν
ν σ σ

ν ν

σ σ σ σ γ γ

σ ν σ σ ν σ σ

ν ν
σ σ σ σν ν

ν
σ

γ γ γ γ

σ γ

σ ν

γ γ γ

ε ε

ε ε

σ ρ γ γ γ γ

γ γ γ γ ρ γ γ

ρ γ γ

ρ γ γ

ε ε

∂ ∂

∂ ∂ ∂

 ∇ ≡ ∂ − Ω = ∂ + − − 

   = ∂ + − − − ∂

Γ ∂ Γ ∂ Γ Γ ∂ ∂

Γ ∂ Γ

  

   = ∂ + − − − +  

= ∂ + − ( ) ( )
1
4

, /z

e e

yq A A ν
σσ γ γ νσ  = ∂ + Γ ∂ Γ ℏ

. (18.5) 

 

The final result, ( ) ( )
1
4 e eσ σ

ν
σνΓ∇ ∂+ Γ= ∂ , has identical form to (18.1), except that ( ) ( )

1
4 e e

ν
σνΓ ∂ Γ  

contains an ordinary derivative because at the moment we are using gµν µνη= .  To reduce in the 

above, just as before (18.1) we may deduce that ( ) ( ) 4
e e

G A Aν ν ν
ν ν γνν γ

ν δ ρ ρ=Γ +Γ= =  using (17.3) 

with gµν µνη=  and applying 0A Aσ
γ γσ =  from (14.8).  Therefore ( ) ( ) ( ) ( )e e e e

ν ν
σ σν ν∂ Γ Γ = Γ ∂ Γ− .  

Additionally we apply ( )y z y z y zA A A A A Aγ γ γσ σ γσ∂ ∂ ∂= +  and the fact that photon vectors are 
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commuting , 0y zA Aγ γ  =   because electrodynamics is an abelian gauge theory.  So although yz

σΩ  

in (18.4) has an extra term 2 y zA Aγ γσρ ∂−  not contained in the gravitational ;

aab b
e e

ν
νµ µω = ∂ , this term 

washes out from σ∇  in (18.5) owing – not to any of the zero relations in (15.5) – but to 

electrodynamics being an abelian gauge theory. 

 

 With this we return first to (13.6) because that applies to electromagnetism absent 

gravitation, and we advance σ σ∂ ∇֏  using (18.5), thus obtaining: 

 

( ) ( ) ( ) ( )
2 2

2 2

1
0

4
e e

q q
A i c mc A i c mc

mc mc

σ σ σ σ
γ σ γ σε νε

ν
σ

 Γ      Γ + ∇ − Ψ = Γ + ∂ + − Ψ =      
      

∂ Γ 
 

ℏ ℏ . (18.6) 

 

To then broaden this to apply to gravitation, we merely generalize gµν µνη ֏ .  Via the minimal 

coupling principle we simultaneously generalize ( )
a a y

yε ε γΓ =  back to 
y a y

y a ye
µ µ µγ ε γΓ = Ε =  using 

(17.2) and 
yz

y zG A A
µν µν µ ν µ ν

γ γη ρ ρ ε ε η= + =  back to 
yz

y zG g A A
µν µν µ ν µ ν

γ γρ ρ η= + = Ε Ε  using (17.3).  

And finally, we turn the ordinary derivative in ( )e

ν
σ∂ Γ  into a covariant derivative of the form 

( ) ;e

ν ν ν ν µ
σ σ σ µσ∂ Γ ∂ Γ = ∂ Γ + Γ Γ֏  because the now spacetime is curved.  Therefore, the spin-

covariant derivative (18.5) becomes: 

 
1 1 1
4 4; 4

ν ν ν µ
ν σ ν σ µσ νσ σ σΓ ∂ Γ Γ∇ = ∂∂ + = ∂ + Γ + Γ Γ Γ . (18.7) 

 

 Finally, the complete hyper-canonical Dirac equation with gravitation and spin connection is: 

 

;

2 2

2 2

1
0

4

q q
i c A mc i c A mc

mc mc

σ σ σ σ ν
γ σ γ σ ν σ

      Γ + ∇ − Ψ =  Γ ∂ Γ Γ + ∂ + − Ψ =      
       

ℏ ℏ . (18.8) 

 

 Using the relations ( ) 0
exp /iH x c Uσ

σΨ ≡ − ℏ  and i c cpσ σ∂ Ψ = Ψℏ  from prior to 

(13.6), to parallel (18.7) we may also define a spin-covariant momentum: 

 
1 1 1
4 4; 4

c cp i c cp i c i c
ν ν µ

ν σ ν σ µσ ν
ν

σ σ σΓ ∂ Γ Γ ∂Π ≡ + = + Γ + Γ Γ Γℏ ℏ ℏ , (18.9) 

 

and then convert (18.8) into momentum space to arrive at: 

 

2 2

0 02 2 ;

1
0

4

q q
A c mc U A cp i c mc U

mc mc
ν σ

σ σ σ σ ν
γ σ γ σ

       Γ ∂ Γ 


Γ + Π − = Γ + + − =      
      

ℏ . (18.10) 

 

Respectively, (18.8) and (18.10) are hyper-canonical Dirac equations with electrodynamics and 

gravitation, in configuration and momentum space, with Lorentz indexes hidden in 
y

yν ν γΓ = Ε .   

 



Jay R. Yablon, April 25, 2018 

64 

 

If we contrast (18.8) to the usual Dirac equation ( ) ( ) ( )( )( )4 ;

21 0
gg g

i c mcν
σν

σ
σ ψΓ ∂ −∂+ Γ Γ =ℏ  

with gravitation, there are two main differences:  First, in the usual Dirac equation ( ) ag

aeν ν γΓ =  

couples only to the gravitational 
aeν , whereas 

y a y

y a ye
ν ν νγ ε γΓ = Ε =  in (18.8) contains both the 

electromagnetic 
a

yε  derived in (14.9) and the gravitational 
aeν .  Thus, we replace ( )g

ννΓ Γ֏ .  

Second, in the usual Dirac equation ( )g

σΓ  stands alone contracting with ( ) ( )
1

;4 g g

ν
σνσ σ Γ ∂∇ + Γ= ∂ , 

while in the hyper-canonical Dirac equation we find that ( )
2/

g
qA mcσ σ σ

γΓ Γ +֏ , adding an extra 

2
/qA mc

σ
γ  term.  This is reminiscent (and in fact yet another downstream consequence) of how 

/iqA cµ µ µ µ∂ = ∂ −֏ ℏD  and /p p qA cµ µ µ µπ = +֏  as a result of Weyl’s Local U(1) Gauge 

Symmetry, as reviewed in section 1.  These (18.8) and (18.10) are now in a form enabling 

Hamiltonian calculations to be carried out as simply as possible, which is our next undertaking. 

 

PART IV:  THE HYPER-CANONCIAL DIRAC HAMILTONIAN: 

MAGNETIC MOMENT ANOMALIES WITHOUT RENORMALIZATION 

 

19.  Preparing the Hyper-Canonical Dirac Equation for Calculating the 

Hamiltonian 
 

 To obtain the Dirac Hamiltonian, we start with (18.10) which is in momentum space.  

Because our interest is in the electrodynamic Hamiltonian and particularly showing how (18.10) 

naturally contains the magnetic moment anomaly obviating any need for renormalization, we shall 

eliminate gravitation and work in flat spacetime by setting gµν µνη= .  This also means that we 

replace 
y a y

y a ye
ν ν νγ ε γΓ = Ε =  with ( )

y

ye

ν νε γΓ =  because 
a aeν νδ= , and that we replace ;

ν
σ∂ Γ  with the 

ordinary derivative ν
σ∂ Γ  because in flat spacetime the connections 0

ν
µσΓ = .  With these changes, 

and using 2/q mcρ =  for compactness, (18.10) becomes: 

 

( )( ) ( )( ) ( )( ) ( ) ( )( )( )2 21
0 04

0
e e e e e

A c mc U A cp i c mc Uσ σ σ σ ν
σγ γσ νσρ ρ Γ ∂ ΓΓ + Π − = Γ + + − =ℏ . (19.1) 

 

This will be our starting point for extracting the Hamiltonian, and it includes the spin connection 

term ( ) ( )
1
4 e e
i c ν

σνΓ ∂ Γℏ  which descends from 1
4 ;i c ν

ν
σΓ ∂ Γℏ  in (18.10) and does not disappear, in 

contrast to ( ) 0
g

ν
σ

ν
σ γ∂ Γ → ∂ =  as reviewed after (18.2).  This is because ( ); 0

e

ν ν
σ σ∂ Γ ∂ Γ ≠→  here.  

As we shall see, this spin connection term is central to how (19.1) obviates renormalization.  We 

have added the γ  subscript to make clear that A
σ
γ  is (15.3) for an individual photon 

 

 First, we obtain the four components of ( )
y

y

σ σ
ε ε γΓ =  using y

σε  derived in (14.9), which in 

retrospective view of sections 15 and 16 contains what we now label as 
k

Aγ , as such: 
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( )

( )

( )

( )

0 0 0 0 0 1 0 2 0 3 0 1 1 2 2 3 3 0

0 1 2 3

1 1 1 0 1 1 1 1 0

0 1

2 2 2 0 2 2 2 2 0

0 2

3 3 3 0 3 3 3 3 0

0 3

y k k

y

y

y

y

y

y

y

A A A A

A

A

A

γ γ γ γε

γε

γε

γε

ε γ ε γ ε γ ε γ ε γ γ ρ γ ρ γ ρ γ γ ρ γ

ε γ ε γ ε γ γ ρ γ

ε γ ε γ ε γ γ ρ γ

ε γ ε γ ε γ γ ρ γ

Γ = = + + + = − − − = −

Γ = = + = −

Γ = = + = −

Γ = = + = −

. (19.2) 

 

This may be consolidated into: 

 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )0 0 0 0 0 0k k k k kA Aσ
γ γ γ γε ε ε ε εγ ρ γ γ ρ γ γ ρ ρ γΓ = Γ Γ = − − = Γ = − ⋅ −A AΓ γ γ . (19.3) 

 

Let us also write down the µγ  in the in the Dirac representation, which are: 

 

0
0 00

;
0 00

k

k

k

I

I

σγ γ
σ

    
= = =    − −    

σ
= γ

−σ
  (19.4) 

 

It will be helpful at various times in the upcoming calculations to make use of the Dirac relation 

( ) ( ) ( ) ( )2 2

j j k k
b c Iγ γ ×= ⋅ ⋅ = − ⋅ ⋅b c b cγ γ σ σ  easily apparent from (19.4) , where I is a unit matrix.  

Furthermore, the Pauli matrices satisfy the identity ( ) ( ) ( )i⋅ ⋅ = ⋅ + ⋅b c b c b cσ σ σ ×  so that this 

Dirac relation becomes ( )( ) ( )( )2 2 2 2I I i× ×⋅ ⋅ = − ⋅ + ⋅b c b c b cγ γ σ × .  In the special case where =b c  

are the same vector and not sums of independent vectors (so that 0=b b× ), this means that 

( ) ( )2 2

4 4
I ×⋅ ⋅ = −b b bγ γ .  And in the further special case where γ=b A  is the photon three-vector 

potential for which 2 0γ =A  via (14.8), we find that ( )2

0γ⋅ =Aγ . 

 

 With this in mind we use (19.3) to calculate the spin connection term in (19.1), and find: 

  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( )

1 1 1
4 4 4

0 0 0 0

0 0

1
4

0 0 01 1
4 2

k k

e e e e e

k k l l k k k k

l l k k k

e e e

k

i c i c i c

i c A A A A

i c A A cq A

µν

γ γ

ν µ ν
σ σ σ σν

σ γ γ

γ γ γ

σ

σ σ σ

η

γ ρ γ γ ρ γ γ ρ γ γ ρ γ

γ ρ γ γ ρ γ γ γ ρ

Γ ∂ Γ = Γ ∂ Γ = Γ ∂ Γ − Γ

− − − −

∂ Γ

= ∂ − ∂

= ∂ + ∂ =−

ℏ ℏ ℏ

ℏ

ℏ

. (19.5) 

 

In the above, we have reduced using 0σ
µγ∂ = , 2 0γ =A , ( )2

0γ⋅ =Aγ , i A q Aµ µ
σ γ σ γ∂ =ℏ  from 

(15.4), and 0 0k kγ γ γ γ= − .   

 

 The hyper-canonical Dirac equation (19.1) contains (19.5) in the form of 

( )( ) ( ) ( )
1
4e e e

A i c νσ
σν

σ
γρΓ + Γ ∂ Γℏ .  However, ( ) ( )

01 1
4 2

0k k

e e
A i c A c Aqν

σ
σ

γ γ σ γν
σρ ρ γ γ ρΓ ∂ Γ = =ℏ  using (19.5) 

combined with 0q Aσ
σ γ =  from (15.5).  Therefore, from (19.5) and again using (19.3) we calculate: 
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( )( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )( )( )

0 01 1 1
4 2 2

0 0 01 1
2 2

0 0 0 01 1
2

0

0

0

0

2

01
2

01
2

k k k k

e e e

k k j k k

e e

j j k k j

e e

j

jj k

k kj

k

k j k

A i c c A c A

c A c A

A c A A c A

c A c

q q

q q

q q

q

q

A

c c

q

σ σ σ µ
γ γ µν γ

γ γ

γ γ

ν ν
σ σν

γ γ

γ γ

γ γ

ρ γ γ ρ η γ γ ρ

γ γ ρ γ γ ρ

γ ρ γ γ γ ρ γ ρ γ γ γ ρ

γ ρ γ γ γ ρ

ρ γ ρ

Γ + Γ Γ

Γ − Γ

− − −

− −

⋅ +

Γ ∂ Γ

⋅

= =

=

=

=

= ⋅− A q A

ℏ

γ γ γ

. (19.6) 

 

To reduce the above, we use 0 0k kγ γ γ γ= − , 0 0 1γ γ = , ( )2

0γ⋅ =Aγ , and 0γ⋅ =q A  from (15.5).   

 

We therefore see that the spin connection contributes two additional terms that would be 

absent from (19.1) if it did not include the spin connection and had been left as is at (17.5).  Given 

that the photon energy momentum vector ( ),cq h c
µ ν= q  where 0cq hν=  is the photon energy, the 

first spin term ( ) ( )01 1
2 2

qc hγ γρ ν ρ⋅ =− − ⋅A Aγ γ  places the photon energy directly into the 

momentum space Dirac equation.  As to the second term, we may use the identity 

( ) ( ) ( )( )i⋅ ⋅ = − ⋅ + ⋅b c b c b cγ γ σ ×  (with I matrices implicit) as well as i A q Aµ µ
σ γ σ γ∂ =ℏ  from 

(15.4) and 0γ⋅ =q A  from (15.5) and the field strength ij i j j iF A Aγ γ γ= ∂ − ∂  to deduce that: 

 

( )( ) ( )
( ) ( ) ( )( )

( ) ( )

0 0 0 01 1 1 1
2 2 2 2

0 1 2 3 3 2 2 3 1 1 3 3 1 2 2 11
2

0 1 23 2 31 3 12 0 1 1 2 2 3 3 01 1 1
2 2 2

ijk i j k ijk i j kc i c i cq A c A

c A c A c A c A c A c A

c F F F c B B B c

γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ γ

γ ρ γ ρ γ γ ε σ ρ γ ε σ ρ

γ σ ρ ρ σ ρ ρ σ ρ ρ

γ ρ σ σ σ γ ρ σ σ σ γ ρ

⋅ ⋅ = ⋅ = × = ∂

= ∂ − ∂ + ∂ − ∂ + ∂ − ∂

= + +

−

= + + = ⋅

−

−

−

q A q A

B

ℏ

ℏ ℏ ℏ

ℏ ℏ ℏ

×γ γ σ

σ

. (19.7) 

 

The above also embeds ( ) ( )i γ γ γ⋅ = ⋅ = ⋅q A A Bℏ ℏ× ∇ ×σ σ σ , i.e., γ γ=B A∇ ×  or 

( )i γ γ=q A Bℏ× .  Because γB  is the curl of γA , this is, at present, the magnetic field of the 

individual photon.  But because of the gauge symmetry of B reviewed at (15.8), the form in which 

B enters the Dirac Hamiltonian will be unchanged whether this is γB  for a single photon, cB  for 

an external classical magnetic field, or the total 
c cγ= + ≅B B B B  which adds the classical and 

photon magnetic fields.  So, at a suitable time we will be able to follow the same steps that took 

us from (16.11) to (16.13) and transform this into an external magnetic field, and thus transform 

and interpret γ⋅ → ⋅B Bσ σ  as part of the fermion magnetic moment in an external magnetic field. 

 

 Now, we now replace the substitute variable 2/q mcρ =  with the actual charge q e= −  of 

the charged leptons.  Then we define a triplet of spin matrices 1
2

≡S ℏσ  and the Dirac g-factor 

2
D

g =  in the usual way, so that 
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2
2 2 2 2 2 2

D D
D B D B

g ge e e e
g

mc mc mc mc
µ µ= − = − = − = − = − = −S S

ℏ ℏµ σ σ σ σ  (19.8) 

 

is the 2
D

g =  Dirac g-factor and / 2
B

e mcµ = ℏ  is the Bohr magneton.  Now (19.7) becomes: 

 

( )( )0 0 0 01 1
2 2 2

2
B

ce
c c

mc
γ γ γ γγ ρ γ ρ γ γ µ⋅ ⋅ = = −− ⋅ ⋅ = − ⋅q A B B B

ℏ
ℏγ γ σ σ σ . (19.9) 

 

It is very important to keep in mind that ( )/ 2D D B Bg µ µ⋅ = − ⋅ = − ⋅B B Bµ σ σ  is the Dirac 

magnetic moment for a Dirac g-factor / 2 1
D

g = .  This means that the magnetic moment anomaly 

would have to arise from some / 2 1g ≠  slightly larger than 1 being a coefficient of 
B

µ ⋅Bσ .   

 

We then use all of this in (19.6) to finally obtain: 

 

( )( ) ( ) ( ) ( )01 1
4 2Be ee

A i c hνσ σ µ µ ν
γ γ γσν µ µνρ γ µ ν ρ γ η γΓ Γ ∂ Γ = − =−+ ⋅ ⋅ Σ = ΣB Aℏ σ γ , (19.10) 

 

where, using 2 2/ /q mc e mcρ = = −  and / 2
B

e mcµ = ℏ  to write (15.11) as 1
2 Bh iγ γνρ µ=A E , we 

define a spin-connection four-vector: 

 

( ) ( )1
2B Bh iµ

γ γ γ γµ νρ µΣ ≡ − ⋅ = − ⋅B A B Eσ σ . (19.11) 

 

It will become of importance that the magnetic moment 
B γµ− ⋅Bσ  and the electric field 

Bi γµ E  

transform as the time and space components of a four-vector.  Because of γ⋅Bσ , this implicitly 

contains a 2x2 matrix, and 2 2Iµ µ
µ µγ γ ×Σ = Σ . 

