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Abstract. 

 

   By referring to well-established deductions from the Second Law of Thermodynamics and 

to the fact that concavity is the essence of this law, it is shown that the existence of negative 

heat capacities for closed systems is incompatible with the Second Law. However, it is seen 

that the heat capacity of an open system could be negative.  

 

 

 

 

1. Introduction. 

 

   With a forthcoming special issue of the American Journal of Modern Physics due to be 

devoted to the topic of Negative Heat Capacities, it seems appropriate to reconsider the 

general theoretical position within thermodynamics of these negative heat capacities. This 

seems all the more important since this general situation, although discussed in detail in the 

later years of the last century, appears to be missing from much modern thermodynamic 

literature. 

 

   The possibility of a star possessing a negative heat capacity has been accepted for some 

time (Eddington, 1926). This phenomenon has been attributed to the lack of homogeneity due 

to gravitational interaction so that, even if the heat capacity of each small element of the 

system is positive, the overall heat capacity could be negative since the total energy in this 

case is not the sum of the energies of the individual parts – the energy of the gravitational 

interactions of these parts must be taken into account also (Landau & Lifshitz, 1958). 

Subsequently, self-gravitating gas spheres in a bounded region of space and in 

thermodynamic equilibrium were shown to be possible possessors of negative heat capacities 

(Lynden-Bell & Wood, 1967). In fact, the virial theorem for an ideal gas with 1/r potential 

has been used to demonstrate the existence of a negative heat capacity (Thirring, 1970, 1972). 

This somewhat paradoxical result was attributed to lack of a clear distinction between the 

mailto:j.dunning-davies@hull.ac.uk


canonical and micro-canonical ensembles. It was claimed that, when such a distinction was 

attempted, negative heat capacities occurred over a range of energy values in the micro-

canonical ensemble, while a phase transition occurred in the canonical ensemble (Hertel & 

Thirring, 1971, 1972). This notion was examined further using simple models which obey the 

virial theorem. However, since the various ensembles are simply mathematical constructs, the 

fact that different physical effects appear to occur for one and the same system in these two 

ensembles must raise questions which surely deserve serious investigation followed by 

answers? 

 

   The fact that each of the above demonstrations of the existence of negative heat capacities 

is flawed, either by a logical error or by a situation in which thermodynamic reasoning may 

not be applied has been discussed elsewhere already (Lavenda & Dunning-Davies, 1990). 

However, it seems to be the case that, when negative heat capacities are discussed, there often 

seems to be an unwritten assumption that their actual existence is allowable and does not 

violate any well-established laws; invariably attention is confined to making deductions 

based on this underlying assumption (Landsberg & Pecaric, 1987). In what follows it is 

intended to examine the validity of this unwritten assumption.       

     

   In the first section following it is shown by using established, published results that the very 

existence of negative heat capacities for closed systems is incompatible with the Second Law 

of Thermodynamics. Further, it has been shown (Lavenda & Dunning-Davies, 1990) that the 

actual essence of the Second Law is concavity and, as has been demonstrated quite clearly 

(Dunning-Davies, 1993) this lends added support to this assertion that, in closed systems, 

negative heat capacities are incompatible with the Second Law. This is followed by an 

examination of an interesting example proposed by Lorentz which adds further credence to 

the arguments presented here. 

 

   Consideration then turns to the specific case of two systems in thermal contact with special 

attention being devoted to the interpretation of the results when one, or both, systems possess 

negative heat capacities. (For the content of this section the invaluable help of Dr. d. Pollard 

must be acknowledged.) This is followed by a consideration of the case of an ideal classical 

gas undergoing a polytropic change. This is of relevance since it has been claimed 

(Landsberg & Leff, 1989) that, although not generally realised, negative heat capacities are 

possible along certain types of path in this example. Whether or not this is true, is certainly of 

both importance and relevance as far as these considerations are concerned.  

 

   The question of the virial theorem and negative heat capacities – a subject mentioned 

already – is then addressed before the extension to open systems is discussed and it is noted 

that, in open systems, it is not prohibited for the heat capacity to assume a negative value. 

 

2. The Second Law and Negative Heat Capacities. 

 

   It is well-known in thermodynamics that conclusions based on Carathéodory’s principle are 

frequently characterised by a multiplicity of possibilities. In particular, unless supplemented 

by additional assumptions, this principle leads to four possible types of thermodynamics – all 

similar in logical structure but distinct in detail. These four types of thermodynamics, 

together with their main properties, have been derived rigorously by Landsberg (1961). The 

properties directly relevant to the present discussion are reproduced in Table 1. 

