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Abstract 

We examine the Lorentz factor and the Schwarzschild solution in relation to the estimation and 

verification of time dilation particularly from available Global Positioning System data. We as a result 

detect the possible occurrence of a proportionality between time dilation effects of special and general 

relativity in free-fall motion in Keplerian orbits. This observation is then mathematically proved. The 

results show that gravitational time dilation during free fall in Keplerian orbits must be exactly double 

that caused in special relativity due to linear velocity. We propose that a law has to be enunciated in view 

of the proof provided, and of the experimental and technological verification of time dilation effects 

during the past six to seven decades. The importance of this finding as a universal phenomenon and in the 

further development of stable clocks and satellite technology is highlighted. 

1. Intoduction

In this paper we study the estimation procedures and experimental verification of time 

dilation as a result of which we produce proof that, in Keplerian or free falling orbital 

motions resulting from the inverse square gravitational attraction of a central body, time 

dilation due to special relativity (SR) must be exactly half that due to gravitational 

effect. Since time dilation in relativistic effects has been proved in several experiments 

and technological applications, the conclusion developed in this paper deserves to be 

enunciated as a Law.    
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     In the special relativity theory time dilation 3.1  is described by the Lorentz 

transformations. The Schwarzschild solution describes gravitational time dilation in 

general relativity (GR) 3.2 . These two tools have been of vital and fundamental 

importance in arriving at the law of proportionality of time dilation and we dwell on 

them with some details in the text. 

     Time dilation values predicted by the  Lorentz factor and the Schwarzschild 

gravitational time dilation formula  have been experimentally and technologically 

confirmed. Particle accelerators routinely carry out experimental tests of the time 

dilation of special relativity since the 1950s. Early SR time dilation tests which confirm 

Einstein’s prediction include the measurement 5.4  of the Doppler shift of the radiation 

emitted from cathode rays, on the direct observation of the transverse Doppler shift 6 , 

and the accurate time dilation incidence recorded  in elementary particles decay 7 .  

Recent experimental evidence of SR time dilation verification includes the 

significantly improved test of time dilation in special relativity performed with laser 

spectroscopy on fast ions at the heavy-ion storage-ring in Heidelberg at v = 0.0064 8c  

The result confirms the relativistic Doppler formula. More recently even more sensitive 

measurements of time dilation using the Hiedelberg  storage-ring confirmed time 

dilation with unprecedented accuracy at v = 0.0065 c 9 . 

In the case of gravitational time dilation confirmation the classical example is the   

gravitational red-shift measurement 10  with results within 10% of the predictions of 

general relativity which was later 11  improved to 1%. Using cesium clocks travelling in 

commercial airliners 12 , the occurrence of  SR and GR combined time dilation effects 

was demonstrated. Recently these results were confirmed 13  in a trial using 

technologically improved cesium clocks with greater accuracy, within 4% of the 

predictions of relativity. Other recent work includes the measurement of the frequency 
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shift of radio photons to and from the Cassini spacecraft as they passed by the sun, 

which agrees with the predictions of general relativity 14 . 

The Global Positioning System and  Glonass  can be considered as stable clocks 

tests in special and general relativity. It has been emphasized 15  that  the GPS provides a 

fascinating menu of applications of special and general relativity. The use of stable 

clocks in space navigation technologies depends enormously on the relativity 

predictions of Einstein and on the use of the Lorentz factor and the Schwarzschild 

solution.  

A very recent paper 16  aptly says that relativity has already entered a status of an 

applied technology in daily life, a point illustrated by the role of the GPS in the success 

of the German toll system on highways which is a market with a flow of several billion 

euros annually. In addition the international atomic time is defined by comparing and 

averaging the times provided by more than 200 atomic clocks distributed worldwide. 