 

 Returning to (19.1) and inserting (19.10) now produces the rather simplified: 

 

( )( )( )2

00
e

A cp mc Uσ σ σ
γ σ σρ γ+= Γ + Σ − . (19.12) 

 

As the final step prior extracting the Hamiltonian, we raise an index using gµν µνη=  and substitute 

(19.3) into the above.  We also reduce using 0 0A =  from (14.8) and insert the fermion energy-

momentum ( ),cp E cµ = p  and the spin connection vector (19.11), so the above becomes: 

 

( ) ( )( )
( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

0 0 0 0 2

0

0 0 0 0 0 0 2

0

0 0 0 2 0 0

0

0 2

0

0

1

1

k k k k k k

e e

k k k k k k k k

k k k k k k

B B

cp cp A cp mc U

cp cp A cp A cp mc U

cp mc cp A cp A cp U

E c c E i mc c U

γ

γ γ

γ γ

γ γ γ γ γ

ρ γ γ

γ γ γ ρ γ ρ γ γ

γ γ ρ γ ρ

γ ρ µ ρ µ ρ

= Γ − Γ − Σ − Σ −

= − − + − Σ − Σ −

= Σ − − + + Σ + −

= + ⋅ − ⋅

+

+

− ⋅ + + − ⋅

+

+A p B p A E A pσ γ

. (19.13) 
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The term c Eγρ+p A  within the above reveals why we chose to use a minus sign rather than a plus 

sign back at (14.5) though either choice seemed permissible:  Restoring 2/q mcρ = , this term 

becomes ( )2/c E c E mc qγ γρ+ = +p A p A .  Now, from prior to (1.4), the usual canonical 

momentum /p qA cµ µ µπ = +  has space components c c q= +p Aπ .  So in the limiting case where 

2/ 1E mc =  we have c E c q cγ γ γρ+ = + =p A p A π , which is a single-photon canonical momentum.  

Note that cγρ ⋅A p  represents a single interaction between a single fermion and a single photon, 

and as a scalar product, accounts for the spatial angle of this interaction.   

 

So, to further simplify (19.13) and highlight this canonical momentum relation, for the 

terms having a scaler product with γ  we define a “hyper-canonical momentum” vector: 

 
k k k

B Bc c c E i cp E A i Eγ γ γ γρ µ ρ µ= Π ≡ + + = + +p A EΠ . (19.14) 

 

In the limit 2E mc→  and with 0γ =E  this reduces γ→Π π  to the U(1) canonical momentum 

using a single photon.  Additionally, for the terms multiplied by 0γ  in (19.13) we define a “hyper-

canonical energy”: 

 

( )2 2 B
E cγ γρ µ×Ε ≡ + ⋅ − ⋅A p Bσ  (19.15) 

  

which because of γ⋅Bσ  is also a 2x2 matrix.  And, for the terms which have no 0γ  at all, we 

define a “hyper-canonical rest energy”: 

 
2 2c mc cγρΜ ≡ + ⋅A p . (19.16) 

 

 It will be appreciated from (19.13) that (19.15) and (19.16) transform respectively as the 

time and space components of a four-vector in spacetime.  Therefore, we additionally define a 

“hyper-canonical energy-momentum” vector and also employ (19.11) as follows: 

 

( ) ( )
( ) ( )

x y z

B B

c c c c c

E c c E i E c c E

µ

µ
γ γ γ γ γ γρ µ ρ µ ρ ρ

Ρ ≡ Ε Π Π Π = Ε

≡ + ⋅ − ⋅ + + = + ⋅ + + ΣA p B p A E A p p A

Π

σ
. (19.17) 

 

Then making use of all of (19.14) through (19.17) with gµν µνη= , we compact (19.13) to: 

 

( ) ( )( ) ( )( )
( ) ( )

0 21
02

0 2 2

0 0

0
B

E c c E h mc c U

c c U c c U

γ γ γ γ

σ
σ

γ ρ µ ρ ν ρ

γ γ

= + ⋅ − ⋅ − ⋅ + + − + ⋅

= Ε − ⋅ − Μ = Ρ − Μ

A p B p A A p

Π

σ γ

γ
. (19.18) 
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This final result, ( )2

0
0 c c Uσ

σγ= Ρ − Μ , has exactly the same form as the free-particle Dirac 

equation ( )2

0
0cp mc uσ

σγ − = , with the hyper-canonical substitutions pσ σΡ֏ , m Μ֏  and 

0 0u U֏ .   With this, we are ready to calculate the hyper-canonical Dirac Hamiltonian. 

 

20.  Calculating the Hyper-Canonical Dirac Hamiltonian Numerator 

 

To derive the hyper-canonical Dirac Hamiltonian, we first split the four component Dirac 

spinor 0U  into upper and lower components defined by ( )0

T

A B
U U U≡ , and insert µγ  into 

(19.18) using the Dirac representation (19.4).  This produces: 

 
2

0

2
0

0
A

B

Uc c

Uc c

  Ε − Μ − ⋅
=   ⋅ −Ε − Μ  

σ
σ

Π
Π

. (20.1) 

 

In the usual way, also with (19.14), we may now separate (20.1) into two equations, namely: 

 

( ) ( )
( ) ( )

2

0 0

2

0 0

A B

B A

c U c U

c U c U

Ε − Μ = ⋅

Ε + Μ = ⋅

σ

σ

Π

Π
. (20.2) 

 

 Dirac spinors may then be extracted in the usual way, using a two-component ( )sχ , with 

( ) ( )1
1 0

Tχ =  and ( ) ( )2
0 1

Tχ = , then multiplying through by the inverse 2x2 matrix ( ) 1
2c

−
Ε + Μ  

in the bottom equation to extract the particle spinors and by ( ) 1
2c

−
Ε − Μ  in the top equation for 

the antiparticle spinors, where several signs are flipped by setting E E= −  for the 0E <  

antiparticle spinors using the Feynman-Stückelberg prescription.  But our real interest is in 

extracting a Hamiltonian operator.  To do so, also in the usual way, we combine both equations 

(20.2) to only keep the particle ket 0 AU , thus obtaining: 

 

( ) ( )( ) ( )1
2 2

0 0A A
c U c c c U

−
Ε − Μ = ⋅ Ε + Μ ⋅σ σΠ Π . (20.3) 

 

Now, the Hamiltonian operator H is ordinarily defined in relation to the work W and the 

energy 0E cp=  by ( )2

0 0 0A A A
H U W U E mc U≡ ≡ −  with 2W E mc≡ − .  By these definitions 

the work constitutes the total physical energy in excess of rest energy 2mc , is obtained from 

eigenvalues of H.  However, the expression ( ) ( )2 2

0 0A B A
c U E mc UγµΕ − Μ = − ⋅ −Bσ  in (20.3) 

with (19.16) contains the hyper-canonical Ε  in excess of the hyper-canonical 2cΜ .  Suppose that 
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we were to define a hyper-canonical work by 2 2W Bc E mcγµ≡ Ε − Μ = − ⋅ −Bσ .  So-defined, this 

W would still be a total physical energy in excess of rest energy 2mc .  But, this work would not 

be an energy-dimensioned number, but rather would be an operator because it contains the 

magnetic moment term 
B γµ− ⋅Bσ .  Consequently, to obtain the eigenvalues of this work operator 

W, we would also have to define ( )2

0 0 0
W

A A B A
W U U E mc Uγµ≡ ≡ − ⋅ −Bσ , with this work 

eigenvalue W representing total energy in excess of rest energy.  So, do we use this work definition 

which includes a work operator containing 
B γµ− ⋅Bσ , or do we simply use 2W E mc≡ − ? 

 

Suppose we were to simply define 2W E mc≡ − .  Absent the 
B γµ− ⋅Bσ  term from this 

definition, this work would only be a kinetic energy, and would exclude electromagnetic energy 

contributions from the eigenvalues of 
B γµ− ⋅Bσ .  So, if we require the work W to be defined as 

the total energy in excess of 2mc , then lest we omit some electromagnetic energies, we are required 

to establish a work operator W as just described, and to obtain the work eigenvalues using 

0 0WA AW U U≡ .  If we further require that this work W be obtainable from the eigenvalues of 

H and thus define the Hamiltonian H accordingly, then making all of these definitions in 

combination, and connecting this with (20.3), we arrive at: 

 

( ) ( )
( )( ) ( )

( )( )( ) ( )( )

2 2

0 0 0 0 0

1
2

0

1
2

0

W

2

A A A A B A

A

B B B A

W U H U U c U E mc U

c c c U

c E i E mc c c E i U

γ

γ γ γ γ γ γ

µ

ρ µ ρ µ ρ µ

−

−

≡ ≡ ≡ Ε − Μ = − ⋅ −

= ⋅ Ε + Μ ⋅

= ⋅ + + + + ⋅ − ⋅ ⋅ + +

B

p A E A p B p A E

σ

σ σ

σ σ σ

Π Π . (20.4) 

 

From this, we now pinpoint the hyper-canonical Hamiltonian, which has been defined above as: 

 

( )( ) ( )

( )( )( ) ( )( )

1
2

1
2 2B B B

H c c c

c E i E mc c c E iγ γ γ γ γ γρ µ ρ µ ρ µ

−

−

≡ ⋅ Ε + Μ ⋅

= ⋅ + + + + ⋅ − ⋅ ⋅ + +p A E A p B p A E

σ σ

σ σ σ

Π Π
. (20.5) 

 

It is important to note that ( )2

0 A
c UΕ − Μ  in (20.4) only contains the time component of the 

hyper-canonical ( )c cµΡ = Ε Π , and that because of these definitions, all the space components 

are segregated to ( )( ) ( ) ( )1
2 2

0 0 0A A AH U c c c U c U
−

= ⋅ Ε + Μ ⋅ = Ε − Μσ σΠ Π .  This is 

analogous to writing the relativistic energy-momentum relation 2 2 4c p p m cσ
σ =  as 

2 2 2 2 4c E m c= −p , and in fact, tracing back to the very start of section 1, this may be understood 

as a very-downstream consequence of this exact same relation.  We also note that the above 

contains both magnetic 
B γµ ⋅Bσ  and electric moments 

B γµ ⋅Eσ .  Now, we proceed to calculate 

this Hamiltonian. 
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 First, we encounter ( ) ( )1 1
2 2 2 Bc E mc cγ γρ µ

− −
Ε + Μ = + + ⋅ − ⋅A p Bσ .  This cannot be 

treated as an ordinary denominator because γ⋅Bσ  term is a 2x2 matrix operator.  So, we must first 

calculate this inverse.  It simplifies the inverse calculation to briefly define a substitute variable 

2
2C E mc cγρ≡ + + ⋅A p  and write the inverse as ( ) ( )1 1

2

Bc C γµ
− −

Ε + Μ = − ⋅Bσ .  Then we invert 

BC γµ− ⋅Bσ  using the well-known inverse relation for a 2x2 matrix to obtain: 

 

( ) ( )
1

3 1 2
1 1

2

1 2 3

3 1 2

1 2 3

1

B B B

B

B B B

BB B

B B BB B

C B B i B
c C

B i B C B

CC B B i B

B i B C BC C

γ γ γ
γ

γ γ γ

γγ γ γ

γ γ γγ γ

µ µ µ
µ

µ µ µ

µµ µ
µ µ µµ µ

−
− −  − +

Ε + Μ = − ⋅ =   − + 

  + ⋅+ −
= =  + −− ⋅ − ⋅ 

B

B

B B

σ

σ
σ σ

, (20.6) 

 

in which the matrix determinant is easily calculated to be: 

 

( ) ( )2 2
2 2 2 2 2 2 22 2B B BC C E mc c E mc cγ γ γµ µ ρ µ ρ− ⋅ = − = + + ⋅ − = + + ⋅B B A p B A pσ . (20.7) 

 

After the final equality we have set 2 0γ =B  as discussed following (15.6), because the magnitude 

of the photon magnetic field is zero.  However, to be as general as possible so that later on we can 

study the Hamiltonian behavior when external classical magnetic fields with non-zero magnitude 

are applied, we shall leave 
2

γB  in place without zeroing it out.  So, using (20.6) and (20.7) in 

(20.5) and replacing C, in both vector and index notation we obtain: 

 

( )( )( ) ( )( )
( )

( )( )( )
( )

2

2
2 2 2

2

2
2 2

2

2

2

2

B B B

B

i i i i i i j j j j k k k k k k

B B B

i i i i

B

c E i E mc c c E i
H

E mc c

cp E A i E E mc A cp B cp E A i E

E mc A cp B B

γ γ γ γ γ γ

γ γ

γ γ γ γ γ γ

γ γ γ

ρ µ ρ µ ρ µ

ρ µ

σ σ ρ µ σ ρ µ σ σ σ ρ µ σ

ρ µ

⋅ + + + + ⋅ + ⋅ ⋅ + +
=

+ + ⋅ −

+ + + + + + +
=

+ + ⋅ −

p A E A p B p A E

A p B

σ σ σ

. (20.8) 

 

Note that the numerator above is in dimensions of energy-cubed, the denominator is in 

dimensions of energy-squared, and thus the Hamiltonian is in dimensions of energy as is must be.  

Note also that each of the individual terms, namely E, 2mc , cp , E γρA , 
B γµ E , cγρ ⋅A p  and 

B γµ B  all have dimensions of energy.  Now we undertake to calculate this H in detail.   

 

First, if all products are expanded, the numerator of H contains a total of 3x4x3=36 terms 

to start.  This is each of the three terms in ( )B
c E iγ γρ µ⋅ + +p A Eσ  on the left, times the four terms 
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in 
2

2 BE mc cγ γρ µ+ + ⋅ + ⋅A p Bσ  in the middle, times three more terms in the second 

( )B
c E iγ γρ µ⋅ + +p A Eσ  on the right.  Twenty-seven (27) of these terms contain a double matrix 

product of the form i kσ σ  which may be expanded with the identity i k ik ikl liσ σ δ ε σ= + , thus 

doubled into fifty-four (54) separate terms.  The remaining nine (9) of these terms contain a triple 

matrix product expanded with i j k ij k jk i ki j ijkiσ σ σ δ σ δ σ δ σ ε= + − + , which is thus quadrupled to 

thirty-six (36) terms.  In total this is now ninety (90) terms, just to start.   

 

 Next, in (20.8) the Hamiltonian is represented in momentum space.  In order to convert 

this to configuration space via the relation iΨ = − Ψp ℏ∇ , it is essential to commute every 

three-momentum p to the right of every ( )γA x  and ( )γB x  and ( )γE x  so as to butt directly against 

Ψ  with no other intervening objects.  But, in thirteen (13) of the 36 individual terms in (20.8) 

there is a p is situated to the left of at least one of ( )γA x  or ( )γB x  or ( )γE x  which are functions 

of the space coordinates x, and we cannot simply move these p over to the right, because of the 

Heisenberg canonical commutation relation which of course underlies the uncertainty principle.  

Rather, each time we commute ip  past any function ( )b x  expansible as a Maclaurin series in x, 

we must use [ ],b i b= −p ℏ∇ , a.k.a. ,i ip b i b  = ∂  ℏ  in index notation (note i∂ = −∇  in flat 

spacetime).  And if b is a vector b, this becomes [ ], i= −p b bℏ∇ , or ,i j i jp b i b  = ∂  ℏ  in index 

notation, while for any object ( )O x  this generalizes to , j jO p i O  = − ∂  ℏ .  The origin of this 

relation , j jO p i O  = − ∂  ℏ  in Heisenberg’s relation [ , ]xp x i= − ℏ  was reviewed in the paragraph 

following (7.10).  What will become very important for the present development., is that each time 

we commute ip  to the right past a generalized vector ( )jb x , we further increase the number of 

terms in H, with the relation i j j i i jp b b p i b= + ∂ℏ  adding a partial derivative. 

 

Also, while it is clear ( )γA x , ( )γB x  and ( )γE x  are functions of space and time, we must 

recall that the total fermion energy content E is also a function of space (and time).   Specifically, 

we determined after (11.4) that 
2 2

v g emE mc mcγ γ γ= Γ = , and that this holds for both classical and 

quantum systems.  For the present flat spacetime calculation, this energy content relation is 
2

v emE mc γ γ= .  Moreover, at (11.3) we obtained the electromagnetic time dilation 

( )0
1/ 1

em
γ ρ φ= −  with 2/q mcρ = .  In the classical correspondence 0 0φ φ=  this is simply 

( )01/ 1emγ ρφ= −  first found at (5.8).  Therefore ( )2 2

0/ 1v em vE mc mcγ γ γ ρφ= = − .  But because 

the proper potential ( )0 ,tφ x  is a function of space and time, this means that the total energy 

( ) ( )( )0, ,E t E tφ=x x  is a function of space and time, precisely since the total energy includes 

electromagnetic interaction energy which is a function of space and time (see also (6.2) and (6.3) 
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involving the Coulomb potential).  Thus, we must use ,i ip E i E i E  = ∂ = −  ℏ ℏ∇  whenever we 

commute p with the total fermion energy E.  This will produce even more terms when we commute 

p to the right in (20.8).  In fact, given ,i ip E i E  = ∂  ℏ , we may deduce from (7.5) that: 

 

( ) ( ), / /i i j j jp E i E i E i q i q i q E A c i q cφ φ  = ∂ = − = ∂ = − = + = +  E Aɺ ɺℏ ℏ ℏ ℏ ℏ ℏ∇ ∇ . (20.9) 

 

Note that in the above, E and Aɺ  do not have a γ  subscript.  Owing to their origin from the 

total energy ( )2 2

0/ 1v em vE mc mcγ γ γ ρφ= = −  of a quantum fermion in a classical scalar potential 

0 v emφ φ γ γ= , these enter (20.9) as classical external fields 
c cγ= + ≅E E E E  and   

c cγ= + ≅A A A Aɺ ɺ ɺ ɺ .  All of this was reviewed in section 15 (see (15.8) and associated discussion 

of gauge transformations between luminous and classical potentials) and in section 16 (note 

especially the relations (16.14) which extend (15.4), (15.7) and (15.15) to classical fields).  So, 

although (20.8) only displays γA  for individual photons, and although 
0

0Aγ γφ= =  for individual 

photons, the commutator ,ip E    and the very presence of a total energy E will end up smuggling 

some classical external ( )c c,A µ φ= A  into the Hamiltonian, allowing us to study the effects of 

classical external potentials on individual quantum interactions between fermions and photons. 

