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Abstract

Bell’s inequality is usually considered to belong to mathematics and not quantum mechanics. We think
that this makes it difficult to understand Bell’s theory. Thus in this paper, contrary to Bell’s spirit (which
inherits Einstein’s spirit), we try to discuss Bell’s inequality in the framework of quantum theory with the
linguistic Copenhagen interpretation. And we clarify that whether or not Bell’s inequality holds does not
depend on whether classical systems or quantum systems, but depend on whether a kind of simultaneous
measurements exist or not. And further we assert that our argument ( based on the linguistic Copenhagen
interpretation) should be regarded as a scientific representation of Bell’s philosophical argument (based on
Einstein’s spirit).
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1 Review: Quantum language (= Measurement theory (=MT) )

1.1 Introduction

Following refs. [6, 7, 8, 9, 10, 11], we shall review quantum language ( i.e., quantum theory with the linguistic
Copenhagen interpretation, or measurement theory ), which has the following form:

Quantum language
(= measurement theory)

= Measurement
(Axiom 1)

+ Causality
(Axiom 2)

+ Linguistic ( Copenhagen ) interpretation

(how to use Axioms 1 and 2)

(1)

We think that the location of quantum language in the history of world-description is as follows.
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And in Figure 1, we think that the following four are equivalent (cf. ref. [10]):

(A0) to propose quantum language (cf. 10© in Figure 1)

(A1) to clarify the Copenhagen interpretation of quantum mechanics (cf. 7© in Figure 1)

(A2) to clarify the final goal of the dualistic idealism (cf. 8© in Figure 1, see ref. [11])

(A3) to reconstruct statistics in the dualistic idealism (cf. 9© in Figure 1)

In Bohr-Einstein debates (refs. [2, 5]), Einstein’s standing-point is on the side of the realistic view in
Figure 1. On the other hand, we think that Bohr’s standing point is on the side of the linguistic view in
Figure 1 ( though Bohr might believe that the Copenhagen interpretation (proposed by his school) belongs
to physics). In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try to discuss Bell’s
inequality (refs. [1, 13]) in quantum language (i.e., quantum theory with the linguistic Copenhagen inter-
pretation). And we clarify that whether or not Bell’s inequality holds does not depend on whether classical
systems or quantum systems (in Section 3), but depend on whether a kind of simultaneous measurements
exist or not (in Section 2). And further we assert that our argument ( based on the linguistic Copenhagen
interpretation) should be regarded as a scientific representation of Bell’s philosophical argument (based on
Einstein’s spirit).

1.2 Quantum language: Mathematical preparations

Now we briefly introduce quantum language as follows. Consider an operator algebra B(H) (i.e., an op-
erator algebra composed of all bounded linear operators on a Hilbert space H with the norm ‖F‖B(H) =
sup‖u‖H=1 ‖Fu‖H ), and consider the pair [A,N ]B(H), called a basic structure. Here, A(⊆ B(H)) is a C∗-
algebra, and N (A ⊆ N ⊆ B(H)) is a particular C∗-algebra (called a W ∗-algebra) such that N is the weak
closure of A in B(H).
The measurement theory (=quantum language= the linguistic interpretation) is classified as follows.

(B) measurement theory =

 (B1): quantum system theory (when A = C(H))

(B2): classical system theory (when A = C0(Ω))

That is, when A = C(H), the C∗-algebra composed of all compact operators on a Hilbert space H, the (B1)
is called quantum measurement theory (or, quantum system theory), which can be regarded as the linguistic
aspect of quantum mechanics. Also, when A is commutative (that is, when A is characterized by C0(Ω), the
C∗-algebra composed of all continuous complex-valued functions vanishing at infinity on a locally compact
Hausdorff space Ω (cf. [12, 14])), the (B2) is called classical measurement theory.
Also, note (cf. [12]) that, when A = C(H),

(i) A∗ = Tr(H) (=trace class), N = B(H), N∗ = Tr(H) (i.e., pre-dual space),
thus,

Tr(H)

(
ρ, T

)
B(H)

= Tr
H
(ρT ) (ρ ∈ Tr(H), T ∈ B(H)).

Also, when A = C0(Ω),

(ii) A∗ =“the space of all signed measures on Ω”, N = L∞(Ω, ν)(⊆ B(L2(Ω, ν))), N∗ = L1(Ω, ν), where ν
is some measure on Ω, thus,

L1(Ω,ν)

(
ρ, T

)
L∞(Ω,ν)

=
∫
Ω
ρ(ω)T (ω)ν(dω) (ρ ∈ L1(Ω, ν), T ∈ L∞(Ω, ν)) (cf.