 

 



Table 1. 

 

Types of Thermodynamics. 

 

Type I   II III IV 

Direction of heat flow in  

terms of empirical temperature 
high  low high  low low  high low  high 

Sign of the absolute temperature positive negative Positive negative 

Direction of heat flow in 

terms of absolute temperature 
high  low low  high low  high high  low 

Quasistatic heat capacity positive negative negative Positive 

 

When viewing these various properties, it should be remembered that the idea of an empirical 

temperature is deduced from the Zeroth Law of Thermodynamics and there is no reason at 

that stage to suppose that heat flow is from high to low, rather than from low to high, 

empirical temperatures. It actually follows that Carathéodory’s principle leads to the 

conclusion that either 

(i) heat flows from places of high absolute temperature to those of low absolute 

temperature 

or 

(ii) heat flows from places of low absolute temperature to those of high absolute 

temperature. 

 

As is seen from the table, conclusion (i) holds for thermodynamics of types I and IV, while 

(ii) holds for thermodynamics of types II and III. However, Carathéodory’s principle is 

essentially a mathematical statement concerning the adiabatic accessibility of states. When 

physics, in the form of the Clausius statement of the second Law is introduced, it is seen that 

conclusion (ii) must be excluded and, from this, it follows immediately that thermodynamics 

of types II and III are unacceptable on physical grounds. Referring to the table once again, it 

is seen that thermodynamics of types II and III are those for which the heat capacity is 

negative; for types I and IV, the heat capacity is seen to be strictly positive. Hence, in order to 

ensure the continued validity of the Second Law of Thermodynamics, negative heat 

capacities cannot occur. However, it should be noted that, if reference is made to Landsberg’s 

book (1961), all the discussion up to this point has been concerned purely with closed 

systems; the notion of an open system has yet to be introduced and so, the possibility of 

negative heat capacities in open systems remains an open question at this stage. 

 

   It might be noted also that the Second Law of Thermodynamics has been stated in various 

ways although the basis of the subject is firmly rooted  in the two formulations due to 

Clausius and Kelvin. The connections between these two forms and that due to Carathéodory 

have been examined fairly extensively (Landsberg, 196; Dunning-Davies, 196, 1969). 

However, there is another apparent form of the Second Law which appears in the literature 

although, in the traditional development of the subject, it is really a deduction from the 

fundamental forms due to Clausius and Kelvin. This other form is 

“For and adiabatically enclosed system 

the entropy can never decrease.” 

This form attains greater prominence in those approaches to thermodynamics in which the 

existence of an entropy function is a basic assumption. In the traditional approach, the 

existence of an entropy function is deduced. It is worth enquiring as to the position of this 

alternative statement in the present context. Once again, though, the position has been 



examined in detail by Landsberg (1961) who has shown that this statement concerning  

entropy increase holds only for thermodynamics of types I and IV; it simply does not hold for  

those types of thermodynamics which admit negative heat capacities. 

 

   Hence, conclusions concerning negative heat capacities based on this alternative statement 

of the Second Law agree with those deduced earlier – negative heat capacities cannot occur 

in closed systems if the second Law is to remain inviolate. Again, all the results mentioned 

here are supported by later work (Lavenda & Dunning-Davies, 1990; Dunning-Davies, 1993) 

emphasising that the essence of the Second Law is concavity. Indeed, if concavity is indeed 

the essence of the Second Law, it follows immediately that the heat capacity must be positive 

in a closed system. 

 

3. Digression on Concavity and the Second Law. 

 

Support for the above mentioned assertion that the essence of the Second Law is concavity 

and that, when the entropy is not a first-order homogeneous function of the extensive 

variables, there is no reason to suppose that the entropy will be additive or superadditive is 

proved by an interesting example provided by Lorentz (Lorentz, 1927): 

 

   A pencil of rays of a particular colour is split, by means of a thin plate, into two parts – a 

reflected part and a transmitted one. If the energy density of the incident pencil is u and those 

of the reflected and transmitted ones are u1 and u2, then 

𝑢 = 𝑢1 + 𝑢2. 
It may be shown that, if the entropy is a concave function of the internal energy and is zero 

when the internal energy is zero, then, if the entropies of the incident, reflected and 

transmitted waves are s, s1, s2, respectively, 

𝑠 < 𝑠1 + 𝑠2; 

that is, the effect of splitting the pencil of rays is to produce an increase in total entropy. 