 

The general commutations , j jO p i O  = − ∂  ℏ  in some instances will produce many 

additional terms.  The most extreme example of this, and a good example of what we must do with 

what turns out to be fourteen (14) of the 36 distinct terms in (20.8), is the single term 

( )( )( )2c c Eγ γρ ρ⋅ ⋅ ⋅p A p Aσ σ  in (20.8) which contains two momenta p which need to commute 

to the right past two γA  as well as an E.  The commutations for this one of the 36 terms in (20.8), 

using ,i ip b i b  = ∂  ℏ  including the variants ,i j i jp E i E ∂ = ∂ ∂  ℏ  and ,i j k i j kp A i Aγ γ ∂ = ∂ ∂  ℏ  to 

move p all the way to the right, produces twelve (12) different terms.  Then, we consolidate the 

commutation results using the product rule together with 0j jAγ∇ =  from (15.5).  We thus obtain:  

 

( )( )( ) ( )( )( )

2 2 2 2 2 2

2 2

2

i i j j k j

k k i j j j k i j j k i

i j k j j i k j j i k j

i k

i j j k j i j k j j i

c c E cp A cp A E

A E A cp cp i c A E A cp i c A E A cp

i c A E A cp i c A E A cp i c A E A cp

c A E A c A E A c A E

γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ

ρ ρ σ ρ σ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ
σ σ

ρ ρ ρ ρ ρ ρ

⋅ ⋅ ⋅ =

− ∇ − ∇

− ∇ − ∇ − ∇
=

− ∇ ∇ − ∇ ∇ − ∇ ∇

p A p A

ℏ ℏ

ℏ ℏ ℏ

ℏ ℏ ℏ

σ σ

( ) ( )( ) ( )

2 2 2 2 2 2

2 2
2

k

i j j k j i j k j i j k

j k i j

i k

i j k j j j k i i j j k

A

c A E A c A E A c A E A

A E A cp cp

i c A E A cp A E A cp c A E A

γ

γ γ γ γ γ γ

γ γ

γ γ γ γ γ γ

ρ ρ ρ ρ ρ ρ

ρ ρ
σ σ

ρ ρ ρ ρ ρ ρ

 
 
 
 
 
 − ∇ ∇ − ∇ ∇ − ∇ ∇ 

 
 =
 − ∇ + ∇ − ∇ ∇
 

ℏ ℏ ℏ

ℏ ℏ

. (20.10) 
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And this is all before using i k ik ikl liσ σ δ ε σ= +  which doubles the number of terms.  Again, this 

particular term is an extreme example, but together with all of the foregoing, it highlights how the 

calculation to move all p to the right in (20.8) so that we can use c cΨ = − Ψp ∇  to convert the 

Hamiltonian operator into configuration space, is very complicated, produces a very large number 

of terms, and must be carefully managed.  This also shows how it is virtually impossible at this 

stage to carry out the calculation without using index notation. 

  

 With all of this in mind, we begin the calculation to move all p to the very right of the 

Hamiltonian denominator in (20.8).  But, rather than show this straightforward albeit tedious 

calculation in the main paper, we have placed this calculation in Appendix C.  As a result of the 

detailed calculations in Appendix C, for the Hamiltonian denominator in (20.8), we deduce: 
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. (20.11) 

 

In the above, which is the numerator for the Hamiltonian (20.8) with all momenta p 

commuted to the very right, we have used right-brackets to segregate into eight groups of terms 

according to the following dominant physical characteristics.  The first group contain terms which 

are entirely a function of the fermion total E, rest energy 2mc , momentum cp in energy dimensions, 
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and charge e embedded in 2/e mcρ = − ; and also of the photon potential γA  and momentum cq.  

The combination γ ⋅A p  contains data about the angle of interaction between the fermion and the 

photon.  The terms on the second line of this group have the outer product pp all the way to the 

right and also affect the Hamiltonian based on the nature of the fermion / photon interaction.  The 

third line incorporates the time derivative / t iω= ∂ ∂ = −A A Aɺ , not of the photon potential, but of 

any external classical potential applied to the fermion / photon interaction.  Keep in mind, 

however, that the associated tiω = ∂  is the radian frequency of a photon with energy ωℏ . 

 

The second group contains all of the magnetic moments 
B γµ ⋅Bσ , and on the first line also 

contains the time derivative B Biγ γµ ωµ⋅ = − ⋅B Bɺσ σ .  We will momentarily show how and why we 

can transform this magnetic field from γB  for a photon to a classical external B.  Once we do so, 

we can see very clearly that B Dµ− ⋅ = ⋅B Bσ µ  has a coefficient containing multiple physical 

objects and object combinations, which coefficient will not be equal to the Dirac / 2 1Dg = .   As 

discussed at (19.9), a coefficient of 
B γµ ⋅Bσ  which is not equal to / 2 1Dg =  but is slightly larger 

than 1, is the precise characteristic of the magnetic moment anomaly.  And as we shall shortly see, 

it is the term combination ( )22
B

E E mc γµ− + ⋅Bσ  in (20.11) which, as part of the numerator in 

(20.8), will produce the magnetic moment anomaly without renormalization. 

 

The third group of terms contains all remaining terms with a photon magnetic field γB  

which are not magnetic moment terms.   The fourth group, which is a single line, contains all the 

source densities 
em γρ  and γJ , but for the 

em γρ  which is already part of the magnetic moment 

coefficient of the second group.  Groups five through eight contain all remining electric field E 

terms not already in one of the first four groups.  Group five contains the remaining double-

momentum combinations which form either an inner product ⋅p p  or outer product pp.  Group six 

contains all remaining γ ⋅A p  and γA p×  terms which provide data about the angle of interaction 

between the individual fermion and photon quanta, and a A p×  for the cross product between the 

fermion and any classical external potential.  Group seven houses remaining ⋅E p  and cE p×  

terms for both classical and photonic E.  Group eight contains all remaining terms, which have 

only E and A for both classical and photonic fields.  A number of time-derivatives t iω∂ = −  of the 

various fields, designated by over-dots, also appear throughout the above, and there are some 

0γ ⋅ ≠A A  which encodes the angle between the photon and any external potential. 

 

The above (20.11) is obtained entirely by mathematical deduction from the numerator of 

the Hamiltonian (20.8), merely by commuting all p to the right of all other objects so that the 

conversion between momentum and configuration space via iΨ = − Ψp ℏ∇  can be utilized at 

will.  This fully reduces and consolidates the numerator of the Hamiltonian (20.8) as much as 

possible and enables the heuristic configuration space substitution i−p֏ ℏ∇  for every single 
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momentum appearing in (20.11).  But before we insert this back into (20.8) and begin to study the 

Hamiltonian, there is one final step that we now take.  This step is not mathematically-deductive, 

but rather uses the gauge symmetries studied in section 15 and especially section 16 to populate 

the Hamiltonian throughout with classical external electric and magnetic fields, as well as classical 

external sources.  This final step is the subject of the next section. 

 

21.  Transforming Gauge-Invariant Quantum Photon Fields to Classical 

External Fields, to obtain the Complete Hyper-Canonical Dirac Hamiltonian 

 

 It is important to observe that (20.11) contains a mix of classical external potentials A and 

quantum potentials γA  for individual photons.  At (15.2) and (15.3) we deduced as a downstream 

consequence of the conditions 0Aσ
σ =D  and 0Aσ

σ∂ =  in (9.4) and (9.5) which break gauge 

symmetry, that the photon potential must be ( )exp /A A iq xµ µ σ
γ σε= − ℏ  with a polarization 

( ) ( ),
ˆ 0 1 0 / 2R L z iµε ≡ −∓ , when the z axis is chosen to align with the photon propagation.  

This means, as first deduced at (14.8), that the scalar potential for a photon is zero, 
0

0Aγ γφ= = , 

and that the square magnitude of the photon potential is also zero 0γ γ⋅ =A A .  These results are 

not new.  They are well-established.  It is merely the covariant derivation of these results which 

appears to be new.  Simply put, as reviewed in section 16, this is all because the photon is a 

luminous massless particle that can never be placed at rest.  At the same time, as reviewed at 

(16.10), a classical potential ( )Aµ φ= A  must always have a material source, and of course that 

source can always be placed at rest in which case ( )0Aµ φ= 0  where 0φ  is the proper potential.  

 

Contrasting the photon γA  with the classical external A, the former is a complex object 

with imaginary components in ε  and a Fourier kernel ( )exp /iq xσ
σ− ℏ  and a proper scalar 

potential 0 0φ =  because there is no “proper” rest frame for a photon; while the latter is an entirely 

real object for which, at rest in its “proper” frame, the only non-zero component is 0

0A φ= .  But, 

although γA  and A have entirely different properties, they are still the same physics objects.  This 

is because the only difference is that γA  has had its gauge symmetry broken and turned into a 

luminous photon in the manner just reviewed, while A remains classical and can be placed at rest. 

 

What is most important for the present development, as reviewed in depth in section 16, is 

that both the photon and the classical potentials are related to the field strength bivector by exactly 

the same invariant relation, with F A Aµν µ ν ν µ
γ γ γ= ∂ − ∂  for the former and F A Aµν µ ν ν µ= ∂ − ∂  for 

the latter.   Likewise, the Maxwell equations are the invariant 4 J Fµ αµ
γ α γπ = ∂  and 

0F F Fα µν µ να ν αµ
γ γ γ∂ + ∂ + ∂ =  for the former and 4 J Fµ αµ

απ = ∂  and 0F F Fα µν µ να ν αµ∂ + ∂ + ∂ =  

for the latter.  The only difference, reviewed at (16.10), see also (15.10), is that 
0 0γφ = , and as a 
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direct consequence, so too 0Jν
γ = .  Again, a scalar potential must have a material electrical source.  

Absent an electrical source we must have 
0 0γφ =  for a luminous photon, and we are dealing with 

source-free electrodynamics.  Which now brings us to (20.11). 

 

Suppose that we are using (20.11) as the numerator of the Hamiltonian (20.8) to describe 

a physical situation in which one or more of a non-zero classical external 0≠A , 0≠B  or 0≠E  

is applied to an individual fermion interacting with an individual photon, and / or in which that 

interaction occurs in a region of spacetime with a non-zero classical external charge density 

0emρ ≠  which may also be in relative motion so that the current density 0≠J .  Then we pose the 

question: how would we account for these classical external fields in (20.11)?  First, as to γA  and 

A, we must leave these objects exactly as is.  This is because the former has had its gauge symmetry 

broken to represent a luminous photon, while the latter is a classical external potential which may 

be transformed to a rest frame.  And, this is because A in general is not a gauge-invariant object, 

because qA qA qA cµ µ µ µ′→ ≡ + ∂ Λℏ  under a gauge transformation.  However, far from being a 

difficulty, by having both γA  and A in the same Hamiltonian (along with p and E and 2mc  and e 

for the fermion) we are enabled to inquire how the classical external potential A affects the 

individual interactions between a photon γA  and a fermion Ψ .  In this way, we are able to study 

the energy spectra of quantum interactions in classical fields. 

 

But for B, E, emρ  and J, we are not restricted in this way.  Because F A Aµν µ ν ν µ= ∂ − ∂  

and F A Aµν µ ν ν µ
γ γ γ= ∂ − ∂  have the same form, and because F µν  in either event is invariant under 

gauge transformations, an applied B and an applied E will enter into (20.11) in exactly the same 

form as their photonic counterparts.  Very importantly, this means we can substitute γB B֏  and 

γE E֏  everywhere these appear in (20.11).  In fact, to be precise, because the magnetic and 

electric fields of a photon are both non-zero as seen at (15.6) and (15.11), these fields will simply 

add to whatever classical cB  and  cE  are applied according to c cF F F Fµν µν µν µν
γ= + ≅  as noted 

following (16.12), with the photon’s F µν
γ  swamped by the classical external 

cF µν  carried by 

innumerable photons.  Thus, the square magnitude terms which are zero, 0γ γ⋅ =B B  and 

0γ γ⋅ =E E  as also reviewed, are seen in (20.10) to have been placeholders which become non-

zero then they are associated with a materially-sourced B and E, whereby 0 0γ γ⋅ = ⋅ ≠B B B B֏  

and 0 0γ γ⋅ = ⋅ ≠E E E E֏ .  Moreover, these placeholders show us exactly where and how these 

square magnitude terms will enter the Hamiltonian when these external B and E fields are applied. 

 

Finally, although ( ) 0
em

J cν
γ γ γρ= =J   from (15.10), here too, 4 J Fµ αµ

απ = ∂  and 

0F F Fα µν µ να ν αµ∂ + ∂ + ∂ =  have exactly the same invariant form whether applied to photons or 

to classical charge and current densities, with Jν
γ  also being invariant under gauge transformations.  
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The only difference is that for classical densities, 0emρ ≠ .  And if there is motion relative to the 

source, then 0≠J  as well.  Thus, throughout (20.11) we may substitute 0 0em emγρ ρ= ≠֏  and 

0 0γ = ≠J J֏  everywhere these appear, with 
em γρ  and γJ  – although zero for photons –  having 

been a placeholder for the non-zero charge and current densities that exist when we go from source-

free electrodynamics to electrodynamics with sources.  In effect, the above merely restates section 

16 where we reviewed Maxwell’s equations for individual photons, now in the context of the 

hyper-canonical Dirac Hamiltonian (20.8) which has the numerator (20.11). 

 

As a result of the foregoing symmetry considerations, we now proceed to substitute 

γB B֏ , γE E֏ , 
em emγρ ρ֏  and γJ J֏ throughout (20.11) as well as γB B֏  in the 

denominator of (20.8), then reduce and consolidate wherever possible.  We denote all square 

magnitudes by the generalized 2⋅ =a a a , and set some emergent 0=E E×  by identity.  Finally, 

because (20.11) is the numerator of the Hamiltonian (20.8), we substitute this back into (20.8), to 

find that with all p commuted to the right, the complete hyper-canonical Dirac Hamiltonian is: 
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22.  Schrödinger’s Equation, in the absence of Electromagnetic and 

Gravitational Interactions  

 

 From (20.4), we may calculate the work W, which is the total kinetic plus electromagnetic 

energy minus the fermion rest mass, from the eigenvalue equation 0 0A AW U H U≡ .  Therefore, 

(21.1) provides the ability to calculate the observed energy spectrum for individual fermion / 

photon interactions under a very broad domain of external conditions and combinations of 

conditions.  We shall not explore all of these possible conditions, but rather, will focus on those of 

greatest interest, especially as regards the magnetic moment anomalies. 

 

 First, it will be seen that the majority of the terms in (21.1) arise when an external electrical 

field E is applied.  Although this is of general interest and provides one avenue for experimental 

comparisons, we shall henceforth study the Hamiltonian (21.1) only in situations where there is no 

external electrical field applied, which we enforce by setting 0=E .  Also, we will only study 

situations where there is no time-dependency in any field, whereby 0=Aɺ , 0=Bɺ  and 0=Eɺ .  (This 

is one reason we re-absorbed the residual tiω = ∂  into the fields following (C.19).)  And, we shall 

only study situations in which there is no charge density or current at the locale of the fermion / 

photon interaction, this setting 0emρ =  and 0=J .  With these restrictions on the external classical 

fields, (21.1) reduces to the greatly-simplified: 
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2 2

2
2 2 2

2 2

4 2

2

2 10

2 2

2

2

B

B B

B B

B

E mc c c E mc E c

E c i c c c

E E mc c c c E c

c E c c E c

E c E
H

E mc c

E

γ γ

γ γ γ γ

γ

γ γ

γ γ

γ

ρ ρ

ρ ρ ρ ρ

µ ρ

ρ µ µ ρ

µ ρ ρ µ

ρ µ

+ + ⋅ + + ⋅



+ ⋅ + ⋅ + ⋅ ⋅ 

− ⋅ + + + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅ 


+ ⋅ ⋅ + + =
+ + ⋅ −

A p p A p

A A q A q A p p

B p q p A p

q A B p B p A p

B A q A B

A p B

σ

σ

σ σ

σ

×

. (22.1) 

 

 Now, let us consider three further special cases of (22.1).  In the first special case, let us 

turn off all electromagnetic interactions by setting 0e =  thus 2/ 0e mcρ = − =  and 0=B  above.  

Further, in this situation, the energy content relation ( )2 2 2
/ v g emE mc mc dt d mcτ γ γ γ= Γ = =  of 

(6.3) which we found following (12.4) remains intact for quantum as well as classical systems, 

with gravitation also turned off, becomes 2

vE mc γ=  with 2 2
1/ 1 /v v cγ = − , well-known from 

the Special Theory of Relativity.  Using all of this in (22.1), and further showing the non-

relativistic / 0v c →  limit where 1vγ →  we obtain:  
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( )
( ) ( )

2 2 2 2 2 2 2
2

2 22 / 0

1

1 2 2v c
v

E mc c c
H m

E mc m mE mc γ →

+
= = = → =

+ ++

p p p p
v . (22.2) 

 

This correct result tells us that absent electromagnetic interactions and in the non-relativistic limit, 

the Hamiltonian approaches the Newtonian kinetic energy 21
2kinE m= v .   

 

 Moreover, we may use the above to operate on a fermion wavefunction ket Ψ , while also 

applying the eigenvalue relation i pµ µ∂ Ψ = Ψℏ  which separates into 
tE iΨ = ∂ Ψℏ  and 

iΨ = − Ψp ℏ∇ .  Also using ( )2H E mcΨ = − Ψ  from the first line of (20.4) when 0=B  as 

it is here, then adding 2mc  inside of all terms, we obtain:  

 

( )
2 2 2 2 2

2 2 2

2 / 0 2v c

c
H mc E i mc mc

t E mc m→

   ∂+ Ψ = Ψ = Ψ = − + Ψ → − + Ψ   ∂ +   

ℏ ℏ
ℏ

∇ ∇
. (22.3) 

  

This will be recognized in the non-relativistic limit as the time-dependent Schrödinger equation 

with a potential energy 2V mc=  merely containing the rest energy.  So, we see that absent 

electromagnetic and gravitational interactions, (21.1) produces the Schrödinger equation, as it 

must to accord with settled physics. 

 

It is also helpful to rewrite (22.2) entirely using time dilations as, using the special 

relativistic vcp mcvµ µγ=  from which we obtain the space-component relation 
2 2 2 2

vm γ=p v .  We 

also use ( ) ( )( )2 2 2 2 2/ 1 / 1 1 /
v v v v v

c γ γ γ γ γ= − = + −v  which merely is a restatement of the square 

relation ( )2 2 21/ 1 /
v

cγ = − v .  With these, (22.2) may be rewritten as: 

 

( )
( ) ( ) ( )

2 2 2 22 2
2 2 2

2 2

1 1
1

1 1 1 1

v vv v v
v

v v v v v

m
H mc mc mc

m c

γ γγ γ γ γ
γ γ γ γ γ

+ −
= = = = = −

+ + + +
vp v

, (22.4) 

 

This also contains the useful relation ( )( ) ( )2 2 2 2 2 21 1 1
v v v

m c m cγ γ γ= − + = −p .  As it must, 

( ) ( )2 2 2 2 21
2

/ 0
1 1/ 1 / 1

v
c

mc mc c mγ
→

− = − − →
v

v v  matches the non-relativistic limit shown in (22.2).   