The average value obtained is more accurate than any individual value. Comparisons 

between individual clocks and one on board a GPS satellite may need uncertainly less 

than a few nanoseconds(ns) 16 .However relativistic effects much greater than this have 

to be corrected. Timing errors of one ns will lead to positioning errors of the order 30 

m 17 . 

  In this work the data shown below have the corresponding values: 

Speed of light c = 299 792 458 m/s 

Gravitational constant G = 6.6742 x 1110  m 3 s 2 k 1  

Mass of earth M = 6 x 10 24 kg 

Radius of earth R = 6 380 000 m 
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Data for the GPS satellites have been given by various authors 19.18.17.16.15 . Some 

selected data are the following: 

Altitude = 20 200 km 

Orbital radius r =26 580 000 m 

Velocity v = 3 888 m/s  

SR time dilation = +7 260 ns/day 

GR time dilation = -45 570 ns/day compared to earth based stationary clock 

Net time dilation = -38 310 ns/day compared with earth based clock 

Computing the reported orbital radius against v of the satellite gives a g value of 

0.5687. Using the 
2r

GM
formula the g is 0.5668. The GPS has a semi-synchronous 

orbital period of 11 h 58 m which is half of the earth average rotational period of 23 h 

56 m. The GPS’s successful demonstration of time dilation resulting from an array of 

relativity influences is a clear proof of the validity of Einstein’s relativity predictions. 

Time dilation consideration is heavily relied upon in this paper on account of its 

experimental verifications in both research and practical applications. Although space 

contraction has not been experimentally verified, there is little doubt that it will be 

shown to be true once relativistic velocities are realized for long distances. 

This study explores a new perspective of the Lorentz factor for determining time 

dilation and length contraction. Since the scheme developed (SR scheme 1) works well 

we will apply it also to the Schwarzschild Solution for gravitational time dilation. We 

shall then see related approaches for estimating time dilation.  

2. Time dilation estimation
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     The Lorentz Factor may be derived from a valid Pythagorean Theorem based on 

light signals. Here we will adopt the thought experiment based on   a moving train with 

an observer B standing on the embankment. The train moves with velocity v. A light 

emitter on the floor of the train sends a light signal straight to a mirror fixed on the 

train’s ceiling exactly opposite the emitter, a distance L from the emitter. To a train 

traveller (observer A) the light signal bounces to the mirror and straight back to the 

floor where the emitter is located  For observer B the signal moves obliquely up towards 

the mirror and obliquely down to the floor. Since the velocity of light is constant in all 

reference frames observer A finds the light signal to take time
c

L
t

2
 . For observer B on 

the embankment the time taken is different and is 
c

L
t

'2
' .In the meantime the train has 

moved a distance vt' , v being the train’s velocity and 't , the time observer B sees the 

light signal 

The three distances fit into a right angle triangle to constitute a valid Pythagorean 

Theorem and are: 

2
,

2

'
,

2

' tcvtct

So this gives: 
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from which we can derive the multiplier factor 

22 vc

c



which in turn can be translated to the Lorentz factor:
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For the sake of simplification we shall first restrict our discussion to the binomial 

expansion of the Lorentz factor which is: 

2

2

2c

v

for non-relativistic velocities which Einstein 1  also utilized. The Schwarzschild 

solution,below, is  meant to apply to space-time in the vicinity of a non-rotating massive 

object:  

2

0

2
1

Rc

GM

t
t





where t is the time interval measured by a clock which is situated very far away from a 

central mass. 

If the clock is at the earth surface or not very far from it we use the gravitational 

time dilation formula:  

2

0

2
1

c

gR

t
t





Employing a binomial expansion of the gravitational time dilation expression, the 

first approximation to the time expression, ignoring subsequent ones since they are very 

negligible, is: 

2c

gr

http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/gratim.html#c4#c4
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This formula is a good approximation for estimating time dilation in GRT for r 

values at the earth surface including earth orbital satellites. 

