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Abstract

We show how to express the representation of a composite rotation

in terms that allow the rotation of a vector to be calculated conveniently

via a spreadsheet that uses formulas developed, previously, for a single

rotation. The work presented here (which includes a sample calculation)

also shows how to determine the bivector angle that produces, in a single

operation, the same rotation that is effected by the composite of two

rotations.

“Rotation of the vector v through the bivector angle M1µ1, to produce

the vector v′.”
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1 Introduction

Suppose that we rotate some vector v through the bivector angle M1µ1 to

produce the vector that we shall call v′ (Fig. 1), and that we then rotate v′

through the bivector angle M2µ2 to produce the vector that we shall call v′′.

That sequence of rotations is called the composition of the two rotations. It is

equal to the rotation through some bivector angle Sσ ([1], pp. 89-91). Geometric

Algebra (GA) is a convenient and efficient tool for manipulating rotations—single

as well as composite—as abstract symbols, but what form does a numerical

calculation of a rotation take in a concrete situation? And how can we calculate

the bivector angle Sσ ?

Those are two of the questions that we will address in this document. Our

procedure will make use of single-rotation formulas that were developed in [2].

We’ll begin with a review of how a given vector can be rotated via GA. In that

review, we’ll discuss the important concept of the representation of a rotation,

after which we’ll present an formula that can be implemented in Excel for to

calculate single rotations of a given vector.

Having finished that review, we’ll see how to express the representation of

a composite rotation in terms that can be substituted directly in the formula

for single rotations. We’ll then work a sample problem in which we’ll calculate

the results of successive rotations of a vector. We’ll also calculate the bivector

angle that produces the same rotation in a single operation. The method used

for calculating that bivector angle is presented in the Appendix.



Figure 1: Rotation of the vector v through the bivector angle M2µ2, to produce

the vector v′.

Figure 2: Rotation of the vector v′ through the bivector angle M2µ2, to produce

the vector v′′.
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Figure 3: Rotation of v through the bivector angle Sσ, to produce the vector

v′′ in a single operation.

2 A Brief Review of How a Rotation of a Given

Vector Can be Effected via GA

References [3] (pp. 280-286) and [1] (pp. 89-91) derive and explain the following

formula for finding the new vector, w′, that results from the rotation of a vector

w through the angle θ with respect to a plane that is parallel to the unit bivector

Q:

Figure 4: Rotation of the vector w through the bivector angle Q1, to produce

the vector w′.
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w′ =
[
e−Qθ/2

]
[w]
[
eQθ/2

]
︸ ︷︷ ︸

Notation: RQθ(w)

. (2.1) Notation: RQθ(w) is the

rotation of the vector w by the

bivector angle Qθ.

For our convenience later in this document, we will follow Reference [1] (p. 89)

in saying that the factor e−Qθ/2 represents the rotation RQθ. That factor is a

quaternion, but in GA terms it is a multivector:

e−Qθ/2 = cos
θ

2
−Q sin

θ

2
. (2.2)

As further preparation for work that we’ll do later, we’ll mention that for any

given right-handed reference system with orthonormal basis vectors â, b̂, and ĉ,

we may express the unit bivector Q as a linear combination of the basis bivectors

âb̂, b̂ĉ, and âĉ :

Q = âb̂qab + b̂ĉqbc + âĉqac,

in which qab, qbc, and qac are scalars, and q2ab + q2bc + q2ac = 1.

To present a convenient way of calculating rotations via Excel spreadsheets,

Ref. [2] built upon that idea to write e−Qθ/2 as

e−Qθ/2 = fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
, (2.3)

with fo = cos
θ

2
; fab = qab sin

θ

2
; fbc = qbc sin

θ

2
; and fac = qac sin

θ

2
. Similarly,

eQθ/2 = fo +
(
âb̂fab + b̂ĉfbc + âĉfac

)
. (2.4)

Using these expressions for e−Qθ/2 and eQθ/2, and writing w as w = âwa +

b̂wb + ĉwc, Eq. (2.1) becomes

w′ =
[
fo − âb̂fab − b̂ĉfbc − âĉfac

] [
âwa + b̂wb + ĉwc

] [
fo + âb̂fab + b̂ĉfbc + âĉfac

]
.