 

23.  Magnetic Moment Anomalies without Renormalization 

 

 For the second special case of (22.1), let us keep the electromagnetic interactions and the 

magnetic field B in (22.1), but let us observe the fermion at rest such that any Lorentz boost is 

removed from the Dirac fermion and thus 0=p .  In this rest frame, (22.1) becomes: 
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( ) ( )
( )

2 2 2

2
2 2 2

22 2B B B

B

E E mc E c E
H

E

E

mc

γ γµ µ ρ ρ µ

µ

− + ⋅ + ⋅ ⋅ + +
=

+ −

B B A q A B

B

σ σ
. (23.1) 

 

Now, as reviewed following (16.10) and (16.12), whenever an external materially-sourced 

classical field is applied, the effects of individual photons are completely swamped by the classical 

field.  This was later used to obtain (21.1) by advancing all gauge-invariant fields for individual 

photons to materially-sourced classical external fields, that is, γB B֏ , γE E֏ , 
em emγρ ρ֏  and 

γJ J֏ , while leaving the gauge-dependent γA  for individual photons as is.   

 

Now, in (23.1) we are applying a classical external magnetic field =B A∇ ×  with A 

containing the space components of the classical ( )Aµ φ= A .  And as we saw at (16.10), the 

time component φ  can only be non-zero when there is a non-zero source density 0J µ ≠ .  So, in 

(23.1) the potentials γA  for individual photons will be physically swamped by the innumerable 

photons in A carrying the classical field B.  With γA  swamped by B we may set 0γ =A  in (23.1) 

to an extremely accurate approximation.  Thus, (23.1) becomes: 

 

( )
( )

2 2 2

2
2 2 2

22 B B

B

EE E mc
H

E mc

µ µ

µ

− + ⋅ +
=

+ −

B B

B

σ
. (23.2) 

 

Let us now spend a moment on the denominator above.  Turning again to the energy content 

relation (6.3) which in the present circumstance with the fermion at rest thus 1
v

γ =  becomes 

2

emE mc γ= , the denominator (D) above may be rewritten as ( )22 4 2 2D 1
em B

m c γ µ= + − B .  Noting 

that the numerator has dimensions of energy-cubed, we then compare the impact of the squared 

magnitude 2B  of the magnetic field to that of the ( )22 4 1
em

m c γ +  by dividing through by 2 4m c , 

while also approximating 1
em

γ ≅ , thus obtaining 2 4 2 2 2 4D/ 4 /Bm c m cµ≅ − B .  The salient ratio is 

then 2 2 2 4/ 4B m cµ B , which has the square root 
2

/ 2B mcµ B .  The Bohr magneton / 2
B

e mcµ = ℏ  

for the electron with 
e

m m=  written in units of electron volts is 
115.788 1 M T0 eV/Bµ −≅ × , while 

the electron rest energy 2 .511 MeVem c ≅ , so that  2 11/ 2 5.663 10 1/TB em cµ −≅ × .  For the mu and 

tau leptons it is even smaller.  So even for an extraordinary magnetic field 100 T=B  which is 

twice the size of the largest continuous magnetic field ever produced in a laboratory, the ratio 
2 9

/ 2 5.663 10 1/TB em cµ −= ×B  and 2 2 2 4 17/ 4 3.207 10B em cµ −= ×B .  Indeed, even a neutron star 

only has a magnetic field of about 106 T.  So given that 2 2

Bµ B  will at best affect the magnitude of 

the denominator a factor of 1 part in 2010  for an electron, and even less for the other leptons, we 

may safely neglect this term in the denominator and approximate it to zero.  Thus, setting 2 2

Bµ B  

in the (23.2) denominator and reducing, we now have:  
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( )
( ) ( )

( )

2 2 2

2 2

2 22
2 2

2 2 2 2

2 2

1

2 2

2
1 1

1

2

B B

B B

B
B B B

em

E E mc E
H

E mcE mc E mc

E mc E mc mc E mc

E E

E E

µ µ
µ µ

µµ µ µ
γ

− + ⋅ +
= = − ⋅ +

++ +

  = − + ⋅ ⋅ = − + ⋅ ⋅    + + + +   

B B
B B

B B B B

σ
σ

σ σ σ σ

. (23.3) 

 

In the bottom line, we have also used the known property ( )22 = ⋅B Bσ  of the Pauli matrices 

(generally ( )22 = ⋅x xσ  for any vector x), and then again used 2

emE mc γ= .  

 

 Next, we again use 1
em

γ ≅  to note that ( ) 2 2 11/ 1 / 2 5.663 10 1/TB em B emc m cµ γ µ −+ ≅ ≅ × .  

Thus, even if B is very large, say, 100 T=B , the term ( )( )21 / 1 1
B em

mcµ γ− + + ⋅ ≅ −Bσ  will 

differ from 1−  by only about one part in 1010 for an electron, and less for the other leptons.  As a 

result, we may neglect ( )( )2/ 1
B em

mcµ γ + ⋅Bσ  in the above.  Additionally using 

2 2

em emE mc mc Eγ= = + , (23.3) reduces to: 

 
2

2 2

22

2 1

2 2
em em

B B B

em em

mc E
H

E mc mc E

E γµ µ µ
γ

+= − ⋅ = − ⋅ = − ⋅
+ + +

B B Bσ σ σ . (23.4) 

 

And now we are ready to review the magnetic moment anomaly and renormalization. 

 

 The term 
B

µ− ⋅Bσ  in the usual Dirac equation has a coefficient / 2 1
D

g =  based on the 

Dirac g-factor 2
D

g = .  But in (23.4), it has a coefficient ( ) ( )2 22 / / 1
em em

E E mc γ γ+ = + .  At the 

end of section 5 we reviewed how even for very powerful electromagnetic interactions, 1
em

γ ≅ .  

So with 
em

γ  approximately but not exactly equal to 1 whenever there are electromagnetic 

interactions, this coefficient is likewise close to 1 but not exactly equal to 1.  As such, this 

coefficient is at least suggestive of the magnetic moment anomaly.  However, as will be reviewed 

more deeply in the next section, the magnetic moment anomaly is understood to arise exclusively 

from the electromagnetic (and much smaller hadronic and electroweak) self-interactions of a 

fermion with itself.  This understanding is the genesis of the inordinate numbers of Feynman loop 

diagrams used to calculate magnetic moment anomalies.   

 

 Now, in (23.4), 2 2

em emE mc mc Eγ= = +  is the total energy of a charged body at rest in an 

external electromagnetic potential absent gravitation, i.e., its rest-plus-electromagnetic-interaction 

energy.  (See again (6.1), (6.2) and (7.4), and see section 12 which establishes that the complete 

energy content relation 
2 2

v g emE mc mcγ γ γ= Γ =  carries through from classical to quantum 

systems.)  But it is well-established that the only interaction energies which go into the lepton 

magnetic moment anomalies, are these self-interaction (SI) energies, which we denote as 
SI

E .  

Again, this is why renormalization theory and explanations of the magnetic moment anomaly are 
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built around a plethora of Feynman diagrams all containing various possible self-interaction loops, 

theoretically extending to infinite order, and calculable as a practical matter only through three or 

four orders.  Therefore, if we wish to apply (23.4) to an individual charged lepton, 
em

E  must 

represent the electromagnetic interaction energy of the lepton, not in an external potential, but the 

self-interaction energy in its own potential.  Consequently, if we wish to apply (23.4) to the self-

interactions of individual leptons, we must reinterpret 
em SI

E E֏ . 

 

 Moreover, each charged lepton has an observed rest energy 2mc .  But, part of this rest 

energy will naturally arise from the lepton’s self-interaction energies 
SI

E , i.e., from all of its 

Feynman diagram self-interaction loops.  Therefore, if we now employ 2 2

0 SIm c mc E≡ −  (i.e. 

2 2

0 SImc m c E≡ + ) to define a lepton’s bare rest energy defined its observed rest energy 2mc  less 

its self-interaction energy 
SI

E , then to apply (23.4)  to an individual lepton, we must reinterpret 

2 2

0mc m c֏   to be the bare rest energy of the lepton, and the energy content relation for a fermion 

at rest and absent gravitation becomes 2 2 2

0 0em SImc m c m c Eγ= = + .  With the foregoing definitions 

and reinterpretations, (23.4) now becomes: 

 
2

0

2 2 2

0 0

2 2 2

2 1

22 SI em
B B B

SI em

mc m c E
H

mc m c m c E

γµ µ µ
γ

+= − ⋅ = − ⋅ = − ⋅
+ + +

B B Bσ σ σ . (23.5) 

 

Now, in general, the coefficient of 
B

µ ⋅Bσ  in the Hamiltonian does correspond to one-half of the 

g-factor i.e. to / 2g .  So, it appears we might be able to associate / 2g  with the coefficient 

( )12 /em emγ γ +  containing the time dilation.  But first, we must account for one final matter. 

 

The Particle Data Group in [14] provides a very thorough review of the muon anomalous 

magnetic moment.  Although the numeric data developed in this review applies specifically to the 

muon, the theoretical principles exposited for analysis apply equally to the electron and to the tau 

lepton.  For a given lepton, the complete standard model anomaly denoted in [14] as SMa , which 

we simply denote here as ( )2 / 2a g= − , is generally divided into three parts, namely, QED, 

hadronic and electroweak contributions to the lepton self-interaction.  To leading order for all three 

leptons as first uncovered by Schwinger [15], / 2a α π≅ , where 2

04/e cα πε= ℏ  is the running 

fine structure coupling which approaches the numerical value of 1/137.035999139α =  [16] at 

low probe energies.  These are then summed whereby 
QED Had EWa a a a= + + , see equation 4 and 

Figure 1 in [14].  This may also be written in terms of the g-factor and approximately tied via 

QED Had EW 1.001161409732/ 2 1 1 1 / 2 42g a a a a α π= + = + + + ≅ =+  to Schwinger’s first order 

anomaly / 2α π .  Nonetheless, although each anomaly has these three contributions, the 

electromagnetic contribution dominates the other two by four or five orders of magnitude 

respectively.  So up to this parts-per-greater-than-104 difference one may use the very close 
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approximation
QEDa a≅ .  Here, we denote 

QEDa  as 
em

a .  Thus, one may denote the electromagnetic 

self-interaction contribution to the g-factor as / 2 1 / 2
em em

g a g≡ + ≅ .  The same qualitative 

considerations – though not the exact same numbers – apply to the electron and the tau lepton. 

 

With this in mind, we see that the energy contributions in (23.5) arise only from the 

electromagnetic self-interactions of the charged leptons, and do not account for the comparatively 

tiny hadronic and electroweak contributions, with the electromagnetic contribution dominating by 

four or five orders of magnitude.  Therefore, we cannot associate ( )12 /em emγ γ +  in (23.5) with the 

complete Had EW/ 2 1
em

g a a a= + + + .  Rather, to a parts-per-104 approximation we may only 

associate this with  / 2 1
em em

g a≡ + . Thus, we may finally identify the electromagnetic g-factor as: 

 
2

0

2 2 2

0 0

2 2 2

2

22

2 1

em SI em

SI em

g m c E

mc m c m c E

mc γ
γ

+= = =
+ + +

. (23.6) 

 

 Next, we may place (23.6) into (23.5) to obtain: 

 

2

em
B em

g
H µ= − ⋅ = ⋅B Bσ µ . (23.7) 

 

where, making note of (19.8) and particularly that the magnetic moment is defined so as to include 

the g factor, we define the electromagnetic portion of the magnetic moment as: 

 

2 2 2

em em
em B

g g e

mc
µ≡ − − ℏµ σ = σ , (23.8) 

 

with m being the mass of the charged lepton under consideration in any given situation. 

 

 Now, in (23.6) through (23.8) the magnetic moment anomaly – or at least the dominant 

electromagnetic contribution to the anomaly – has been obtained without any appearance of 

infinite quantities and thus without any need to resort to renormalization.  The reason that the need 

to renormalize arises in the first place, is because in the usual Dirac equation the coefficient of 

B
µ− ⋅Bσ  is / 2 1

D
g = , i.e., because 2g =  exactly.  But in the physical world, the empirical, 

observed g-factor is slightly larger than 2.  And as noted already, to first order for all leptons, the 

observed 2 1.00116/ 2 1 / 140973242g πα+ ==  owing originally to Schwinger [15], and contains 

the fine structure number 1/137.035999139α =  [16] for electromagnetic interaction strength at 

low probe energies.  This discrepancy – a.k.a. “anomaly” – between what the Dirac equation 

predicts and what is actually observed, must be remedied.  And at present, given that Dirac’s 

equation merely produces a coefficient / 2 1
D

g = , the only known remedy to address the fact that 

/ 2g  is the actual coefficient of 
B

µ ⋅Bσ , is infinite-number renormalization.   
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In other words, the reason why renormalization is needed in the first place, is because the 

ordinary canonical Dirac equation only predicts a term 
B γµ− ⋅Bσ  in the Dirac Hamiltonian, or 

more precisely, a term ( )/ 2D Bg γµ− ⋅Bσ  with a Dirac g-factor 2
D

g = .  But in nature, what is 

observed is a ( )/ 2 Bg γµ− ⋅Bσ  with / 2g  slightly larger than 1 – again, to first order – with 

/ 2 1 2/g πα= + .  So the raison d'être for renormalization is to fill the gap from 

( )/ 2B Bgγµ µ− ⋅ − ⋅B B֏σ σ  by producing a coefficient for 
B γµ− ⋅Bσ  which is slightly larger 

than 1.  But in (23.5), the hyper-canonical Dirac Hamiltonian has naturally provided us with a 

coefficient which is larger than 1, and indeed, only slightly larger than 1. 

 

 To directly illustrate why renormalization is no longer needed in view of (23.8), and how 

it is replaced, we now combine (20.4) using Ψ  rather than 0 AU , with (23.8), and also use the 

relation 2

emE mc γ=  from (6.2) for a material body at rest and absent gravitation to write: 

 

( ) ( )( )
( )( ) ( )

2 2

1
2

1

1 2

2

B em B

em em
B B

em

H E mc mc

g
c c c

γ γµ γ µ

γ µ µ
γ

−

Ψ = − ⋅ − Ψ = − − ⋅ Ψ

= ⋅ Ε + Μ ⋅ Ψ = − ⋅ Ψ = − ⋅ Ψ
+

B B

B B

σ σ

σ σ σ σΠ Π
. (23.9) 

 

Now, ( )( ) ( )1
2H c c c

−
= ⋅ Ε + Μ ⋅σ σΠ Π  – which in its entirety is equal to (21.1) – becomes (23.8) 

when all of 0=p , 0=E , 0=Aɺ , 0=Bɺ , 0=Eɺ , 0
em

ρ =  and 0=J .  But as noted after (20.5), 

( ) ( ) ( )1
2c c c

−
⋅ Ε + Μ ⋅ Ψσ σΠ Π  and ( )2

B
E mcγµ− ⋅ − ΨBσ  are merely the space and time-

minus-rest energy components of a single equation, analogous to the relativistic energy-

momentum relation 2 2 2 2 4c E m c= −p .  As a result, a magnetic moment term 
B γµ− ⋅Bσ  with an 

implied coefficient / 2
D

g  residing in the time components of (23.9), is projected into a term 

( )/ 2em Bg µ− ⋅Bσ  residing in the space components of (23.9).  So, the gap from 

( )/ 2B em Bgγµ µ− ⋅ − ⋅B B֏σ σ  is filled, not by renormalization, but by basic spacetime physics 

involving a relation between the time and space components of a single equation.  And as noted, 

this electromagnetic contribution to the overall g is greatly dominant over the hadronic and 

electroweak contributions.  So in sum, the anomaly arises, physically, because a 
B

µ ⋅Bσ  term with 

2
D

g g= =  in the time components of (23.9) is empirically witnessed as a 
B

µ ⋅Bσ  term with 

( ) ( )24 / 4 / 1
em em em

g E E mc γ γ= + = +  in the space components of (23.9).  Thus (for the moment, 

to the dominant order of electromagnetic contributions), the observed anomaly is merely one of 

the many consequences of the physical relation between space and time.  And the key parameter 

which determines the actual magnitude of the anomaly, is the electromagnetic time dilation 
em

γ . 
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 We also point out that to obtain (23.6), the “reinterpretations” 
em SI

E E֏  and 2 2

0mc m c֏  

and 2 2

0 SIm c mc E≡ −  used to go from (23.4) to (23.5) are still  a form of renormalization, albeit 

using only finite, not infinite energies.  This is because in (23.5), we now have a finite bare quantity 

– namely a finite bare mass 0m  – being “renormalized” into a finite dressed / observed quantity – 

namely the finite observed rest mass m – along the lines of the approach advocated by, e.g., [17]. 

 

 We also note in passing that the above results provide further validation to the substitutions 

γB B֏ , γE E֏ , 
em emγρ ρ֏ , γJ J֏  and γB B֏  for the various gauge-invariant fields, used 

to advance (20.11) to (21.1).  Specifically, even if one was to doubt the existence of 

electromagnetic time dilations and suppose they did not exist whereby 1
em

γ = , or if one were to 

accept these time dilations but consider the 1
em

γ =  approximation, in either event (23.6) would 

produce / 2 / 2 1
em D

g g= =  and the magnetic moment term in (23.8) would reduce to 
B

µ ⋅Bσ .  

That this very term exists in the Dirac Hamiltonian, and that the B in this term may be used to 

describe an externally-applied classical magnetic field and is not restricted solely to the magnetic 

field γB  for a single photon, is well-settled physics both theoretically and empirically.  As such, 

this correspondence with well-settled physics in the 1
em

γ =  limit also validates replacing gauge-

invariant photon fields with classical external materially-sourced fields used to obtain (21.1). 

 

In conclusion, despite the many critiques which have been leveled by the likes of Dirac 

[18] and Feynman [19] at the use of a renormalization technique which subtracts some infinites 

from other infinites to obtain finite answers, this standard method of renormalizing infinities is 

commendable and has exhibited remarkable staying power for one very important reason: the finite 

answers it produces are empirically correct, to extraordinarily high precision.  But being a mere 

technique and not really a theory about nature, it suffers the theoretical fault of providing little 

insight into the fundamentally-intelligible order of nature.  The results in highlighted in (23.9) hold 

out the prospect that infinite-number renormalization techniques can finally be replaced with the 

very deep insight that the magnetic moment anomaly is no more and no less than another 

consequence all physics occurring on the stage of spacetime, and of time dilations which directly 

drive the energy content of material bodies.  But if the foregoing is to replace renormalization as 

the basis for understanding magnetic moment anomalies, it is important to show how this claim 

might be empirically tested.  That is the purpose of the next two sections. 
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PART V:  PROPOSED EXPERIMENTAL TESTS OF THE CONNECTION 

BETWEEN MAGNETIC MOMENT ANOMALIES AND 

ELECTROMAGNETIC TIME DILATIONS 
 

24.  Two Proposed Experimental Magnetic Moment Tests: Lepton Time 

Dilation, and Dressed versus Bare Rest Energies  

 

 We begin to study experimental tests of the hyper-canonical magnetic moment anomaly 

predicted in (23.6) by algebraically restructuring the g-factor relation (23.6) and also applying the 

finite renormalization relation 2 2 2

0 0em SImc m c m c Eγ= = +  to obtain: 

 
22

0

2 2

0 0 0

1

4 1

SI em em
em

em em

m c E g adt m mc

d m m c m c g a
γ

τ
+ += = = = = =

− −
. (24.1) 

 

We notice when placed into the form 2 2

0/em mc m cγ = , that for an individual charged lepton the 

electromagnetic time dilation 
em

γ  not only measures an electromagnetic time dilation /dt dτ  

intrinsic to that lepton, but it also measures the ratio 0/m m  of the observed “dressed” rest mass 

which includes electromagnetic self-interactions, to the bare rest mass which excludes 

electromagnetic self-interactions.  In other words, the time dilation and the “dressed-to-bare” mass 

ratios for individual leptons are one and the same.  Consequently, it is desirable to calculate this 

time dilation and the dressed versus bare masses for each of the three leptons. 