   Consider three values of the internal energy u1, u2 and (𝑢1 + 𝑢2). Between the values u = 0 

and u = 𝑢1 + 𝑢2, the entropy 
s = s(u) 

is concave if 

𝑠[(1 − 𝜆)(𝑢1 + 𝑢2)] ≥ (1 − 𝜆)𝑠(𝑢1 + 𝑢2), 
 

where 0    1; that is, any point on the curve lies above the chord joining the two given 
points. 

  In particular, if 

(1 − 𝜆)(𝑢1 + 𝑢2) = 𝑢1 
then 

𝜆 = 𝑢2 (𝑢1 + 𝑢2),⁄  say. 

Similarly, if 

(1 − 𝜆)(𝑢1 + 𝑢2) = 𝑢2, 
then 

𝜆 = 𝑢1 (𝑢1 + 𝑢2),⁄   say. 
Using these latter two results separately in the equation expressing concavity of the entropy 

leads to 

𝑠(𝑢1) ≥ (1 − 𝜆)𝑠(𝑢1 + 𝑢2) = 𝑢1𝑠(𝑢1 + 𝑢2)/(𝑢1 + 𝑢2) 
and 

𝑠(𝑢2) ≥ (1 − 𝜆)𝑠(𝑢1 + 𝑢2) = 𝑢2𝑠(𝑢1 + 𝑢2)/(𝑢1 + 𝑢2). 
 



Addition of the latter two equations gives 

 

𝑠(𝑢1) + 𝑠(𝑢2) ≥ 𝑠(𝑢1 + 𝑢2). 
 

Hence,it has been shown that, if the entropy s(u) is a concave function of the internal energy 

u for which 

s(0) = 0, 

the entropy is subadditive not superadditive. 

   This simple example would appear to support the earlier assertion (Lavenda & Dunning-

Davies, 1990) that, when homogeneity no longer holds, it is concavity which contains the 

essence of the Second Law of Thermodynamics, not superadditivity; the Second Law is 

assumed valid universally but the above example shows that that is not so for the property of 

superadditivity.  

 

4. Two Systems in Thermal Contact. 

 

   Now consider two closed, isolated systems – one with heat capacity C1 and at temperature 

T1, the other with heat capacity C2 and at temperature T2, where T2  T1. Suppose these 

systems are put into thermal contact with one another and achieve thermal equilibrium at 

temperature T. Then, by conservation of energy 

                                                    𝐶1(𝑇 − 𝑇1) + 𝐶2(𝑇 − 𝑇2) = 0                                                   (i) 
or 

𝑇 =
𝐶1𝑇1 + 𝐶2𝑇2

𝐶1 + 𝐶2
, 

this result holding for both positive and negative heat capacities. 

   If 

𝛼 =
𝐶1

𝐶1+𝐶2
    and    𝛽 =

𝐶2

𝐶1+𝐶2
 

the above equation (i) may be written 

                                                              𝑇 = 𝛼𝑇1 + 𝛽𝑇2                                                          (ii) 

where 

𝛼 + 𝛽 = 1. 
Now it remains to examine various separate cases:- 

 

Case 1. 

 

   If both heat capacities are positive 

  0,    0 
and (ii) gives 

𝑇 = 𝛼𝑇1 + (1 − 𝛼)𝑇2 

 = 𝑇2 + 𝛼(𝑇1 − 𝑇2) 

                                                             > 𝑇2 
and 

𝑇 = (1 − 𝛽)𝑇1 + 𝛽𝑇2 

= 𝑇1 − 𝛽(𝑇1 − 𝑇2) 

                                                            < 𝑇1 
Hence, in this case 

𝑇1 > 𝑇 > 𝑇2 
and 

𝐶1(𝑇 − 𝑇1) < 0,      𝐶2(𝑇 − 𝑇2) > 0 



 

which means that the system at the higher temperature has lost heat while that at the lower 

temperature has gained heat or, in other words, heat has flowed from the higher to the lower 

temperature.  

 

Case 2. 

 

   If both heat capacities are negative 

𝛼 > 0,   𝛽 > 0 
 

and, using the same argument as in Case 1, it again follows that 

 

𝑇1 > 𝑇 > 𝑇2. 
However, in this case, it is seen that 

 

𝐶1(𝑇 − 𝑇1) > 0,     𝐶2(𝑇 − 𝑇2) < 0; 
 

that is, the system at the higher temperature gains heat while that at the lower temperature 

loses heat or, in other words, heat flows from the lower to the higher temperature in violation 

of the Second Law of Thermodynamics. 