By expanding and simplifying the right-hand, side we obtain

w′ = â
[
wa
(
f2o − f2ab + f2bc − f2ac

)
+ wb (-2fofab − 2fbcfac) + wc (-2fofac + 2fabfbc)

]
+ b̂

[
wa (2fofab − 2fbcfac) + wb

(
f2o − f2ab − f2bc + f2ac

)
+ wc (-2fofbc − 2fabfac)

]
+ ĉ

[
wa (2fofac + 2fabfbc) + wb (2fofbc − 2fabfac) + wc

(
f2o + f2ab − f2bc − f2ac

)]
.

(2.5)

Because this result can be implemented conveniently in (for example) a

spreadsheet similar to Ref. [4], the sections that follow will show how to express

the representation of a composite rotation in the form of Eq. (2.3).

3 Identifying the “Representation” of a Com-

posite Rotation

Let’s begin by defining two unit bivectors, M1 and M2:

M1 = âb̂m1ab + b̂ĉm1bc + âĉm1ac;

M2 = âb̂m2ab + b̂ĉm2bc + âĉm2ac.
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Now, write the rotation of a vector v by the bivector angle M1µ1 to produce

the vector v′:

v′ =
[
e−M1µ1/2

]
[v]
[
eM1µ1/2

]
.

Next, we will rotate v′ by the bivector angle M2µ2 to produce the vector v′′:

v′′ =
[
e−M2µ2/2

]
[v′]

[
eM2µ2/2

]
.

Combining those two equations,

v′′ =
[
e−M2µ2/2

]{[
e−M1µ1/2

]
[v]
[
eM1µ1/2

]} [
eM2µ2/2

]
.

The vector v′′ was produced from v via the composition of the rotations by

the bivector angles M1µ1 and M2µ1. The representation of that composition

is the product
[
e−M2µ1/2

] [
e−M1µ1/2

]
. We’ll rewrite the previous equation to

make that idea clearer:

v′′ =
{[
e−M2µ2/2

] [
e−M1µ1/2

]}
︸ ︷︷ ︸

Representation
of the composition

[v]
{[
eM1µ1/2

] [
eM2µ2/2

]}
.

There exists an identifiable bivector angle —we’ll call it Sσ—through which v

could have been rotated to produce v′′ in a single operation rather than through

the composition of rotations through M1µ1 and M2µ2. (See the Appendix.)

But instead of going that route, let’s write e−M1µ1/2 and e−M2µ2/2 in a way

that will enable us to use Eq. (2.3):

e−M1µ1/2 = go −
(
âb̂gab + b̂ĉgbc + âĉgac

)
, and

e−M2µ2/2 = ho −
(
âb̂hab + b̂ĉhbc + âĉhac

)
,

where go = cos
µ1

2
; gab = m1ab sin

µ1

2
; gbc = m1bc sin

µ1

2
; and gac = m1ac sin

µ1

2
,

and ho = cos
µ2

2
; hab = m2ab sin

µ2

2
; hbc = m2bc sin

µ2

2
; and hac = m2ac sin

µ2

2
.

Now, we write the representation of the the composition as[
ho −

(
âb̂hab + b̂ĉhbc + âĉhac

)]
︸ ︷︷ ︸

e−M2µ2/2

[
go −

(
âb̂gab + b̂ĉgbc + âĉgac

)]
︸ ︷︷ ︸

e−M1µ1/2

.

After expanding that product and grouping like terms, the representation of the

composite rotation can be written in a form identical to Eq. (2.3):

Fo −
(
âb̂Fab + b̂ĉFbc + âĉFac

)
, (3.1)

with

Fo = 〈e−M2µ2/2e−M1µ1/2〉0
= hogo − habgab − hbcgbc − hacgac ,

Fab = hogab + habgo − hbcgac + hacgbc ,

Fbc = hogbc + habgac + hbcgo − hacgab , and

Fac = hogac − habgbc + hbcgab + hacgo .