 

 Using (24.1), to an approximation that is valid within parts-per 104 as reviewed prior to 

(23.6), we may use the empirical values 2.00231930436152
e

g =  and 2.0023318418gµ =  

deduced from [20] and 2.00235442gτ =  from [21] for the three types of lepton to immediately 

obtain the approximate magnitude of 
em

γ  for each of the three leptons.  This calculation yields: 

 

( ) ( ) ( )1.00232199707049; 1.0023345637; 1.00235719
em em eme µ τγ γ γ≅ ≅ ≅ . (24.2) 

 

Because /
em

dt dγ τ= , (24.2) is a prediction of an electromagnetic time dilation intrinsically 

associated with each lepton, due on the internal repulsive electromagnetic self-interaction energies 

of those leptons.  Therefore, based on what was first discovered at (5.8) and (5.9) and further 

developed at (12.3) and (12.4), to the extent that an experiment can be designed to treat an 

individual lepton as a geometrodynamic clock emitting periodic signals, (24.2) tells the predicted 

time dilation of that lepton relative to a neutral laboratory clock, neglecting hadronic and 

electroweak contributions.   

 

Now, let’s take a closer look at the energies in (24.1).  Because each of (24.2) via (24.1) 

also tells us the ratio 0/m m  of the dressed-to-bare rest masses and energies of each lepton, we 
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may immediately calculate using the empirical rest energies 2 0.5109989280 MeVem c = ; 

2
105.6583715 MeVm cµ =  and 2 1776.86 MeVm cτ =  from [22] together with 2 2

0/em mc m cγ =  

from (24.1) and the three intrinsic lepton 
em

γ  in (24.2), that: 

 
2 2 2

0 0 00.5098151387 MeV; 105.4122798 MeV; 1772.68 MeV

0.0011837893 MeV 0.2; ;460917 MeV 4.18 MeV

e

SI e SI SI

m c m c m c

E E E

µ τ

µ τ

= = =

= = =
 (24.4) 

 

Consequently, to the extent that an experiment can be designed to separately determine how much 

of the total rest energy of each lepton arises from electromagnetic self-interactions and how much 

is a non-electromagnetic base energy, (24.4) predicts this energy division. 

  

25. Three Additional Proposed Experimental Magnetic Moment Tests 

based on Relativistic and Nonrelativistic Lepton Kinetic Energies and Applied 

Magnetic Fields 

 

 Starting at (23.1) we set 0=p  in (22.1) so that when we identified the charged lepton g-

factor in (23.6), that g-factor depended only on the lepton electromagnetic self-interaction energies 

and not on the kinetic energy of the overall lepton.  Naturally, when a fermion is observed in 

motion – whether relativistic or non-relativistic –the Hamiltonian and thus the energy eigenvalues 

will change.  But the g-factor itself must be independent of the state of motion of the lepton, which 

is why the g-factor in (23.6) was defined based on observing the fermion at rest.  Now that we 

have identified the g-factor (or precisely, the dominant electromagnetic contribution to the g-

factor), we wish to study the Hamiltonian and associated energies when a charged lepton in an 

externally applied magnetic field is observed in motion, bot relativistic and non-relativistic.  This 

will provide us with some additional experimental tests of these results. 

 

 Accordingly, we return to (22.1), but now we apply an external magnetic field and allow 

the fermion to be in motion.  As discussed prior to (23.2), because γA  for any individual photon 

will be swamped by the enormous number of photons carrying the magnetic field =B A∇ × , we 

may likewise set 0γ =A  in (22.1) to obtain: 

 

( ) ( )( )

( )

2 2 2 2 2 2

2 2

2
2 2 2

2

2 2

B

B B B

B

E mc c E E mc c c c

c c c c
H

E mc

E

µ

µ µ µ
µ

+ − ⋅ + + + ⋅

+ ⋅ ⋅ + ⋅ ⋅ +=
+ −

p B p q p

q B p B p p B

B

σ

σ σ
. (25.1) 

 

Additionally, let us require that the applied magnetic field be a constant field with no spatial 

variation, i.e., that 0i jB= ∇ =B∇ .  In this event, we may use 0i c c− = =B qBℏ ∇  from (16.14) 

and the commutativity properties of q reviewed following (15.15) to also set to zero, the two terms 
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above which contain q.  Finally, for the reasons reviewed for going from (23.2) to (23.4), we may 

set 2 2 0Bµ =B  above.  As a result, separating terms, the above now becomes: 

 

( ) ( )
2 2 2 2

2 22 2 2 2

22 B
B

c cc E c
H

E mc E mc E mc E mc

µµ
  ⋅ ⋅ = − + ⋅ +
 + + + + 

B p pp p
B

σσ . (25.2) 

 

The first term ( )2 2 2/c E mc+p  was already seen in (22.2).  The coefficient ( )22 /E E mc+  was 

first encountered in (23.4) and was shown in (23.6) for a fermion at rest to be equal to / 2
em

g  

following a reinterpretation of the energies when applied to individual leptons.  So there two terms 

have previously been studied.  The remaining terms with 0≠p  have not previously studied, and 

of course these capture the effects to motion which we shall now study here. 

 

 First, we will wish to renormalize (25.2) in the same way that we did (23.4) to get to (23.5).  

To do so, we start by renormalizing 2 2

0mc m c֏  to the bare rest energy of the leptons.  Then we 

renormalize 0v em v em
c mc m cγ γ γ γ=p v v֏  thus 2 2 2 2 2 2 2 2 2 2 2 2

0v em v emc m c m cγ γ γ γ=p v v֏ , and the 

total energy 2 2

0v em em vE mc m cγ γ γ γ= ֏ .  We create several /c c =v v  and then divide out a 

number of 2 2

0 0/ 1m c m c =  ratios.  We also then use ( )2 2 2 2/ 1 /
v v

c γ γ= −v   Finally we apply the 

renormalization step 2 2

0emm c mcγ = .  Following this finite-quantity renormalization we obtain: 

 

( ) ( )
( ) ( )

2 2 2 2 2
2

2 2

1 12 2

1 1 1 1

em v em vv em v em
B B

em v v em v em em v

H mc
c c

γ γ γ γγ γ γ γµ µ
γ γ γ γ γ γ γ γ

 − −
 = − + ⋅ + ⋅ ⋅
 + + + + 

v v
B Bσ σ . (25.3) 

 

The terms linear in B turn out to be entirely unaffected by the renormalization because of an offset 

between numerator and denominator.  For the first term with 2mc , the numerator drops by one 

order from 2

emγ  to 
em

γ , which results from applying 2 2

0emm c mcγ = .   

 

For a fermion at rest with 0=v  and 1
v

γ =  and using ( )/ 2 2 / 1em em emg γ γ= +  from (23.6), 

the above reduces to: 

 

2

1 2

em em
B B em

em

g
H

γ µ µ
γ

= − ⋅ = − ⋅ = ⋅
+

B B Bσ σ µ . (25.4) 

 

This reproduces (23.7) for the magnetic moment, as it must.  Conversely, in the extreme relativistic 

limit where the special relativistic time dilation factor 
v

γ → ∞  and c→v ,  but the 

electromagnetic time dilations (24.1) and (24.2) remain as is slightly above 1, ˆ/ c →v u  becomes 

a unit vector with a magnitude ˆ ˆ 1⋅ =u u  and orientated in the direction of the fermion motion.  For 
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example, for a z-propagating extreme-relativistic fermion, ( )ˆ 0,0,1=u .   Accordingly, for extreme 

relativistic motion, where ( ) ( ) ( ) ( ) ( )( )2 1 / 1 1 1 / 1 1
em v em v v v em em v v

γ γ γ γ γ γ γ γ γ γ− + = − ⋅ + + → −  in 

(25.3), we find that: 

 

( ) 2 ˆ ˆlim 1 3 2
v B B

c
H mcγ µ µ

→
= − − ⋅ + ⋅ ⋅

v
B B u uσ σ . (25.5) 

 

Now, a hallmark of the Special Theory of Relativity is that the total energy of a material 

body – that is, its rest-plus-kinetic energy – approaches infinity as the relative velocity of that body 

approaches the speed of light, because of the time-dilation factor 2 2
1 /v v cγ = − .  The 

impossibility of having infinite energy then likewise precludes that material body from ever 

reaching the speed of light.  The term ( ) 2
1v mcγ −  in (25.5) shows that the kinetic energy of a 

charged lepton indeed approaches infinity in the usual way as its velocity approaches the speed of 

light.  But the 
B

µ− ⋅Bσ  term exhibits an entirely different character:   At rest as shown in (25.4), 

this term is ( )/ 2em Bg µ− ⋅Bσ  with / 2
em

g  being slightly larger than 1.  The complete observed g-

factors (also with hadronic and electroweak contributions) for each charged lepton were shown 

prior to (24.2).  But at extreme relativistic velocities, this term does not become infinite.  Instead, 

the coefficient of 
B

µ− ⋅Bσ  grows from just over 1 in (25.4), to exactly 3 in (25.5), i.e., it effectively 

triples.  Specifically, ( )2 / 1v em v emγ γ γ γ +  in (25.3) grows from Schwinger’s / 2 1 / 2
em

g α π≅ +  just 

above 1 at rest, to exactly 2 at the relativistic extreme, while ( ) ( )22 2
1 / 1em v v emγ γ γ γ− +  grows from 

zero at rest to exactly 1 at the relativistic extreme.  So, while the ordinary kinetic energies of the 

charged leptons which appear also in the Schrödinger equations (22.2) and (22.3) grow without 

limit in the usual way, the Hamiltonian energy contributions from the magnetic moments reach an 

absolute upper limit whereby they approximately triple, growing from being proportional to 

/ 2 1
em

g ≅  at rest, to being proportional to 3 for extreme motion.   

 

 This is a very important, and potentially very testable prediction:  The kinetic energies of 

lepton magnetic moments interacting in magnetic fields do not grow without limit as relativistic 

velocities are attained.  And in fact, even for extreme relativistic motion approaching the speed of 

light, the total energy of the magnetic moment interaction energy can only grow by a factor of just 

under 3, relative to the magnitude of this same interaction energy at rest.  The magnetic moments 

of the leptons are perhaps the most precisely tested data in all of physics.  So it would seem highly 

feasible to design experiments which can detect the 
B

µ− ⋅Bσ  energy contributions for each of the 

three leptons in highly relativistic settings, to establish that the growth of these energies is not 

governed by the usual 
2 21/ 1 /v cγ = − v  which precedes 2mc  in (25.5), but rather by the factor 

of 3 times the 
B

µ− ⋅Bσ  in (25.5). 
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 Now let’s consider fermions in relative motion, but at non-relativistic (NR) velocities for 

which we may approximate 
2 2 2 21

2
1/ 1 / 1 /v c cγ = − ≅ +v v .  For the first (Schrödinger) term in 

(25.3), we insert 2 21
2

1 /v cγ ≅ + v  and 2 2 21 /v cγ ≅ + v  and ( )1/ 1 1x x+ ≅ −  for small x generally 

while discarding all terms with 4 4/ cv  and higher order as soon as they appear, and finally use 

( )/ 2 2 / 1em em emg γ γ= +  from (23.6), to obtain: 

 

( ) ( ) ( ) ( )
( )

( )

2 2 21
22 2 2

2 21
2

2 21
2 2 2 2 221

2

1 2 /1 1 1

1 1 21 1 /

/ 21 1 1
2 / 1

1 1 2 1 2 2 2

em v emem v v

em v em v em

emem em em

em em em

c
mc mc m

c

c g
c m m m

γ γ γγ γ γ
γ γ γ γ γ

γγ γ
γ γ γ

− ++ −
= ≅

+ + + +

   ≅ + − ≅ =   + + +   

v
v

v

v
v v v v

. (25.6) 

 

 For the magnetic moment term in (25.3) we restructure the first coefficient term into: 

 

( )12 1 2

1 1 1 1 2

em vv em em em em
v

v em v em em v em

gγ γγ γ γ γγ
γ γ γ γ γ γ γ

++= =
+ + + +

. (25.7) 

 

We then use the above and the above with 
v

γ  divided out, and make the all the same 

approximations and reductions as well as use ( )/ 2 2 / 1em em emg γ γ= + , to calculate: 

 

( ) ( )
( )

( ) ( )( )
( )

( )( )
( )

( )
( )( ) ( )

2

2

2 2 2 21 1 2
2 2

22 2 2 22 21 11
2 22

1 12

1 1

1 1 1 1

1 2 1 1 2

1 1 / 2 / 1 1

21 / 1 1 / 12 1 / 1

em v vv em
B

v em v em

em v em v v em em
B

v em v em v em

em em em

em emem

g

c c

cc cc

γ γ γγ γ µ
γ γ γ γ

γ γ γ γ γ γ µ
γ γ γ γ γ γ

γ γ γ
γ γγ

 + −
+ ⋅ 

 + + 

 + + − += + ⋅  + + + 

 + + + + ≅ +
 + + + ++ +
 

B

B

v v v

v vv

σ

σ

( )
2 2 21

2 2 21
2 2

2 2
2

2 2 2

2

/ 1
1 / 1

1 1 2 2

1 1 1 1
1

1 2 1 2 2 2 2 2

em
B

em em em
B

em em

em em em em B
B B

em em

g

c g
c

c

g g g

c c c

µ

γ γ µ
γ γ

γ µµ µ
γ γ

⋅


  
≅ + − + ⋅   + +  

  ⋅ ≅ + + ⋅ = ⋅ +   + +   

B

v v
v B

Bv v
B B v

σ

σ

σσ σ

. (25.8) 

 

 For the final term in (25.3) we use (25.7) and the same low-velocity approximations 
2 21

2
1 /v cγ ≅ + v  and 2 2 21 /v cγ ≅ + v .  We drop any term with an order higher than 2 2/ cv  as soon 

as it appears.  But ( )( )/ /B c cµ ⋅ ⋅B v vσ  already contains a second order velocity term.  Thus:  
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( )
( )

( )
( )

( )( )
( )

2 22 2
2

2 2

2 2

2 2

2
2 21

2

2 22 2

2 2

12 1

2 21 1

11
1 /

2 21 / 1

1 1
1 1

2 1 2 2 2

emv em em
B v B

em v v em

em em
B

em

em em em
B B

em

g

c c c c

g
c

c cc

g g

c c c c c c

γγ γ µ γ µ
γ γ γ γ

γ
µ

γ

γ µ µ
γ

+  ⋅ ⋅ = ⋅ ⋅ 
 + +

+  ≅ + ⋅ ⋅ 
 + +

     ≅ − + ⋅ ⋅ ≅ ⋅ ⋅     +      

v v v v
B B

v v
v B

v

v v v v v v
B B

σ σ

σ

σ σ

. (25.9) 

 

Combining (25.6), (25.8) and (25.9) into (25.3) then produces the non-relativistic: 

 
2

2 2

2

1 1 1

2 2 2 2 2 2 2

em em em emB
NR B B

g g g g
H m

c c c

µ µ µ⋅    = − − ⋅ + ⋅ ⋅     
     

B v v
v v B B

σ σ σ . (25.10) 

 

We of course recognize 21
2

mv  to be the non-relativistic kinetic energy of a material body.  

And referring to (23.7) we see that ( ) 2 2
/ 2 / /em B emg c cµ ⋅ = ⋅B Bσ µ  is the mass-equivalent of the 

Hamiltonian energy operator for a magnetic moment interacting with an external magnetic field.  

Therefore, ( )2 21
2

/
em

c⋅B vµ  is a kinetic energy operator associated with the magnetic moment 

operator.  So, it appears especially from the term ( ) 21
2

/ 2emg mv  that the kinetic energies of the 

leptons are enhanced by a factor of / 2
em

g  above and beyond the usual kinetic energies 21
2

mv  of 

a material body, with this enhancement offset by the subtraction of ( )2 21
2

/
em

c⋅B vµ .  Of course, 

NR
H  is a 2x2 matrix operator because it contains the 2x2 Pauli matrices σ .  We now wish to 

determine the energy eigenvalues of this operator, because these can be observed. 