 

Case 3. 

   It remains to consider the case when one heat capacity is positive and the other negative. In 

this case, either 

𝛼 > 0,        𝛽 < 0 
or 

𝛼 < 0, 𝛽 > 0.  
 

If 𝛼 > 0, 𝛽 < 0, (ii) gives 

𝑇 = 𝑇2 + 𝛼(𝑇1 − 𝑇2) > 𝑇2 
0,  

𝑇 = 𝑇1 − 𝛽(𝑇1 − 𝑇2) > 𝑇1 
so that 

𝑇 > 𝑇1 > 𝑇2. 
 

An analogous argument shows that, if 𝛼 < 0, 𝛽 > 0, then 
 

𝑇1 > 𝑇2 > 𝑇. 
 

However, the situation covered by the case 𝛼 > 0, 𝛽 < 0 may be achieved if either 
 

𝐶1 < 0,  𝐶2 > 0,  𝐶1 + 𝐶2 < 0 
or 

𝐶1 > 0,  𝐶2 < 0,  𝐶1 + 𝐶2 > 0. 
 

In the first of these 

𝐶1(𝑇 − 𝑇1) < 0,   𝐶2(𝑇 − 𝑇2) > 0 
 

so that heat flows from the higher to the lower temperature in accordance with the Second 

Law. 



 

  However, in the second 

𝐶1(𝑇 − 𝑇1) > 0,   𝐶2(𝑇 − 𝑇2) < 0 
 

so that heat flows from the lower to the higher temperature in violation of the Second Law. 

 

   Again, the case 𝛼 < 0, 𝛽 > 0 may be achieved if either 

𝐶1 > 0, 𝐶2 < 0, 𝐶1 + 𝐶2 < 0 
or 

𝐶1 < 0, 𝐶2 > 0, 𝐶1 + 𝐶2 > 0. 
 

A similar argument shows that, in the first of these, heat flows from the higher to the lower 

temperature but, in the second, it flows from the lower to the higher temperature in violation 

of the Second Law. 

 

   It might be noted also that, if 

𝐶1 = −𝐶2, 
the equation representing conservation of energy is satisfied only if 

𝑇1 = 𝑇2. 
If T1 and T2 are unequal, the said equation leads to the conclusion that the equilibrium 

temperature is infinite. 

 

   All the above results are well-known (Landsberg & Pecaric, 1987), as is the interpretation. 

Since the Second Law of Thermodynamics precludes the flow of heat from a system at one 

temperature to a system at a higher temperature in the absence of other effects, it must be 

concluded that, when negative heat capacities are involved, the only allowable case is when 

the two heat capacities are of different sign and their sum is negative. However, while this 

conclusion may seem reasonable theoretically, in practice, if a closed system has a negative 

heat capacity, it cannot be ensured that it comes into contact only with other closed systems 

possessing positive heat capacities and such that the sum of the two heat capacities is 

negative. Hence, the only realistic conclusion which may be drawn from these considerations 

is that closed systems must have positive heat capacities; the existence of closed systems with 

negative heat capacities would lead to violations of the Second Law. 

 

5. An Ideal Gas undergoing a Polytropic Change. 

 

   For an ideal classical gas 

pV = RT, 

where all the symbols have their usual meanings, and Joule’s Law 

(𝜕𝑈
𝜕𝑉⁄ )

𝑇
=0 

hold. 

   Also, for such a gas, 

𝐶𝑝 − 𝐶𝑉 = 𝑝(𝜕𝑉
𝜕𝑇⁄ )

𝑝
= 𝑅. 

 

   Now consider an ideal classical gas of constant heat capacities 𝐶𝑝, 𝐶𝑉 undergoing a 

quasistatic change for which d'Q = CdT, where C is a constant. In this case 

 

d'Q = dU + pdV  = (𝜕𝑈
𝜕𝑇⁄ )

𝑉
𝑑𝑇 + [(𝜕𝑈

𝜕𝑉⁄ )
𝑇

+ 𝑝] 𝑑𝑉 



 

that is 

𝐶𝑑𝑇 = 𝐶𝑉𝑑𝑇 + 𝑝𝑑𝑉 = 𝐶𝑉𝑑𝑇 + (𝑅𝑇 𝑉⁄ )𝑑𝑉 
or 

(𝐶𝑉 − 𝐶)
𝑑𝑇

𝑇
= (𝐶𝑝 − 𝐶𝑉)

𝑑𝑉

𝑉
, 

 

which may be integrated to give 

 

𝑇𝑉𝑛−1 = constant, 
𝑛 = (𝐶𝑝 − 𝐶) (𝐶𝑉 − 𝐶).⁄   

   With n defined in this way, it follows that 

 

𝐶 =
(𝑛 − 𝛾)

(𝑛 − 1)
𝐶𝑉 

where  = Cp/CV. 