We will then, based on the Lorentz Factor (SR scheme 1), initially develop a  

linear sequence of ideas and calculations which will lead us eventually to the 

proportionality of SR and GR time dilation effects. To start with, without making any 

fundamental change, we propose modifying the formula 

2

2

2c

v
         to

22c

dv
, 

where d is the distance covered by any moving object with velocity v in time t as seen

by an external observer in an inertial frame of reference. We will now examine how we 

can paint a descriptive and logical sequence of ideas on
22c

dv
, that enables us to arrive at 

time dilation and distance contraction in a moving body. In other words instead of 

2v and 2c , we shall proceed by adopting a linear sequence of mathematical calculations, 

bypassing the direct use of squares and square roots (SR scheme 1 below). This 

approach can be adapted to any kind of motion at uniform velocity such as walking, 

travelling with clocks to synchronize them, to the motion of an airplane, or the linear 

motion of a Glonass or GPS satellite. Irrespective of the kind of object and its uniform 

motion we can proceed as follows. 

3. SR scheme 1 and GR scheme 1

The sequence of ideas and their corresponding sequence of calculations are as follows: 

1. First we obtain the value of d, the distance a massive object (x) moves in time t

at uniform velocity v.

2. We divide this value by 2.

3. We then divide
2

d
 by c to give the time that light would theoretically 
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      take to cover distance 
2

d
. 

4. By multiplying the time that light theoretically takes as obtained in (3) above

with v we get the theoretical distance that object x would cover during that time.

5. We now calculate the theoretical time light takes to cover that distance: this

actually gives us the amount of time dilation in the inertial reference frame of x.

6. We then calculate the distance x would have theoretically covered in that

amount of dilated time to get the length contraction in distance.

We shall use this scheme to calculate SR time dilation and distance contraction 

(SR scheme 1) for a GPS satellite moving at 3 888 m/s for 11h 58 m to complete one 

orbital round and we obtain the following data, bearing in mind that the calculated data 

will be slightly different from the actual observed data owing to some fluctuations in 

altitude, g value and linear velocity due to a number of factors including orbital 

eccentricity of the satellites. 

1. Distance covered in one orbital cycle=43 080 s x 3 888 m=167 495 040 m.

2. Divide by 2 = 83 747 520 m.

3. Divide by c = 0.279351657 s.

4. Multiply by v = 0.27935 x 3 888 = 1 086 m.

5. Time light would take to cover that distance: 1 086 divided by c = 0.000003623

s which gives 3 623 ns per cycle or 7 246 ns per day of time dilation due to

linear motion of a GPS satellite.

6. Therefore distance contraction in the satellite frame of reference=0.000003623

x 3 888 = 0.014086 m or 28.171mm per day.

The sequence of steps and the corroboration of the data obtained here on time 

dilation with reported observed time dilation data from atomic clocks in the GPS augur 

promisingly for the scheme developed above. It also gives weight to Einstein’s other 

prediction of special relativity, that dealing with distance contraction, yet to be actually 

measured in real life situation. In this connection the last step in the set of procedures is 

very likely to be also correct, especially since up to step 5 everything has been 

experimentally verified. It is only a matter of time and of technological know-how 

before it can be experimentally measured. 



9 

The arguments proposed in the scheme indicate that physical adjustments in time 

and space, far from being counter-intuitive, can in fact be intuitive. But the main 

purpose of the scheme is not for determining time dilation and related relativistic 

parameters, rather it is meant to indicate whether analysis of the scheme developed 

above provides new insights of the coherence of Einstein’s relativity theories that would 

add to a better understanding of motion and of the universe generally.  

We shall now proceed to utilize the above sequence of ideas to see whether each 

step can be made applicable in GR time dilation (GR scheme 1). To do this we shall 

apply it to the 
2c

gr
 expansion of the Schwarzschild solution, and then illustrating the 

ideas being argued by applying them to GPS. Before doing so, however, we will 

provide some explanatory notes regarding g and r in the context of this application. . 