 

Using the particle ket 0 AU  which we last used at (20.4) to extract the Hamiltonian, the 

energy eigenvalues 
NR

E  of a fermion in non-relativistic motion as described by (25.10) will be 

given by 0 0NR A NR AE U H U= .  Using (25.10), these are ascertained via the eigenvalue equation: 

 

( ) 0

2

2 2

02

0

1 1 1

2 2 2 2 2 2 2

NR NR A

em em em emB
B B NR A

H E U

g g g g
m E U

c c c

µ µ µ

= −

 ⋅    = − − ⋅ + ⋅ ⋅ −      
       

B v v
v v B B

σ σ σ
. (25.11) 

 

To write this explicitly using the Pauli matrices σ , referring to (19.4), keep in mind that the γ  

matrices are structured such that, by convention, the +z axis is aligned in the same direction as the 

fermion propagation, that is, ( )0 0=v v .  The fermion spin is then either up (same direction) 
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or down (opposite direction) relative to this propagation.  So within the fourth term on the bottom 

line of (25.11) zB⋅ =B v v , ( ) ( )diag ⋅ = −v v vσ  and 
2 2=v v , so this term expands to: 

 

( ) ( )
2

2

0

0

z

z

B

B

 
⋅ ⋅ =  − 

v
B v v

v
σ . (25.12) 

 

Denoting the components ( )T

AU ≡ ↑ ↓ , using (25.12) and also replacing / 2 1
em em

g a− =  with 

the electromagnetic anomaly contribution, (25.1) expands to: 

 

( )

( )

2 2
2

2 2

2 2
2

2 2

1 1 1
1 1

2 2 2 2 2 2
0

1 1 1
1 1

2 2 2 2 2 2

em em em
em B z NR B x y

em em em
B x y em B z NR

g g g
a B m E B iB

c c

g g g
B iB a B m E

c c

µ µ

µ µ

    
− − + − − + −  ↑    

     =          ↓− + + − + −      
    

v v
v

v v
v

. (25.13) 

 

 The eigenvalues are extracted by setting the determinant of this matrix to zero, that is, by 

setting ( )det 0NR NRH E− = .  It is readily seen from (25.13) that this will first yield: 

 

( )
2 22 2 22 2

2 2 2 2 2 2

2 2

1 1 1
1 1

2 2 2 2 2 2

em em em
NR B x y em B z

g g g
m E B B a B

c c
µ µ        − = + + + −        

        

v v
v . (25.14) 

 

Because the coefficients of 
2 2

x yB B+  and 2

zB  are different, we discern that 
NR

E  will be dependent 

not only on the magnitude B  of the magnetic field and the velocity of the fermion, but also at the 

angle at which the magnetic field is applied.  Note that this angular-dependency originated from 

the ( ) ( )⋅ ⋅B v vσ  term in (25.10) via (25.12).  Accordingly, if θ  represents the polar angle 

(descending from the fermion propagation direction +z) at which the magnetic field is applied, 

then coszB θ= B  and 2 2 sin
x y

B B θ+ = B .  Also with 
2 2=B B , we may rewrite (25.14), and 

then take its positive and negative square roots, and finally isolate 
NR

E , to obtain: 

 

2 2
2 2

2 2 2

2 2

1 1 1
1 sin 1 cos

2 2 2 2 2

em em
NR B em

g g
E m a

c c
µ θ θ   

= + + −   
   

v v
v B∓ . (25.15) 

 

Now, we wish to ascertain which of the two eigenvalues denoted by the ±  above is 

associated with spin-up versus spin-down.  To do so, we first substitute (25.15) back into (25.13), 

while defining the substitute variables 2 21
2

1 /a c≡ + v  and 2 21
2

1 /emb a c≡ − v  simply for 

compactness.  Because (25.13) is equal to zero, it is possible to factor out an overall ( )/ 2em Bg µ .  
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Additionally, using spherical coordinates we use sin cosxB θ ϕ= B , sin sinyB θ ϕ= B  and 

coszB θ= B , which is consistent with what we did in (25.15).  Then, B  may also be factored 

out.  Finally, in the off-diagonal elements, we use ( )cos sin exp iiϕ ϕ ϕ± = ± .  The result is: 

 

( )
( )

2 2 2 2

2 2 2 2

cos sin exp

sin exp co

sin cos
0

sin coss

b a b a

a b

i

ai b

θ θ ϕ

θ ϕ θ

θ θ

θ θ

 − ± + −  ↑
 =  
  ↓− ± +   

−
. (25.16) 

 

Then, let us consider the special case where the magnetic field points toward the +z axis, whereby 

cos 1θ =  and sin 0θ = , and (25.16) reduces to the diagonal: 

 

cos
0

co

cos 0

0 cos s

b b

b b

θ
θ

θ
θ

− ±  ↑ 
=   ± ↓  

. (25.17) 

  

For a spin-up fermion which we may represent as ( ) ( )1 0↑ ↓ =  because the above is a diagonal 

matrix, (25.17) is true for the + value of ± .  For spin-down with ( ) ( )0 1↑ ↓ =  this is true for 

the – value of ± .  In this way, we establish that the plus sign in (25.16) generally applies to spin-

up and the minus sign to spin-down. 

 

 Generally, (25.16) is not a diagonal matrix, and separates into the simultaneous equations: 

 

( ) ( )

( ) ( )

2 2 2 2

2 2 2 2

sin cos 0cos sin ex

sin cos 0

p

cos sin exp

b a b a

b a b

i

a i

θ θθ ϕ

θ θ θ

θ

θ ϕ

− ± + − ↓=

± + ↓ −

↑

↑=

−
. (25.18) 

 

To ascertain explicit eigenstate vectors generally, we first set 1↑=  for spin-up, and then set 1↓=
for spin-down, subject to normalization.  Given the eigenvalue determination from (25.17), for up 

and down respectively we use the bottom and top equations (25.7) to deduce: 

 

( )
( )

2 2 2 2

2 2 2 2

1

; sin cos

sin cos

sin exp

sin exp cos

cos 1

A A

a

aU N U N b a b

i

i

b a b

θ ϕ
θ ϕ θ

θ
θ θ

θ θ
↑ ↓

   
−   = = + +   

   + +  

−

 

, (25.19) 

 

where N is a normalization factor which may be fixed for example, by the condition † 1A AU U = , 

noting also that ( ) ( )exp exp 1i iϕ ϕ− = .  For 0θ =  (B parallel to fermion motion) we find 1N = , 
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and ( )1 0
T

AU ↑ =  and ( )0 1
T

AU ↓ = .  For / 2θ π=  (B orthogonal to fermion motion) we 

find 1/ 2N = , and ( )( )exp1 / 2AU iϕ↑ =  and ( )( )exp 1 / 2A iU ϕ↓ −= − . 

 

 Now that we know which eigenvalues are associated with spins up and down, we may 

return to (25.15) which tells us the observable energies which should be experimentally detectable 

through experimentation.  For spin-up and spin-down respectively, there are: 

 

( )

( )

2 2
2 2

2 2 2

2 2

2 2
2 2

2 2 2

2 2

1 1 1
1 sin 1 cos

2 2 2 2 2

1 1 1
1 sin 1 cos

2 2 2 2 2

em em
NR B em

em em
NR B em

g g
E m a

c c

g g
E m a

c c

µ θ θ

µ θ θ

   
↑ = + + + −   

   

   
↓ = − + + −   

   

v v
v B

v v
v B

. (25.20) 

 

So, the energies detected for a fermion propagating with non-relativistic motion along the +z axis 

will be slightly higher for a spin-up fermion than for a spin-down fermion.  This sort of spin-based 

splitting is a form of Zeeman effect which is well-known, and it arises from the very same term 

em
⋅Bµ  contained in (25.10).  But it is of interest to find that the Newtonian kinetic energy 21

2
mv  

is enhanced by the factor / 2
em

g , and then either supplemented (spin-up) or offset (spin-down) by 

the Zeeman-type splitting shown in (25.20).  This / 2
em

g  enhancement provides yet another 

prediction which should be testable by experiment.  More generally, given that the corresponding 

kinetic energy term in (25.5) for extreme relativistic motion c→v  is the usual ( ) 2
1v mcγ − , we 

discover that the / 2
em

g  kinetic enhancement in (25.20) is a decidedly non-relativistic 

phenomenon, which gradually diminishes as the motion becomes more relativistic, and vanishes 

entirely for extreme relativistic motion.  So, any experiments to test for this enhancement should 

also test for its diminution as the fermion velocities are increased. 

 

 As to the angle of the magnetic field, it should also be noted that for 0θ =  or θ π=  

(motion-aligned B), for the spin correspondences 
↑
↓ ⇔ ± , the above becomes: 

 

( )
2

2

2

1 1
, 0 or 1

2 2 2 2

em em
NR B em

g g
E m a

c
θ π µ↑

↓

 
= = ± − 

 

v
v B . (25.21) 

 

Conversely, for / 2θ π=  (motion-orthogonal B), (25.20) becomes: 

 

( )
2

2

2

1 1
, / 2 1

2 2 2 2

em em
NR B

g g
E m

c
θ π µ↑

↓

 
= = ± + 

 

v
v B . (25.22) 
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Given as reviewed following (23.5) that 0.00116140973242/ 2
em

a a α π≅ ≅ =  is a rather small 

number, as well as the minus sign in (25.21), what we learn contrasting (25.21) with (25.22) is that 

when the magnetic field is applied with an orthogonal component to the fermion motion, there is 

a more-pronounced splitting of the energies versus when there is a lesser or no orthogonal 

component.  This provides yet another avenue for experimental testing, wherein the angle at which 

the magnetic field is applied is varied in relation to the fermion motion, with the prediction that 

the splitting is minimized for parallel alignment and maximized for antiparallel alignment.  

 

So, to summarize the results of this section, we have now proposed three additional 

empirical tests to add to the two tests from the last section.  In the last section it was proposed to 

test for the time dilations (24.2) and the bare-versus dressed rest and self-interaction energies 

(24.4), for all three charged leptons.  In this section, it was proposed based on the 3
B

µ− ⋅Bσ  term 

in (25.5) to test for the approximate tripling of the kinetic energies associated with the magnetic 

moments for extreme relativistic motion, versus the unlimited energy increases for the rest mass 

kinetic energy from the ( ) 2
1v mcγ −  term in that same equation.  Further, from (25.20) it was 

proposed not only to test for the usual splitting of energies based on spin direction relative to 

motion, but to also test for the / 2
em

g  enhancement of the Newtonian kinetic energy 21
2

mv , and 

the gradual diminishment of this enhancement at relativistic speeds, based again on the ( ) 2
1v mcγ −  

term in (25.20).  Finally, based on (25.21) and (25.22), it was proposed to test for larger spin-based 

energy splitting when the magnetic field is applied orthogonally to the motion versus when it is 

applied parallel to the motion.  Now let us turn to a sixth experimental test, based on what we shall 

define and refer to as the “statistical diameters” of the three charged leptons. 

 

26.  A Sixth Proposed Experimental Magnetic Moment Test: Charged Lepton 

Statistical Diameters 

 

Above, we have reviewed five possible tests of the magnetic moment interaction and g-

factor predicted by (22.6) through (23.8):  First, time dilation measurements based on (24.1) and 

(24.2).  Second, given in (24.4), the proportions of electromagnetic and non-electromagnetic 

energies which constitute the complete rest mases of the leptons.  Third, the ⋅Bµ  interaction 

energy in extreme relativistic experiments which, based on (25.5), does not approach infinity but 

merely triples as the relative velocity approached the speed of light.  Fourth and fifth, from (25.10), 

the / 2
em

g  enhancement of the rest mass at non-relativistic velocities, and the subtraction from 

this, of the kinetic energy of the mass-dimensioned 2/B cµ ⋅Bσ  also with a / 2
em

g  enhancement.  

A sixth possible experimental test which will now be reviewed, is based on the “statistical 

diameters” of free charged leptons, “free” meaning leptons which are not bound in atomic orbits. 

 

 In the early days of quantum theory the notion was entertained that an electron might be  

distributed with a charge density ρ  just like the classical charge distribution contained in the 

current four-vector ( ),J µ ρ= J  sourcing Maxwell’s charge equation J Fµ σµ
σ= ∂ .  But it has long-
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since been recognized that electrons and other leptons are observed as structureless point particles, 

and that ρ  is a probability density for finding the structureless lepton at a given spatial position 

when an experiment is performed to “collapse” the lepton wavefunction and thus detect the lepton.  

In fact, this ρ  is now understood to be the time component 0 †J ρ ψ ψ= =  of a conserved 

(continuous) Dirac current ( ),J
µ µψγ ψ ρ= = J  with ; 0J µ

µ∂ = .  The experimental test to now be 

proposed, centers around the statistical diameter of ρ , which is to say, the “average draw 

separation” over large numbers of experimental trials which “collapse” the lepton wavefunctions. 

 

 In (12.4), we already have a “statistical inverse radius” 1/ r  which naturally emerged 

from the examination of the Heisenberg / Ehrenfest equations in section 8.  And as noted after 

(12.3), 1/ 1/r r≥  for any positive random variable r, with the only distribution having 

1/ 1/r r=  being the Dirac delta ( )rδ .  So we already have some information about a lower 

bound on a statistical radius r .  Now, we simply define a “statistical diameter” 2d r≡  to be 

twice the statistical radius.  This statistical diameter is also known as the “average draw 

separation.”  Then, we begin by using (12.3) and (12.4) in (23.6) to deduce that: 

 

0

2 22

4 4 4 4

1 21
2 22

em
em

e eem

g
k Qq k Qqq

mc r mc dmc

γ
φγ

= = = =
+ − −−

. (26.1) 

 

Now, because 
em

g  due to its origin in (23.6) is the (electromagnetically-contributed) g-

factor for an individual fermion, let us take that fermion to be a charged lepton which has a charge 

of e− .  Because magnetic moment anomalies are understood to be the result of lepton self-

interaction, we must regard Qq  not as an interaction between two separate charges, but as the self-

interaction between different “parts” of the same probability density †ρ ψ ψ=  with charge e− .  

So, for example, we may split ρ  into two portions each with 1
2

Q q e= = −  to determine that 

21
4

Qq e= .  Or, for better precision, we may split the charge density ρ  into three portions 

1
3

Q q e= = − .  But now, there are also 3 pairwise interactions, so the sum of these is 

2 21 1
9 3

3Qq e eΣ = = .  For more precision, we split into four portions 1
4

Q q e= = − , but now there 

will be (4, 2) 4 3 / 2 6C = ⋅ =  pairwise combinations.  So the sum ( ) 2 231
16 8

4, 2Qq C e eΣ = = .  In 

general, for N subdivisions, the number of pairwise combinations is ( ) ( ), 2 1 / 2C N N N= − , and 

so ( )( )2 2, 2 /Qq C N N eΣ = .  When we take the calculus limit as the number of split portions 

becomes infinite, we find that: 

 

( ) 2
2 2 2

2 2

, 2 1
lim lim

2 2N N
N

C N N N
Qq Qq e e e

N N→∞ →∞→∞

−= = = = . (26.2) 
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Substituting the above into (26.1), we then obtain: 

 

2

2 2

4 4 4

2 11
2 2

em

em

e eem

g
k Qq k e

mc d mc d

γ
γ

= = =
+ − −

. (26.3) 

 

 Now, 2

ek e cα= ℏ  with 01/ 4
e

k πε=  is simply the running fine structure coupling which 

approaches the numerical value of 1/137.035999139α =  [16] at low probe energies.  Also, to 

provide a length dimension as a standard of reference, given that m is the mass 
L

m m=  of the self-

interacting lepton, we may use the Compton wavelength /
L L

h m cλ =  to replace the mass.  We 

should also write 
em emL

g g֏  so that this now denotes the g-factor of the specific lepton.  Making 

these substitutions and also using / 2h π=ℏ  the above becomes: 

 

2

2

4 4 4 4

111
22

2
2

em

e

em
L

mL

Le

L

g
k e

d dhm c d

c

c

γ
αλ λγ α
π

= = = =
+ − −−

ℏ
. (26.4) 

 

An appearance is now made by 2 .00116140/ 973242
S

a α π= =  which is Schwinger’s (subscript 

S) one-loop contribution to the anomalous magnetic moment of all three charged leptons. [15] 

  

Next, we rearrange the above to isolate /L dλ .  Then, because 1/ 1/d d≥  for any 

positive random variable d with only the delta ( )dδ  having 1/ 1/d d= , we obtain: 

 

2 24
2

4 L L

emLg d d

π λ λ
α
 

− = ≥ 
 

. (26.5) 

 

Finally, denoting 
L

d d֏  so that the statistical radial diameter d  is also associated with each 

lepton type, we rewrite the above as an inequality for /L Ld λ , namely: 

 

( )2 4

1

2 2 2

emL emL

L emL emL

d g g

g g

α α
πλ π

≥ =
− −

. (26.6) 

 

 The expression on the right sets a lower bound on /L Ld λ .  So we now use  
minLd  to 

denote the minimum value of the statistical diameter Ld , then set 
minLd  equal to the term to the 

right of the inequality.  Now, as noted prior to (24.1), the magnetic moment anomalies of the 

charged leptons are generally divided into electromagnetic, hadronic and electroweak 
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contributions [14].  So as in the last section, to an approximation valid within parts-per 104, we 

may use the empirical g-factors of the three charged leptons, as well as 1/137.035999139α = , to 

calculate from (26.6) the ratio of the minimum statistical diameters 
minLd  of each lepton, to their 

Compton wavelengths 
L

λ  .  These are: 

 

min min min0.501338497456; 0.4986461107; 0.49386981
e

e

dd dµ τ

µ τλ λ λ
= = = . (26.7) 

 

For example, the Compton wavelength of the electron is 122.4263102367 10 meλ −= ×  [23], so 

(26.7) would tell us that  
12

1.21640272842929 10 med
−×≥ .  This is in line with prevailing 

understandings of the smallest space that can be occupied by an electron probability density given 

the “underlying physical picture of the spin as due to a circulating energy flow in the Dirac field,” 

[24] together with the speed of light as an upper material limit.  With the statistical diameter of the 

tau lepton probability density scaled to 1, these ratios then progress relative to one another, as: 

 

min min min: : 1.00967118:1.01511: 2279
e

e

dd dµτ

τ µλ λ λ
= . (26.8) 

 

Now, as an example to help interpret (26.8), for a Gaussian distribution represented along 

a single dimension labeled x, it is well-known that 2 / 1.128379x xx σ π σ= ≅  is the weighted 

average draw separation, and is directly related to the standard deviation 
x

σ  by a 2 / π  

coefficient.  And in general, for any particular type of distribution, the statistical average draw 

separation d  is directly proportional to the standard deviation σ  of that distribution, d σ∝ .  

Therefore, assuming that the underlying probability distributions for the three leptons all have the 

same character – Gaussian or otherwise – each of the lepton statistical draw separations will be 

directly proportional to the standard deviations of the lepton probability densities, L Ld σ∝ .  So 

what (26.7) informs us, is that in relation to the Compton wavelength of each lepton, assuming the 

underlying probability distributions are all of the same type, the standard deviation of the muon 

probability density is about 1% larger than that of the tau lepton, while the standard deviation of 

the electron probability density is about 1.5% larger than that of the tau lepton.  

 

 These predictions in (26.7) and (26.8) suggest an experiment to confirm whether (23.6) is 

in fact a correct expression for the magnetic moment anomaly g-factor:  Generate a large number 

of free leptons (not electrons in atoms), “collapse” them by having the strike a detector, and record 

their spatial strike positions.  From these strikes, determine the probability distributions 
†

L L Lρ ψ ψ=  for each type of lepton (L).  Use each 
L

ρ  to ascertain the Ld  which is the average 

draw separation, and a proportional L Ldσ ∝  which is the standard deviation of each 
L

ρ .  What 
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(26.7) tells us is that the average draw separations will under all circumstances be approximately 

half the Compton wavelength of each lepton, i.e., that the Compton half-wavelengths / 2
L

λ  

establishes approximate lower boundaries for the average draw separation of each
L

ρ .  For the 

electron the lower bound is slightly larger than its Compton wavelength, while for the mu and tau 

leptons the lower bound is slightly less than their Compton wavelengths.  This in turn stems from 

the electron anomaly being slightly smaller than the Schwinger anomaly / 2a α π≅  and the mu 

and tau anomalies being slightly larger than / 2a α π≅ .  And what (26.8) tells us is that in relation 

to their respective Compton wavelengths, τρ  is more densely concentrated than µρ , and µρ  in 

turn is denser than 
e

ρ , by the proportionalities indicated in (26.8).  Finally, the precise numbers in 

(26.7) and (26.8) come with a caveat that they are derived using empirical values for 
L

g  which 

naturally encompass electroweak and hadronic contributions, while the theoretical calculation used 

to arrive at (26.7) and (26.8) accounts (so far) only for electromagnetic effects.  Therefore, these 

precise results are expected to be off by about one part per 104 because the hadronic contribution 

is about 10-4 times as large as the electromagnetic contribution. 