[12]). The measure ν is usually omitted in this paper, that is, L∞(Ω, ν) and L1(Ω, ν) is respectively
written by L∞(Ω) and L1(Ω).

Let [A,N ]B(H) be a basic structure. Let A(⊆ B(H)) be a C∗-algebra, and let A∗ be the dual Banach space
of A. That is, A∗ = {ρ | ρ is a continuous linear functional on A }, and the norm ‖ρ‖A∗ is defined
by sup{|ρ(F )| | F ∈ A such that ‖F‖A(= ‖F‖B(H)) ≤ 1}. Define the mixed state ρ (∈ A∗) such that
‖ρ‖A∗ = 1 and ρ(F ) ≥ 0 for all F ∈ A such that F ≥ 0. And define the mixed state space Sm(A∗) such
that

Sm(A∗)={ρ ∈ A∗ | ρ is a mixed state}.
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A mixed state ρ(∈ Sm(A∗)) is called a pure state if it satisfies that “ρ = θρ1 + (1 − θ)ρ2 for some ρ1, ρ2 ∈
Sm(A∗) and 0 < θ < 1” implies “ρ = ρ1 = ρ2”. Put

Sp(A∗)={ρ ∈ Sm(A∗) | ρ is a pure state},

which is called a state space. It is well known (cf. [12]) that Sp(C(H)
∗
) = {|u〉〈u| (i.e., the Dirac notation)

| ‖u‖H = 1}, and Sp(C0(Ω)
∗
) = {δω0 | δω0 is a point measure at ω0 ∈ Ω}, where

∫
Ω
f(ω)δω0(dω) = f(ω0)

(∀f ∈ C0(Ω)). The latter implies that Sp(C0(Ω)
∗
) can be also identified with Ω (called a spectrum space or

simply spectrum) such as

Sp(C0(Ω)
∗
)

(state space)

3 δω ↔ ω ∈ Ω
(spectrum)

For instance, in the above (ii) we must clarify the meaning of the “value” of F (ω0) for F ∈ L∞(Ω, ν) and
ω0 ∈ Ω. An element F (∈ N ) is said to be essentially continuous at ρ0(∈ Sp(A∗)), if there uniquely exists
a complex number α such that

(C) if ρ (∈ N∗, ‖ρ‖N∗ = 1) converges to ρ0(∈ Sp(A∗)) in the sense of weak∗ topology of A∗, that is,

ρ(G) −−→ ρ0(G) (∀G ∈ A(⊆ N )),

then ρ(F ) converges to α.

And the value of ρ0(F ) is defined by the α.
According to the noted idea (cf. [4]), an observable O :=(X,F , F ) in N is defined as follows:

(i) [σ-field] X is a set, F(⊆ 2X(≡ P(X)), the power set of X) is a σ-field of X, that is, “Ξ1,Ξ2, ... ∈ F ⇒
∪∞
n=1Ξn ∈ F”, “Ξ ∈ F ⇒ X \ Ξ ∈ F”.

(ii) [Countable additivity] F is a mapping from F to N satisfying: (a): for every Ξ ∈ F , F (Ξ) is a non-
negative element in N such that 0 ≤ F (Ξ) ≤ I, (b): F (∅) = 0 and F (X) = I, where 0 and I is the
0-element and the identity in N respectively. (c): for any countable decomposition {Ξ1,Ξ2, . . . ,Ξn, ...}
of Ξ

(
i.e., Ξ,Ξn ∈ F (n = 1, 2, 3, ...), ∪∞

n=1Ξn = Ξ, Ξi ∩ Ξj = ∅ (i 6= j)
)
, it holds that F (Ξ) =∑∞

n=1 F (Ξn) in the sense of weak∗ topology in N .

1.3 Axiom 1 [Measurement] and Axiom 2 [Causality]

Measurement theory (B) is composed of two axioms (i.e., Axioms 1 and 2) as follows. With any system S,
a basic structure [A,N ]B(H) can be associated in which the measurement theory (B) of that system can
be formulated. A state of the system S is represented by an element ρ(∈ Sp(A∗)) and an observable is
represented by an observable O :=(X,F , F ) in N . Also, the measurement of the observable O for the system
S with the state ρ is denoted by MN (O, S[ρ])

(
or more precisely, MN (O :=(X,F , F ), S[ρ])

)
. An observer

can obtain a measured value x (∈ X) by the measurement MN (O, S[ρ]).
The Axiom 1 presented below is a kind of mathematical generalization of Born’s probabilistic interpre-

tation of quantum mechanics. And thus, it is a statement without reality.
Now we can present Axiom 1 in the W ∗-algebraic formulation as follows.