Next, in 
2c

gr
, we will assume that gr can be equated to dv we saw in the modified 

Lorentz Factor mentioned earlier. In the present calculation we shall consider r to mean 

the distance d, and g is arbitrarily interpreted as being a uniform ‘potential’ velocity 

since an object at rest on the earth surface would not per se be accelerating, in other 

words there is no real rate of change of velocity, but would be sensitive to a 

gravitational field in proportion to the g felt. This is a mere assumption and it is realised 

that acceleration may be fundamentally a difficult phenomenon to circumscribe. A 

subsequent paper will deal with some concepts of the fundamental nature of 

acceleration in relation to gravity. 

One can also argue that a body at rest in a gravitational field, that is, one which 

does not actually change its r value with respect to the central body exerting the 

gravitation field, accumulates time dilation values uniformly with time just as a body in 

uniform motion in SR does. Therefore the scheme in GR, given for the sake of 

comparison, comes to the following for an object at rest at sea level: 
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1. We assume r to be equivalent to d, that is, 6 380 000 m.

2. Point 2 in the scheme is not applicable in GR.

3. Calculate the time light would theoretically take to cover that distance =

0.021281389 s.

4. Calculate how far the object would have, if it were moving at a constant velocity

of 9.81 m/s, theoretically covered in that time=0.208770428 m.

5. How long light would theoretically take to cover the distance=0.6963831918 ns.

This is the time dilation value, per second, due to GR for an object at sea level.

Total for a day=60 000 ns.

Applying the procedure to GPS we obtain the following for a satellite at a radius 

of approximately 26 580 000 m completing two orbital cycles per day each cycle taking 

43 080 s. The gravitational attraction at that point is 0.5687 m/s. 

1. The value of d is 26 580 000 m.

2. Not applicable in GR.

3. Time light would theoretically take to cover that distance= 0.088661336 s.

4. The distance that the GPS satellite would have theoretically covered in that time

if it were moving at a constant velocity of 0.5687 m/s=0.0886613 m x 0.5687

m/s=0.050421702 m.

5. The time that light would take to cover this distance=0.1681886943 ns/s.

Accumulated time dilation for a day=14 491 ns. Daily difference between a

clock at sea surface and in the GPS=60 000 ns-14 491 ns=45 509 ns, which

means that a clock in the GPS runs faster than an earth surface clock by 45 509

ns per day due to Earth’s gravitational field.

The net calculated time dilation therefore is 45 509 minus 7 246 or 38 263ns, 

compared to an earth based stationary clock. Although apparently an unorthodox 

approach, the scheme has a fundamental value for it indicates, the occurrence of a 

proportionality. The SR time dilation(SR scheme 1) for a day of 7 246 ns, if multiplied 

by 2, gives 14 492 ns practically identical with 14 491 ns as obtained for GR time 

dilation. The above schemes seem to indicate that in terms of actual estimation the most 

pertinent difference between schemes SR 1 and GR 1 is that the latter produces twice 

the time dilation value of SR. 

4. GR to SR proportionality
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     Einstein’s SR and GR incorporate a physical space-time and it certainly makes sense 

that in SR it is different from that of GR. We have earlier developed a scheme to show 

that the application of Lorentz factor and of the Schwarzschild solution to time dilation 

determination appears to have some common features. We shall now go even further 

and get close to a proof of a mathematically and therefore structurally proportionate 

basis for the space time description in SR and GR.  

The obvious differences in those formulae,
2

2

2c

v
 for SR and 

2c

gr
 for GR, appear to 

fit well with the contextual differences between SR, which is apparently outside any 

gravitational influence, and GR where gravity has a central role. We shall now see that 

another system of formulae can be applied to GR and SR time dilation calculation, 

which will confirm that there must be a proportionality between them. In the case of  an 

object at rest on earth surface, we calculated gravitational time dilation of 0.69638 ns 

per s or 60 000 ns per day (GR scheme 1) using 
2c

gr
.