 

APPENDIXES 

 

Appendix A: Review of Derivation of the Gravitational Geodesic Motion from 

a Variation 

 

 To derive (1.3) from (1.2) we first apply δ  to the (1.2) integrand and then use (1.1) to 

clear the denominator but keep the factor .5 arising from differentiating the square root, yielding: 

 

1
0

2

B B

A A

dx dx
d d g

cd cd

µ ν

µνδ τ τδ
τ τ

 
= =  

 
  . (A.1) 

 

The variation symbol δ  commutes with the derivative symbol d such that d dδ δ= , and operates 

in the same way as d and so distributes via the product rule according to: 

 

1
0

2

B B

A A

dx dx d x dx dx d x
d d g g g

cd cd cd cd cd cd

µ ν µ ν µ ν

µν µν µν
δ δδ τ τ δ

τ τ τ τ τ τ
 

= = + + 
 

  . (A.2) 

 

 Now, one can use the chain rule in the small variation δ → ∂  limit to show that 

g x gα
µν α µνδ δ ∂= .  Indeed, the generic calculation for any field φ  (taking δ ≅ ∂ ),  is: 

 

x

x
x

x
x x

x

α
α α α

α α αα
φ δφφ δ δφ φδ δ∂= ≅ =∂

∂
∂ =

∂
∂

∂
. (A.3) 

 

Additionally, we may use the symmetry of gµν  to combine the second and third term inside the 

parenthesis in (A.2).  Thus, (A.2) becomes: 
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1
0 2

2

B B

A A

dx dx d x dx
d d g

cd cd cd c
g

d
x

µ ν µ ν

µ
α

µν να
δδ τ

τ τ τ
δτ

τ
 

= = + 
 

∂  . (A.4) 

 

 The next step is to integrate by parts.  From the product rule, we may obtain: 

 

d dx d x dx d dx
x g g x g

cd cd cd cd cd cd

ν µ ν ν
µ µ

µν µν µν
δδ δ

τ τ τ τ τ τ
   

= +   
   

. (A.5) 

 

It will be recognized that the first term after the equality in (A.5) is the same as the final term in 

(A.4) up to the factor of 2.  So we use (A.5) in (A.4) to write: 

 

1
0 2 2

2

B B

A A

dx dx d dx d dx
d d x g x g

cd cd cd c
x g

d cd cd

µ ν ν ν
µ µ

µν µα ν ν
α

µδ τ τ δ δ
τ τ τ τ

δ
τ τ

    
= = + −    

    
∂  . (A.6) 

 

The middle term in the above, which is a total integral, is equal to zero because of the boundary 

conditions on the variation.  Specifically, this middle term is: 

 

1 1
0

B
B B

A A
A

d dx dx dx
d x g d x g g x

cd cd c cd c cd

ν ν ν
µ µ µ

µν µν µντ δ δ δ
τ τ τ τ
   

= = =   
   

  . (A.7) 

 

This definite integral is zero because the two worldlines intersect at the boundary events A and B 

but have a slight variational difference between A and B otherwise, so that ( ) ( ) 0x A x Bσ σδ δ= =  

while 0xσδ ≠  elsewhere.  Therefore we may zero out the middle term and rewrite (A.6) as: 

 

1
0 2

2

B B

A A

dx dx d dx
d d x g

cd
x

cd
g

cd cd

µ ν ν
α

α µν
µ

µνδ τ τ δ
τ τ

δ
τ τ

  
= = −  

  
∂  . (A.8) 

 

 Next, in the final term above, we distribute the /d cdτ  via the product rule to each of gµν  

and /dx cdν τ , so that this becomes: 

 
2

2 2

1
0 2 2

2

B B

A A

dgdx dx dx d x
d d x x g

cd cd cd c
x

d c d
g

µ ν ν ν
µνµ µ

ν
α

α µν µδ τ τ δ δ
τ τ τ τ

δ
τ

 
= = − − 

 
∂  . (A.9) 

 

For the first time, we see an acceleration 2 2/d x dν τ .  It is then straightforward to apply the chain 

rule to deduce ( )/ /dg cd g dx cdα
µν α µντ τ= ∂ , which is a special case of the generic relation for 

any field φ  given by: 
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d dx dx

cd x cd cd

α α

αα
φ φ φ
τ τ τ

∂= =∂
∂

. (A.10) 

 

As a result, (A.9) now becomes: 

 
2

2 2

1
0 2 2

2

B B

A A

dx dx dx dx d x
d d x g x g

cd cd cd cd c d
x g

α
µ ν α ν

α

ν
µ µ

α µν µµ ννδ τ τ δ δ
τ τ τ

δ
τ τ

 
= = − ∂ − ∂ 

 
  . (A.11) 

 

 At this point we have a coordinate variation in front of all terms, but the indexes are not 

the same.  So we need to re-index to be able to factor out the same coordinate variation from all 

terms.  We thus rename the summed indexes µ α↔   in the second and third terms and factor out 

the resulting xαδ  from all three terms.  And we also use the symmetry of gµν  to split the middle 

term into two, then cycle all indexes, then factor out all the terms containing derivatives of gµν .  

The result of all this re-indexing, also moving the outside coefficient of ½ into the integrand, is:  

 

( )
2

2 2

1
0

2

B B

A A

dx dx d x
d d g gx g g

cd cd c d

α
α

µ ν ν

µ να ν αµ ανµνδ τ τ
τ τ τ

δ ∂
 

= = − ∂ − ∂ − 
 

  . (A.12) 

 

 Now we are ready for the final steps.  Because the worldlines under consideration are for 

material particles, the proper time 0dτ ≠ .  Likewise, while ( ) ( ) 0x A x Bσ σδ δ= =  at the 

boundaries, between these boundaries where the variation occurs, 0xσδ ≠ .  Therefore, for the 

overall expression (A.12) to be equal to zero, the expression inside the large parenthesis must be 

zero.  Consequently: 

 

( )
2

2 2

1
0

2

dx dx d x
g g g

cd cd c
g

d

µ ν ν

µ να ν αµ ανα µν τ τ τ
= − ∂ −∂ ∂ − . (A.13) 

 

From here, we multiply through by gβα
, apply ( )1

2
g g ggβ

µν α µ
βα

µ να ν αµν−Γ = − ∂∂ − ∂  for the 

Christoffel symbols, flip the sign, and segregate the acceleration term to obtain the final result: 

 
2

2

d x dx dx

d d d

β
µ

ν

ν

β µ

τ τ τ
= −Γ . (A.14) 

 

Appendix B:  Review of Derivation of Time Dilations in Special and General 

Relativity 

 

 To derive time dilations in the Special Theory of Relativity, we begin with the flat 

spacetime metric 
2 2c d dx dxµ ν

µντ η=  which using a squared velocity ( )( )2 / /k kv dx dt dx dt=  is 

easily restructured with the chain rule into ( ) ( )2 2 21 / 1 /dt d v cτ= − , then into the familiar 
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2 2
/ 1/ 1 /v dt d v cγ τ≡ = − , with vγ  defined as the motion-induced time dilation.  In the General 

Theory we start with the line element 
2 2c d g dx dxµ ν

µντ =  in which the metric tensor gµν  contains 

the gravitational field.  We isolate gravitation from motion by setting 0kdx =  to place the clock at 

rest in the gravitational field.  This is just as we did to place the test charge at rest in the 

electromagnetic potential to reach (4.1) and (5.3) above, isolating electromagnetic effects from 

motion effects.  The line element then becomes 
2 2 0 0 2 2

00 00c d g dx dx g c dtτ = =  which rearranges to 

2 2

00/ 1/dt d gτ = .  We then take the positive square root 00/ 1/g dt d gγ τ≡ =  so that this 

approaches 1 in the flat spacetime 00 00 1g η= =  limit, with g
γ  defined as the gravitationally-

induced time dilation.  For motion dt  is the coordinate time element in the rest frame of the 

observer and dτ  is the proper time element ticked off by a g-clock in motion relative to the 

observer.  For gravitation dt  is the coordinate time element in the frame of an observer outside 

the gravitational field and dτ  is the proper time element ticked off by a g-clock inside the 

gravitational field. 

 

Appendix C:  Detailed Calculation of the Hyper-Canonical Dirac Hamiltonian 

Numerator 

 

 To calculate the complete hyper-canonical Hamiltonian (20.8), we extract and work with 

the numerator in (20.8).   Before using the term-doubling or term-quadrupling expansions 
i k ik ikl liσ σ δ ε σ= +  and  i j k ij k jk i ki j ijkiσ σ σ δ σ δ σ δ σ ε= + − + , we perform all the Heisenberg-

based commutations using ,i ip b i b  = ∂  ℏ , until all p have are moved to the very right, as was 

done in the (20.10) example.  In some cases, such (20.10), more than one round of commutation 

is required before all p reach the very right.  Commutator variants employed during this step are 

,i icp E i c E  = ∂  ℏ , ,j k j kcp A i c Aγ γ  = ∂  ℏ , ,i j i jcp B i c Bγ γ  = ∂  ℏ , ,j k j k

B B
cp E i c Eγµ µ  = ∂  ℏ , 

,i j k i j kcp E i c Eγ γ ∂ = ∂ ∂  ℏ , and ,i j k i j kcp A i c Aγ γ ∂ = ∂ ∂  ℏ .  We then consolidate terms to reassemble 

several occurrences of 2E mc+  and i i i

Bcp E A i Eγ γρ µ+ + , and then we group together certain sets 

of terms.  Following all of the foregoing, for the numerator in (20.8), using i i∇ = −∂ , we obtain: 
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( )( )( )
( ) ( )( )
( )( ) ( ) ( )
( ) ( )
( ) ( )

2

2

2

2

2

2

i i i i i i j j j j k k k k k k

B B B

i k i i i k

B

i k k k i i i

B B

i k j i i i j k

B

i k j k k i i

B B

cp E A i E E mc A cp B cp E A i E

E mc cp E A i E cp

E mc E A i E cp E A i E

A cp E A i E cp cp

A E A i E cp E A i

γ γ γ γ γ γ

γ γ

γ γ γ γ

γ γ γ

γ γ γ γ

σ σ ρ µ σ ρ µ σ σ σ ρ µ σ

σ σ ρ µ

σ σ ρ µ ρ µ

σ σ ρ ρ µ

σ σ ρ ρ µ ρ µ

+ + + + + + +

= + + +

+ + + + +

+ + +

+ + + +( )
( ) ( )
( ) ( )( )

( ) ( )
( ) ( ) ( )( )( )
( ) ( )( )( )( )

2

2

2

i j

i j k j i k i j k i j k

B B B B

i j k j k k i i i

B B B

i k i j j k

i k i k k

B

i j k i j k i j k k

B B B

E cp

B cp cp E A B cp i E B cp

B E A i E cp E A i E

i c E A cp cp

i c E mc E A i E

i c B cp B E A i E

i

γ

γ γ γ γ γ

γ γ γ γ γ

γ

γ γ

γ γ γ γ

σ σ σ µ ρ µ µ µ

σ σ σ µ ρ µ ρ µ

σ σ ρ

σ σ ρ µ

σ σ σ µ µ ρ µ











+ + + 


+ + + + 

− ∇ +

− ∇ + +

− ∇ + ∇ +

−

I

ℏ

ℏ

ℏ

( ) ( )( )( ) ( )( )( )( )
( ) ( )( )( )( )( )

( ) ( )( )( )2 2

2

2

i k i j k k j j j k k i

B B

i k j j k k i i

B B

i k i j j k k

B

c A E A i E cp A E A i E cp

i c A E A i E E A i E

c A E A i E

γ γ γ γ γ γ

γ γ γ γ γ

γ γ γ

σ σ ρ ρ µ ρ ρ µ

σ σ ρ ρ µ ρ µ

σ σ ρ ρ µ










∇ + + ∇ + 

− ∇ + +



− ∇ ∇ + 

II
ℏ

ℏ

ℏ

. (C.1) 

 

Right brackets are used to segregate I: a first set of terms without any gradients, from II: a second 

set of terms with a gradient.  This is simply for calculation management. 

 

Next, we work with the group I terms that have no gradient.  We first expand these terms 

using  i k ik ikl liσ σ δ ε σ= +  and  i j k ij k jk i ki j ijkiσ σ σ δ σ δ σ δ σ ε= + − + .  We then separate scalar 

from cross products and evaluate each.  Except for those terms which contain two momentum 

terms that are self-commuted ( ,j kp p   ) or self-crossed ( ijk j kp pε ), all cross-product terms (those 

with ijkε ) cancel by identity.  The remaining such terms would cancel as well, but for the fact that 

, 0j kp p  ≠   and 0≠p p× , as found and reviewed at (7.12) through (7.18).  The cross-product 

terms which do drop out, do so either by cancellation (positive plus negative of an identical term) 

or via the identities 0=A A×  and 0=E E× .  We also find occasion to use 0γ γ⋅ =A A  from 

(14.8) with photon subscript added.  We then consolidate terms as much as possible, renaming 

indexes as needed to help do so.  Following all of this, for the group I set terms in (C.1), we obtain: 
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( )( )
( )
( )

( ) ( )

2 2 2 2

2 2

2 2

2

j j i i i i i i i i i i

B B B B B

j i j i j j i j j i j j i

B B

j j j j i i

B B B

j i i j j i j j j i

B B B

E mc B cp cp E A cp i E cp E A i E i E i E

A cp cp E A A cp A i E cp i E A cp cp

E A i E E E A cp

B cp cp cp cp B E A i E c

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

γ γ γ γ γ

γ γ γ γ

σ µ ρ µ ρ µ µ µ

ρ ρ ρ ρ µ µ ρ

ρ µ µ µ ρ

µ σ µ ρ µ σ

= + − + + + +

+ + + +

+ −

+ + + +

I

( ) ( )
( )( ) ( )2

2

2 ,

2

i

j j j i i i i

B B B

ijk i i j k lik l j i i j k

B B

lik l j i j k

p

E A i E B cp E A i E

i E mc B cp cp i A E A i E cp cp

i A cp cp cp

γ γ γ γ γ

γ γ γ γ

γ

σ ρ µ µ ρ µ

ε σ µ ε σ ρ ρ µ

ε σ ρ

+ + + +

 + + − + +  

+

. (C.2) 

 

Note the minus sign in the magnetic moment term in 2

BE mc γµ+ ⋅B− σ  versus the positive 

sign originally appearing in 2 2 BE mc cρ µ+ + ⋅ + ⋅A p Bσ  in (20.8).  This emerges from the minus 

sign in i j k ij k jk i ki j ijkiσ σ σ δ σ δ σ δ σ ε= + − + , because it is the term ki jδ σ−  that produces the dot 

product in ⋅Bσ .  So, this restores the original signage of 2 2 2 Bc E mc cρ µΕ + Μ = + + ⋅ − ⋅A p Bσ  

that first appeared in (20.4) which was flipped when we took the inverse in (20.6).  Note also that 

on the second, with order of operation proceeding from right to left, that all of the terms contain 

outer products which are then twice contracted to form a scalar number.  So, for example, 
i j j i

A A p pγ γ γ γ⋅ ⋅ =A A pp  is not zero via 0γ γ⋅ =A A  from (14.8), despite the superficial appearance 

that it might be.  Rather, one starts with the 3x3 tensor matrix pp, then contacts down to the 3-

component vector ⋅A pp , then finally down to the spatial scalar ⋅ ⋅A A pp .  Likewise, for the 

remaining terms in that second line.  Some of these terms look superficially as if they may combine 

further, but it is important to keep all occurrences of momentum p pinned to the right to enable 

conversion between momentum and configuration space.  We will seek wherever possible to 

commute objects to convert the contracted outer product terms into scalar products, but are 

restricted by the need to fix all p on the very right.  Note also that (C.2) contains a term 
2i i

E Eγ γ γ= E  

for the magnitude of the electric field of a photon, which we determined at (15.11) is equal to zero.  

However, as with 
2

γB  at (20.7), we shall not zero this out.  This will later enable us to consider 

the application of classical, external electric fields with non-zero magnitude. 

 

 To advance (C.2), we turn to the self-commutator and self-cross relations at (7.12) through 

(7.18).  There are five distinct terms in (C.2) which contain these relations.  First, for the triple 

momentum term j i j i
A cp cp cpγρ  we use ( ) ( )( ), 2i j j i i j

B Bcp cp i cp cpµ φ µ φ  = ∂ − ∂   from (7.13).  We 

remain mindful that ( )/i i i i

B B B
E A cµ φ µ φ µ∂ = − ∇ = + ɺ  “smuggles” in an classical external electric 

field E and the time derivative of a classical external potential vector Aɺ .  But to keep everything 

compact, for the moment we leave i

Bµ φ∂  in the equations.  Thus: 
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( ) ( )2 2

2 2

j i j i j j i i j j i i i j j i

B B

B B

A cp cp cp A cp cp cp i A cp cp i A cp cp

c c c i c c i c c

γ γ γ γ

γ γ γ

ρ ρ ρ µ φ µ φ ρ

ρ ρ µ φ µ φ ρ

= + ∂ − ∂

= ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅A p p p A p p A p p∇ ∇
. (C.3) 

 

The final term 2
B

i c cγµ φ ρ⋅ ⋅A p p∇  must remain a contracted outer product, because of the 

requirement to keep all the momenta p on the very right. 

 

 Next in (C.2) we find ( )j i i j j i

B
B cp cp cp cpγµ σ + .  We again use (7.13) to turn this into: 

 

( ) ( ) ( )( )( )
( ) ( )( )

( )

2

2

2

j i i j j i j i j i j i i j

B B B B

j j i i j j i i i i j j

B B B B B

B B B B B

B cp cp cp cp B cp cp i cp cp

B cp cp B i cp i B cp

c c i c i c

γ γ

γ γ γ

γ γ γ

µ σ µ σ µ φ µ φ

µ σ µ µ φ σ σ µ φ µ

µ µ µ φ µ φµ

+ = + ∂ − ∂

= + ∂ − ∂

= ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅B p p B p B p∇ ∇σ σ σ

. (C.4) 

 

 Next in (C.2) is ( )( )2ijk i i j k

Bi E mc B cp cpγε σ µ+ − .   Here we utilize (7.16) which contains 

( )2ijk j k ijk j k

B
cp cp i cpε ε µ φ= − ∂ .  Therefore, we may obtain:  

 

( )( ) ( )( )
( ) ( ) ( )( )

2 2

2

2

2

ijk i i j k ijk i i j k

B B B

B B B

i E mc B cp cp E mc B cp

E mc c c

γ γ

γ

ε σ µ ε σ µ µ φ

µ φ µ µ φ

+ − = + − ∂

= − + ⋅ − ⋅p B p∇ × ∇ ×σ
. (C.5) 

 

Next we turn to ( )2 ,lik l j i i j k

B
i A E A i E cp cpγ γ γε σ ρ ρ µ  +    and again use (7.13) to obtain: 

 

( )
( ) ( ) ( )( )
( )( ) ( )( )

( )( ) ( )

2 ,

4

4 4

4 4

lik l j i i j k

B

lik l j i i k j j k

B B B

lik l j i i k j lik l j i i j k

B B B B

lik l i i k j j j j lik l i

B B B

i A E A i E cp cp

A E A i E cp cp

A E A i E cp A E A i E cp

E A i E A cp A E A i

γ γ γ

γ γ γ

γ γ γ γ γ γ

γ γ γ γ γ

ε σ ρ ρ µ

ε σ ρ ρ µ µ φ µ φ

ε σ ρ ρ µ µ φ ε σ ρ ρ µ µ φ

ε σ ρ µ µ φ ρ ρ µ φ ε σ ρ µ

 +  

= − + ∂ − ∂

= − + ∂ + + ∂

= − + ∂ + ∂ +( )
( )( )( ) ( ) ( )( )4 4

i k

B

B B B B

E cp

E i c E i c

γ

γ γ γ γ γ γρ µ µ φ ρ ρ µ φ ρ µ= ⋅ + ⋅ − ⋅ ⋅ +A E A p A A E p× ∇ ∇ ×σ σ

. (C.6) 

 

The final self-commutator term in (C.2) is 2
lik l j i j k

i A cp cp cpγε σ ρ .  This deceptively-simple 

term is actually very rich, because of its triple momentum and its cross product.  The first step is 

simply to commute ,i jcp cp    so we can separate a scalar product 
j j

A cpγρ  from the cross product.  