(3.2)
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Therefore, with these definitions of Fo, Fab, Fbc, and Fac, v′′ can be

calculated from v (written as âva + b̂vb + ĉvc) via an equation that is analogous,

term for term, with Eq. (2.5):

v′ = â
[
va
(
F2
o −F2

ab + F2
bc −F2

ac

)
+ vb (-2FoFab − 2FbcFac) + vc (-2FoFac + 2FabFbc)

]
+ b̂

[
va (2FoFab − 2FbcFac) + vb

(
F2
o −F2

ab −F2
bc + F2

ac

)
+ vc (-2FoFbc − 2FabFac)

]
+ ĉ

[
va (2FoFac + 2FabFbc) + vb (2FoFbc − 2FabFac) + vc

(
F2
o + F2

ab −F2
bc −F2

ac

)]
.

(3.3)

At this point, you may (and should) be objecting that I’ve gotten ahead

of myself. Please recall that Eq. (2.5) was derived starting from the “rotation”

equation ((2.1))

w′ =
[
e−Qθ/2

]
[w]
[
eQθ/2

]
.

The quantities fo, fo, fab, fbc, and fac in Eq. (2.5), for which

e−Qθ/2 = fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
, (3.4)

also meet the condition that

eQθ/2 = fo +
(
âb̂fab + b̂ĉfbc + âĉfac

)
. (3.5)

We are not justified in using Fo, Fab, Fbc, and Fac in Eq. (2.5) unless we first

prove that these composite-rotation “F ’s”, for which

Fo −
(
âb̂Fab + b̂ĉFbc + âĉFac

)
= e−M2µ2/2e−M1µ1/2 , (3.6)

also meet the condition that

Fo +
(
âb̂Fab + b̂ĉFbc + âĉFac

)
= eM1µ1/2e−M2µ2/2 . (3.7)

Although more-elegant proofs may well exist, “brute force and ignorance” gets

the job done. We begin by writing eM1µ1/2e−M2µ2/2 in a way that is analogous

to that which was presented in the text that preceded Eq. (3.1):[
go +

(
âb̂gab + b̂ĉgbc + âĉgac

)]
︸ ︷︷ ︸

eM1µ1/2

[
ho +

(
âb̂hab + b̂ĉhbc + âĉhac

)]
︸ ︷︷ ︸

eM2µ2/2

.

Expanding, simplifying, and regrouping, we fine that eM1µ1/2e−M2µ2/2 is indeed

equal to Fo +
(
âb̂Fab + b̂ĉFbc + âĉFac

)
, as required.

4 A Sample Calculation

The vector v =
4

3
â − 4

3
b̂ +

16

3
ĉ is rotated through the bivector angle âb̂π/2

radians to produce a new vector, v′. That vector is then rotated through the

bivector angle

(
âb̂√

3
+

b̂ĉ√
3
− âĉ√

3

)(
−2π

3

)
to produce vector v′′. Calculate
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Figure 5: Rotation of v through the bivector angle âb̂π/2, to produce the vector

v′.

a The vectors v′ and v′′, and

b The bivector angle Sσ through which v could have been rotated to produce

v′′ in a single operation.

We begin by calculating vector v′. The rotation is diagrammed in Fig. 5

As shown in Fig. 6, v′ =
4

3
â +

4

3
b̂ +

16

3
ĉ.

We’ll calculate v′′ in two ways: as the rotation of v′ by the bivector angle(
âb̂√

3
+

b̂ĉ√
3
− âĉ√

3

)(
−2π

3

)
, and as the result of the rotation by the composite of

the two individual rotations. The rotation of v′ by

(
âb̂√

3
+

b̂ĉ√
3
− âĉ√

3

)(
−2π

3

)
is

diagrammed in Fig. 7. Fig. 8 shows that v′′ =
4

3
â +

16

3
b̂ +

4

3
ĉ.

As we can see from Fig. 9, that result agrees with that which was obtained

by calculating v′′ in a single step, as the composition of the individual rotations.

Fig. 9 also shows that the bivector angle Sσ is b̂ĉ (−π/2), which we can also

write as ĉb̂ (π/2). That rotation is diagrammed in Fig. 10.

5 Summary

We have seen how to express the representation of a composite rotation in terms

that allow the rotation of a vector to be calculated conveniently via a spreadsheet

that used formulas developed in [2] for a single rotation. The work presented

here also shows how to determine the bivector angle that produces, in a single

operation, the same rotation that is effected by the composite of two rotations.
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Figure 6: A spreadsheet (Ref. [5]) that uses Eq. (2.5) to calculate v′ as the

rotation of v through the bivector angle âb̂π/2.