For the same time period a GPS satellite in orbit with r=26 580 000 m and with 

g=0.5687 m/s/s we obtained time dilation of 0.16818869 ns/s or 14 491 ns per day, 

again using  

2c

gr
 . However since for a massive body in Keplerian orbital motion,

gv 2
x r

then using GPS satellite data we get:   

smv /265800005687.0 

=3 887.9 m/s, very near to the reported velocity of 3 888 m/s 
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Calculating GR time dilation the two formulae shown below will give identical 

values: 

2

2

2 c

v

c

gr


Since the SR velocity time dilation formula 
2

2

2c

v
 gives estimates exactly those of 

GR formula 
2

2

c

v
the calculated time dilation in GR (GR scheme 2) should be exactly 

twice that of SR, as shown below for a GPS satellite: 

Calculated GPS GR time dilation using 
2

2

c

v
=3 887.9 m/s x 3 887.9 m/s divided by c2= 

14 490.86 ns per day 

Calculated GPS SR time dilation (SR scheme 1) =7 246 ns per day 

Reported GPS SR time dilation=7 260 ns 

Therefore calculated gravitational time dilation for an object in a circular orbital 

free fall is exactly twice that of SR time dilation for the same orbital velocity. 

Consequently if the observed data are slightly different that would indicate some slight 

flaws or inaccuracies in the technological computation of data. 

We shall first again base our SR time dilation estimation on the use of the 

binomial expansion of the Lorentz Factor which, as shown earlier, gives us 7 246 ns per 

day for a linear velocity of 3 888 m/s for a GPS satellite in orbit. For an object at rest on 

the earth surface, because it has no linear orbital motion, there is no estimation required. 

Now let us suppose an object at rest on the earth surface had in fact, if the earth were 

suddenly to contract in size to a tiny black-hole, been in an orbital motion due to free 

fall. We would then get a circular velocity of:
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638000081.9  =  7 911.345161 m/s      

Now using the formula  
2

2

2c

v
 we would have had an SR time dilation value of 

29 959.69, very nearly half the GR time dilation value of 60 000 ns we obtained earlier 

for a stationary clock at sea level. 

5. Conclusion

      We have succeeded in demonstrating a proportionality between SR and GR based 

on both theoretical reasoning and by verification of actual GPS time dilation data. The 

results produced in this paper warrant a law of proportionality of Einsteinian time 

dilation effects in Keplerian orbital motion which states: 

“In Keplerian orbital free-fall due to the inverse square gravitational attraction of a 

central body, SR time dilation effects due to linear velocity and GR time dilation have a 

proportionality of 1:2. This is irrespective of variation in free fall linear velocity and g 

value due to orbital eccentricity.” 

Clearly SR and GR time dilation effects are partially entangled in Keplerian 

orbits. Therefore an interesting observation arising from this Law is that all Keplerian 

orbital inertial frames of reference in the universe would have a common nature-given 

uniform property in their space/time base.Irrespective of their relative motions, as long 

as they are in free fall motion in a Keplerian orbits, they would all be having the same 

proportionality in terms of their SR to GR time dilation. So we can have an equation 

with a constant as follows applicable only to time dilation in Keplerian orbital free fall: 

SRGR ktdtd 
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where k is a constant 2 

td is quantity of actual time dilation 

GR is general relativity 

SR is special relativity 

It also foresees an application of the result reported in this study towards making 

on board navigational satellite’s clocks more stable. Based on the proportionality law it 

may be envisaged to automatically and simultaneously monitor SR and GR time 

dilation effects with nano-precision, computed from linear velocity or from a combined 

g and r value.   

Finally, in retrospect and with an appropriate  methodology , it could have been 

possible to arrive at the same basic conclusion from an application of the virial theorem, 

which connects the average  kinetic and potential energies for systems in which the 

potential is a power of the radius. 
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