We again use (7.13) followed by (7.16) to initially obtain:   
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( ) ( )( )
( ) ( )

( ) ( ) ( )

2 2 2

2 4 4

4 8 4

lik l j i j k lik l j j i j i i j k

B B

j j l lik i k j j l lik i k lik l j i j k

B B

j j l lik i k j j lik l i k lik l j i

B B B B

i A cp cp cp i A cp cp i cp cp cp

A cp i cp cp A cp cp A cp cp

A cp cp i A cp A

γ γ

γ γ γ

γ γ γ

ε σ ρ ε σ ρ µ φ µ φ

ρ σ ε ρ µ φ σ ε ε σ ρ µ φ

ρ σ ε µ φ ρ µ φ ε σ µ φ ε σ ρ µ

 = + ∂ − ∂
 

= − ∂ + ∂

= ∂ + ∂ ∂ + ∂( ) j kcp cpφ

. (C.7) 

 

Now, in the first term ( )4 j j l lik i k

B
A cp cpγρ σ ε µ φ∂  a function of spacetime has snuck in to the right 

of a momentum jcp , which must now be commuted to the right to enable conversion between 

momentum and configuration space.  From the general ,i ip O i O  = ∂  ℏ  we form then use  

( ),j i j i

B B
cp i cµ φ µ φ ∂ = ∂ ∂  ℏ .  The second term is fine for the moment.  In the third term we need 

to self-commute ,j kcp cp    so that the cross-product terms tied together with likε  are all adjacent.  

This again uses (7.13).  When we do all of this, a term with ( )( ) 0lik l i k j jA pγε σ φ φ∂ ∂ =  drops out 

via 0φ φ =∇ × ∇  and two oppositely-signed terms with ( ) ( )j j lik l i kA pγ φ ε σ φ∂ ∂  cancel out.  As a 

result, (C.7) advances to: 

 

( )( ) ( )2 4 4
lik l j i j k j l lik i j k k j j j lik l i k

B Bi A cp cp cp A cp cp cp cp i c A cpγ γ γε σ ρ ρ σ ε µ φ ρ ε σ µ φ= ∂ + + ∂ ∂ℏ . (C.8) 

 

Finally, we use (7.13) on the j k k jcp cp cp cp+  term.   Another term appears and then drops out 

with 0φ φ =∇ × ∇ .  We finally end up with:  

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2 4 4

8 8 4

8 8 4

lik l j i j k j l lik i j k k j j j lik l i k

B B

j l lik i k j j j lik l i k j j lik l i k

B B B B

B B B

i A cp cp cp A cp cp cp cp i c A cp

A cp cp i A cp i c A cp

c c i c i c

γ γ γ

γ γ γ

γ γ γ

ε σ ρ ρ σ ε µ φ ρ ε σ µ φ

ρ σ ε µ φ ρ µ φ ε σ µ φ ρ ε σ µ φ

ρ µ φ ρ µ φ µ φ ρ

= ∂ + + ∂ ∂

= ∂ − ∂ ∂ + ∂ ∂

= − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅A p p A p A

ℏ

ℏ

ℏ∇ × ∇ ∇ × ∇σ σ σ ( )B cµ φ p∇ ×

. (C.9) 

 

The first term retains an outer product of two p which cannot be commuted away, but the other 

two terms do segregate into scalar products, the latter being σ  dotted with a cross product. 

 

 Now we return to (C.2) insert all of (C.3) through (C.6) and (C.9), consolidate, and convert 

from index to vector notation.  For the group I of terms in (C.1), segregating into two subgroups 

Ia and Ib without and with ( )/
B B

cµ φ µ= − +E Aɺ∇ , we obtain:  
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γ

γ γ γ γ γ γ
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ρ µ µ φ ρ ρ µ φ ρ µ
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− ⋅ ⋅ + ⋅ ⋅

− ⋅ ⋅ + ⋅ ⋅

− + ⋅ + ⋅
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A p p A p p

B p B p

p B p

A E A p A A E p

A p p A p A ℏ

σ σ

σ

σ σ

σ σ

∇ ∇

∇ ∇

∇ × ∇ ×

× ∇ ∇ ×

∇ × ∇ ∇ × ∇ ( )B cµ φ










⋅ 

b

pσ ∇ ×

. (C.10) 

 

 Next, we move on to the group II terms in (C.1) which do contain gradients.  We use the 

product rule to distribute each i∇ , and the only terms we eliminate are those for which 0i iAγ∇ = , 

via (14.5). Then, as with group I, we expand using i k ik ikl liσ σ δ ε σ= +  and  
i j k ij k jk i ki j ijkiσ σ σ δ σ δ σ δ σ ε= + − + , but keep all terms in a single such expansion still grouped 

together for easy tracking.  These group II terms all contain at least one gradient, and produce 

multiple dot and cross products.  Many of these can and will be reduced, but it is helpful to show 

all of the terms before reduction, then show what reductions are possible.  In general, while we 

keep as many terms as possible in the form of ( )( ) ( )i⋅ ⋅ = ⋅ + ⋅a b a b a b×σ σ σ  which is the vector-

notation statement of ( ) ( )i k i k ik ikl l i ka b i a bσ σ δ ε σ= + , in two situations this is not possible and 

we instead end up with the form ( ) ( ) ( )i k k i ik ikl l k ia b i a b iσ σ δ ε σ= + = ⋅ −a b a b× .  The first 

situation is where i ib p=  is a momentum vector which we must keep on the very right.  Examples 

of this below are terms containing ( )c i cγ γρ ρ⋅ − ⋅A p A p×σ .  The second such situation is where 

k ka = ∇  is a gradient which we must keep on the left of its operand.  An example below is the 

term ( )i eγ γ γρ σ ρ ρ φ⋅ − ⋅ ⋅A A A∇ × ∇ ∇ .  In some instances, both situations appear, such as in the 

term ( )( )B Bi i i cγ γ γµ µ ρ⋅ − ⋅ ⋅E E A p∇ × ∇σ .   We also commute some double gradients using 

, 0i j ∇ ∇ =   which applies in flat spacetime where there is no Riemann curvature.  And 

throughout, from (7.5) we substitute E q eφ φ= = −∇ ∇ ∇  using q e= −  for the charged leptons.  

Finally, we convert from index into vector notation.  So, prior to any of the reductions which we 

shall next consider, the group II gradient terms in (C.1), in their entirety, are calculated to be: 
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Above, other than having already applied 0i iA∇ =  when expanding derivatives using the 

product rule, each of the six large parenthetical expressions (three preceded by i c− ℏ , two by 2i c− ℏ  

and one by 2 22 c− ℏ ) is the complete expansion of the six respective lines of group II terms in (C.1).  

As we shall shortly see, many of these terms are zeros, primarily as a consequence of 0⋅ =A q  

from (14.5).  Multiple terms are underlined above, to highlight further reductions which will also 

be reviewed.  Specifically, we highlight all terms which either contain a magnetic moment 

expression γ⋅Bσ , or which contain (or will be shown to contain) a field configuration 

corresponding either with γ γ=A B∇ × , or with one of the four Maxwell equations.  This includes 

a term which in full is ( ) ( )2i c E mc Ei γρ− + ⋅ Aℏ ∇×σ , highlighted by double underling.  We shall 

ultimately establish that this double-underlined term is the primary term for fermion magnetic 

moments including anomalies, without any need for renormalization. 

  

 Taken together, (C.10) and (C.11) contain the complete expansion of all the terms in the 

numerator (C.1) of the Hamiltonian (20.8).  For here, we shall reduce and consolidate and 

reorganize these expressions in a number of different ways.  First, in (C.11) there are a few 

occurrences of 0γ⋅ =A∇  which can immediately be zeroed out using (15.15).  So too with 

0γ γ⋅ =A A  from (14.8) and 0γ γ =A A×  and 0γ γ =E E×  by identity.  Further, there are multiple 

places we may use the heuristic substitution i c c− qℏ ֏∇  from (15.4), (15.7) and (15.15), followed 

by 0γ ⋅ =A q  from (15.5).  Without the various constants which are irrelevant to these calculations, 

various terms that zero out from (C.11) in this way include the scalar and cross products: 
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; (C.12) 
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 Another type of very useful reduction makes use of the commutator [ ], , 0i jx q = = x q  of 

a luminous photon momentum q with functions of spacetime ( ),b t x , as reviewed following 

(15.15).   Here, we use the heuristic relation i c c− qℏ ֏∇  from (15.4), (15.7) and (15.15) for 

photon fields and (16.14) for classical external fields, followed by commutations of q, followed 

by a restoration of c i c− q֏ ℏ ∇  with ∇  operating on a different object in a different position (so 

long as that latter object also is subject to (15.4), (15.7), (15.15) or (16.14)), followed by a further 

reduction.  This type of reduction is applied to the following terms in (C.11): 
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. (C.14) 

 

The upshot of these reductions is that so long as ∇  is operating on any one of the objects 

, ,=O A E B , we may commute 0⋅ ⋅ =A O AO֏∇ ∇ , ⋅ ⋅B O BO֏∇ ∇  and ⋅ ⋅E O EO֏∇ ∇ , 

as well as →A O AO×∇ −∇ ×  and →E O EO×∇ −∇ × .  The latter use the generalized identity  

= −a b b a× × .  The benefit of these reductions is that we reveal additional magnetic moment terms 

( )γ γ⋅ = ⋅A B∇ ×σ σ , as well as terms 4 emγ γπρ⋅ =E∇  for an electric charge density (which we do 

not set to zero using (15.10) but leave as is for now), / cγ γ= −E Bɺ∇ ×  for the magnetic field time 

derivative, and 0γ⋅ =B∇  which is always equal to zero even for a classical external magnetic 

field.  There are already some appearances in (C.11) of the field configuration for the remaining 

Maxwell equation, ( )4 / cγ γπ= +B J Eɺ∇ × . 

 

 In the final group of two-gradient terms preceded by the coefficient 2 22 c− ℏ  in (C.11), there 

are four additional terms containing outer products, which nonetheless zero out with (15.5) 

following close inspection.  Using index notation which is helpful for seeing this, we find that: 
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Additionally in the 2 22 c− ℏ  group, one more terms is eliminated and another commuted using 

( )/ cφ = − +E Aɺ∇  and (16.14) for classical external fields, as such: 

 

( ) ( ) ( )/ / 0i i c cγ γ γφ⋅ ⋅ = − ⋅ + ⋅ = ⋅ + ⋅ =A A A E A A A q E A Aɺ ɺℏ ℏ∇∇ ∇ . (C.16) 
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. (C.17) 

 

As to the time derivative, the above makes use of , 0µ ν ∂ ∂ =   in flat spacetime where the Reimann 

curvature tensor 0R
σ

αµν = .  So, the upshot of (C.16) and (C.17) is that we may also commute 

0γ γφ φ⋅ ⋅ =A A֏∇∇ ∇ ∇  and γ γ γφ φ φ→ =A A B× ∇∇ ∇ × ∇ ∇ , with the operands in (C.14) 

extended to include , , , φ=O A E B ∇ .  As a result, ( ) ( ) 0iγ γφ φ⋅ ⋅ = ⋅ ⋅ =A p A q pℏ∇ ∇ × ∇ ×σ σ , 

which is the final term in (C.10), also drops out.  

 

 Finally, keeping in mind all of section 16 which examined Maxwell’s equations for 

individual photons, the final reduction step throughout (C.10) and (C.11) is to substitute the 

generally-covariant antisymmetric gauge-invariant relation F A Aµν µ ν ν µ= ∂ − ∂  between gauge 

potentials and electric and magnetic fields, and the generally-covariant, gauge invariant Maxwell 

equations 4 J Fµ αµ
απ = ∂  for electrical sources and 0F F Fα µν µ να ν αµ∂ + ∂ + ∂ =  a.k.a. 

* 0F αµ
α∂ =  for (the non-existence of) magnetic sources.  Given the terms which appear in (C.10) 

and (C.11), the potential / field relation breaks down into / cφ = − −E Aɺ∇  and γ γ=A B∇ × .  The 

former contains the classical, external fields E and Aɺ  and not individual photon fields because 

φ∇  enters as the gradient of a classical, external scalar potential.  The latter contain the individual 

photon magnetic field γB  because γA∇ ×  enters as the curl of the photon three-potential.  Keeping 

in mind (15.6) and the related discussion that photons have non-zero magnetic fields with zero 

magnitude, this reveals several photon magnetic moment terms γ⋅Bσ .  The Maxwell equations 

all enter as those for individual photons because the field divergences and curls appearing in (C.11) 

contain the individual photons fields.  Thus, we insert 4 emγ γπρ⋅ =E∇ , ( )4 / cγ γ γπ= +B J Eɺ∇ × , 

0γ⋅ =B∇  and / cγ γ= −E Bɺ∇ ×  wherever these appear.  Although 0em γρ =   and 0γ =J  as 

deduced in (15.10), mindful of section 16 and especially of (16.10) which reminds us that a 

material electrical source is what creates a scalar potential and there is never one without the other, 

we shall not zero out these sources, but shall keep them in place so we can later consider the effects 

of external classical sources on the hyper-canonical Dirac Hamiltonian. 

 

Making all of the foregoing reductions and substitutions, (C.10) now advances to:  
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. (C.18) 

 

For (C.11) we keep the six large parenthetical expressions still grouped together to simplify 

comparison including with the group II terms in (C.1), and we continue to highlight the magnetic 

moment terms as well as a pair of emergent γ⋅Bɺσ  terms with the time derivative of the magnetic 

moment.  As a result of everything laid out following (C.11), we obtain: 
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. (C.19) 

 

To reach the above from (C.11), a few terms combine, which is responsible for the coefficients 2 

in the top line of the fourth group and 3 inside the sixth group.  In the very top group, it should be 

noted that 
i j j i
A p pγ γ⋅ ⋅ = ∇A pp∇  and ( ) ijk i j l l kA p pγ γε σ⋅ ⋅ = ∇A pp∇ ×σ  are outer products, which 

is why we can neither set 0γ⋅ =A∇  nor γ γ=A B∇ ×  in those terms. 

 

 The next step in reducing the Hamiltonian is to convert every object in (C.18) and (C.19) 

containing a time derivative or a space gradient into energy-momentum space.  It is best to first 

distribute all the cℏ  factors to each of the terms inside the large parentheses.  Then, from (15.4), 

(15.7) and (15.15) for the photon γA , γB  and γE , and from (16.14) for the classical external 
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counterparts A, B and E, converting to energy space means that for all the time derivatives 

designated by over-dots we substitute t iω∂ = − , and converting to momentum space means that 

for all space gradients (which only appear in (C.19)) we substitute i = −qℏ∇ .  Once this is done, 

we have multiple iω  which are effectively time derivatives, that may be freely commuted to 

wherever we would like inside each discrete term, as well as several q  which, as reviewed after 

(15.15), may also be freely commuted.  So for any iω  from a classical external iω= −A Aɺ  grouped 

in the same term as a photon γA , we move the iω  left of the γA  then apply i cγ γω =A E  from 

(15.12).  In effect, this converts any paired i cγ γ γω= − = −A A A A E Aɺ , including scalar and cross 

products of these.  In the process, we simultaneously reveal multiple additional photon electric 

fields γE  paired with the same number of classical external potentials A .  Amongst these q, for 

any which appear in an outer product term, wherever possible given the requirement to keep all p 

on the very right, we commute q to form a scalar (inner) or cross product. 

 

 Then, keeping in mind that we defined the substitute variable 2/q mcρ ≡  prior to (14.1) 

and that have been considering the circumstance where q e= −  is the quantized charge of a charged 

lepton and m is the lepton rest mass, we introduce the Bohr magneton by setting 2 Bcρ µ= −ℏ  and 

22 Bce mc µ=ℏ .  In those circumstance where the latter creates the term combination 2mc ρ , we 

further set 2mc eρ = − .  This eliminates most, but not all, of the ρ  from (C.18) and (C.19).   

 

Finally, we consolidate terms.  For (C.18) following consolidation we reorganize the Ia 

and Ib groupings into a separation of the terms containing only dots and no cross products, from 

terms containing cross products, as shown below: 
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For (C.19), to be able to maintain a clear connection from the six lines of terms in group II 

of (C.1) through the six large parenthetical sets in (C.11) through the same groups in (C.19), we 

still keep these six groups separately displayed.  This will be the last time we do so, because 

monetarily we will reorganize these terms from their current mathematical grouping, into one 

which is more physically-revealing.  In the second group, an emergent 0γ⋅ =q A  drops out via 

(15.5).  In the fifth group, an emergent 0γ γ =E E×  drops out by identity.  With all of this, (C.19) 

advances to: 
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. (C.21) 

 

 Although (C.20) and (C.21) are now in energy-momentum space because all time and space 

derivatives have been removed, there are a few photon frequencies ω  which we were unable to 

turn into a photon electric field via i cγ γ γω= − = −A A A A E Aɺ , because there was no γA  paired 

with the classical external Aɺ .  However, via tiω = ∂  from all of (15.4), (15.7), (15.15) and (16.14), 

these can shuttle anywhere within their term and be turned into the time derivative of any field in 

that term.   In those terms where there is an ω  and a γB  or γE , we use iγ γω =B Bɺ  or iγ γω =E Eɺ .  

For the few remaining terms with neither, we reabsorb this into iω = ⋅A A   As a result, we still 
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remain entirely in momentum space, but we do allow some time derivatives back into (C.20) and 

(C.21) and so convert out of a pure energy-momentum space.  This is because it is important and 

has physical imminence, because it enables us to study the Hamiltonian energies when time-

dependent fields are applied.   

 

Finally, as just noted, (C.20) and (C.21) are still mathematical groupings.  Now, we 

combine (C.20) and (C.21) into a single expression for the Hamiltonian numerator in (20.8), and 

segregate terms according to their dominant physical parameters, organized by the fields and field 

relations which each term contains.  The result of all of this is the multi-term expression which is 

(20.11) of the main paper. 
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