Figure 7: Rotation of v′. Note the significance of the negative sign of the scalar

angle: the direction in which v′ is to be rotated is contrary to the orientation of

the bivector. That significance is clearer in Fig. 10.

9



Figure 8: A spreadsheet (Ref. [5]) that uses Eq. (2.5) to calculate v′′ as the

rotation of v′ .
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Figure 9: A spreadsheet (Ref. [6]) that uses Eq. (3.2) to calculate v′′ via the

composite rotation of v.
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Figure 10: Rotation of v by Sσ to produce v′′ in a single operation. Note the

significance of the negative sign of the scalar angle: the direction in which v′

rotated is contrary to the orientation of the bivector b̂ĉ, and contrary also to

the direction of the rotation from b̂ to ĉ.

6 Appendix: Identifying the Bivector Angle Sσ

through which the Vector v can be Rotated

to Produce v′′ in a Single Operation

Let v be an arbitrary vector. We want to identify the bivector angle Sσ through

which the initial vector, v, can be rotated to produce the same vector v′′ that

results from the rotation of v through the composite rotation by M1µ1, then by

M2µ2:[
e−M2µ2/2

] [
e−M1µ1/2

]
[v]
[
eM1µ1/2

] [
eM2µ2/2

]
= v′′ =

[
e−Sσ/2

]
[v]
[
eSσ/2

]
. (6.1)

We want Eq. (6.1) to be true for all vectors v. Therefore, eSσ/2 must be equal to[
eM1µ1/2

] [
eM2µ2/2

]
, and e−Sσ/2 must be equal to

[
e−M1µ1/2

] [
eM2µ2/2

]
. The

second of those conditions is the same as saying that the representations of

the Sσ rotation and the composite rotation must be equal. We’ll write that

condition using the Fo’s defined in Eq. (3.2), with S expressed in terms of the

unit bivectors âb̂, b̂ĉ, and âĉ:

cos
σ

2
−
(
âb̂Sab + b̂ĉSbc + âĉSac

)
︸ ︷︷ ︸

S

sin
σ

2
= Fo −

(
âb̂Fab + b̂ĉFbc + âĉFac

)
.

Now, we want to identify σ and the coefficients of âb̂, b̂ĉ, and âĉ. First, we

note that both sides of the previous equation are multivectors. According to the

postulates of GA, two multivectors A1 and A2 are equal if and only if for every

grade k, 〈A1〉k = 〈A2〉k. Equating the scalar parts, we see that cos
σ

2
= Fo.

Equating the bivector parts gives
(
âb̂Sab + b̂ĉSbc + âĉSac

)
sin

σ

2
= âb̂Fab +
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b̂ĉFbc + âĉFac. Comparing like terms, Sab = Fab/ sin
σ

2
, Sbc = Fbc/ sin

σ

2
, and

Sac = Fac/ sin
σ

2
.

Why is it correct to identify the

S’s by comparing like terms? In

simple terms, because the unit

bivectors âb̂, b̂ĉ âb̂ are

orthogonal. Two linear

combinations of those bivectors

are equal if and only if the

coefficients match, term for

term.

Next, we need to find sin
σ

2
. Although we could do so via sin

σ

2
=
√

1− cos2
σ

2
,

for the purposes of this discussion we will use the fact that S is, by definition, a

unit bivector. Therefore, ||S|| = 1, leading to

‖ sin
σ

2
‖ = ‖âb̂Fab + b̂ĉFbc + âĉFac‖

=
√
F2
ab + F2

bc + F2
ac .

Now, the question is whether we want to use sin
σ

2
= +

√
F2
ab + F2

bc + F2
ac, or

sin
σ

2
= −

√
F2
ab + F2

bc + F2
ac. The truth is that we can use either: if we use

−
√
F2
ab + F2

bc + F2
ac instead of +

√
F2
ab + F2

bc + F2
ac, then the sign of S changes

as well, leaving the product S sin
σ

2
unaltered.

The choice having been made, we can find the scalar angle σ from the values

of sin
σ

2
and cos

σ

2
, thereby determining the bivector angle Sσ.
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