   It follows immediately that C may be negative if 1  n  . Hence, it might appear, at first 
sight, that an ideal classical gas of constant heat capacities may have a negative heat capacity 

along so-called polytropic paths described by TV
n-1

 = constant if 1  n  . However, all the 

discussion thus far has been independent of the Second Law and, as has been shown already, 

introduction of the Second Law results in the exclusion of negative heat capacities for closed 

systems. Hence, in the above, both C and CV must be positive and so either 

n  1   and   n   
or  

n  1   and   n  . 
 

In a sense, this final result is not surprising since, as Chandrasekhar (1957) points out, the 

above situation is only an ordinary ideal classical gas undergoing a particular type of change. 

 

6. The Virial Theorem and Negative Heat Capacities. 

   Astrophysical arguments leading to negative heat capacities are all based on the virial 

theorem (Thirring, 1970, 1972).The error in these arguments is to be found in a confusion 

between total energy and internal energy and is all the more surprising since the correct 

application of the virial theorem is laid out clearly in the book by Chandrasekhar (1957). As 

is shown there, if E is the total energy, U the internal energy,  the potential energy and  the 
kinetic energy 

E = U +  

and  

𝜏 =
3

2
(𝛾 − 1)𝑈 

so that 

 = U if and only if  = 5/3 

where  is, as usual, the ratio of the constant pressure and constant volume heat capacities. 

 

   Again, it is shown that, by the virial theorem 

2 + =3( - 1)U +  = 0 
which, together with the above equation for E gives 

 

E = - (3 - 4)U. 



 

Since a stable configuration for gas spheres is possible only if   4/3, it follows that the rate 

of change of total energy with temperature T will be opposite that of the internal energy. 
Hence, since the rate of change of total energy with temperature has been found to be 

negative (Thirring, 1970, 1972) it is follows that the heat capacity of the system, which is the 

rate of change of the internal energy with temperature, is positive. Hence there is no negative 

heat capacity and no paradox. 

 

7. Extension to Open Systems. 

 

   Although not mentioned repeatedly in each section, attention thus far has been confined 

explicitly to closed systems. For such systems, the equation representing the combination of 

the First and Second Laws assumes the form 

 

TdS = d'Q = dU + pdV 

 

and the heat capacity at constant volume is 

 

𝐶𝑉 = 𝑇(𝜕𝑆 𝜕𝑇⁄ )𝑉 = (𝜕𝑈 𝜕𝑇⁄ )𝑉. 

 

However, when open systems are considered, the form of the equation representing the 

combined First and Second Laws becomes 

 

TdS = d'Q = dU + pdV - µdN, 

 

where µ and N represent chemical potential and number of particles respectively, and so, in 

this case, the heat capacity at constant volume is given by 

 

𝐶𝑉 = 𝑇(𝜕𝑆 𝜕𝑇⁄ )𝑉 = (𝜕𝑈 𝜕𝑇⁄ )𝑉 − 𝜇(𝜕𝑁 𝜕𝑇⁄ )𝑉. 
 

Since the second term on the right-hand side of this latter equation may be either positive or 

negative, the sign of the heat capacity in this case remains indeterminate. Hence, it follows 

that the heat capacity of an open system could be negative. However, this in no way 

contradicts the earlier discussion. An open system cannot be isolated and, if an open system 

and its surroundings are in equilibrium and are considered together as a composite system, 

that composite system will be a closed system possessing a positive total heat capacity. 

 

8. Conclusions. 

 

   In much of what appears in the literature concerning negative heat capacities, there is a tacit 

assumption that systems possessing such heat capacities are allowable and attention is 

confined to drawing conclusions based on this assumption. However, here it has been shown 

quite clearly that a closed system of negative heat capacity would violate the Second Law of 

Thermodynamics; only open systems may have negative heat capacities. 
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