Axiom 1 [ Measurement ]. The probability that a measured value x (∈ X) obtained by the measurement
MN (O :=(X,F , F ), S[ρ]) belongs to a set Ξ(∈ F) is given by ρ(F (Ξ)) if F (Ξ) is essentially continuous at
ρ(∈ Sp(A∗)).

Next, we explain Axiom 2. Let [A1,N1]B(H1) and [A2,N2]B(H2) be basic structures. A continuous linear
operator Φ1,2 : N2 (with weak∗ topology) → N1(with weak∗ topology) is called a Markov operator, if it
satisfies that (i): Φ1,2(F2) ≥ 0 for any non-negative element F2 in N2, (ii): Φ1,2(I2) = I1, where Ik is the
identity in Nk, (k = 1, 2). In addition to the above (i) and (ii), in this paper we assume that Φ1,2(A2) ⊆ A1

and sup{‖Φ1,2(F2)‖A1 | F2 ∈ A2 such that ‖F2‖A2 ≤ 1} = 1.
It is clear that the dual operator Φ∗

1,2 : A∗
1 → A∗

2 satisfies that Φ∗
1,2(S

m(A∗
1)) ⊆ Sm(A∗

2). If it holds
that Φ∗

1,2(S
p(A∗

1)) ⊆ Sp(A∗
2), the Φ1,2 is said to be deterministic. If it is not deterministic, it is said to
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be non-deterministic or decoherence. Also, note that, for any observable O2 :=(X,F , F2) in N2, the (X,F ,
Φ1,2F2) is an observable in N1.

Now Axiom 2 is presented as follows:
Axiom 2 [Causality]. Let t1 ≤ t2. The causality is represented by a Markov operator Φt1,t2 : Nt2 → Nt1 .

1.4 The linguistic interpretation (= the manual to use Axioms 1 and 2)

In the above, Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, metaphysical statements),
and thus, it is nonsense to verify them experimentally. Therefore, what we should do is not “to understand”
but “to use”. After learning Axioms 1 and 2 by rote, we have to improve how to use them through trial
and error.

We can do well even if we do not know the linguistic interpretation. However, it is better to know the
linguistic interpretation (= the manual to use Axioms 1 and 2), if we would like to make progress quantum
language early.

The essence of the manual is as follows:

(D) Only one measurement is permitted. And thus, the state after a measurement is meaningless since
it can not be measured any longer. Thus, the collapse of the wavefunction is prohibited (cf. [9]).
We are not concerned with anything after measurement. That is, any statement including the phrase
“after the measurement” is wrong. Also, the causality should be assumed only in the side of
system, however, a state never moves. Thus, the Heisenberg picture should be adopted, and thus, the
Schrödinger picture should be prohibited.

and so on. For details, see [10].

1.5 Simultaneous measurement, parallel measurement

Definition 1. (i): Let [A,N ]B(H) be a basic structure. Consider observables Ok = (Xk,Fk, Fk) (k =

1, 2, ...,K) in N . Let (×K
k=1Xk, �K

k=1Fk) be the product measurable space. An observable O =×K
k=1 Ok =

(×K
k=1Xk, �K

k=1Fk, F ) in N is called the simultaneous observable of Ok (k = 1, 2, ...,K), if it holds that

K

×
k=1

Fk(Ξk) = F (
K

×
k=1

Ξk) (∀Ξk ∈ Fk) (2)

Also, the measurement MN (O, S[ρ0]) is called a simultaneous measurement of measurements MN (Ok, S[ρ0])

(k = 1, 2, ...,K). Note that a simultaneous observable O = (×K
k=1Xk, �K

k=1, F ) in N always exists if

observables O = (×K
k=1Xk, �K

k=1Fk, F ) commute, i.e.,

Fk(Ξk)Fl(Ξl) = Fl(Ξl)Fk(Ξk) (∀Ξk ∈ Fl, ∀Ξl ∈ Fk, k 6= l) (3)

(ii): Let [Ak,Nk]B(Hk) (k = 1, 2, ...,K) be basic structures, and let [
⊗K

k=1 Ak,
⊗K

k=1 Nk]⊗K
k=1 B(Hk)

be the

tensor basic structure (cf. [10]). Consider measurements MNk
(Ok = (Xk,Fk, Fk), S[ρk]) (k = 1, 2, ...,K)

in Nk. Let
⊗K

k=1 Ok = (×K
k=1Xk, �K

k=1Fk,
⊗K

k=1 Fk) be the parallel observable in a tensor W ∗-algebra⊗K
k=1 Nk. And let

⊗K
k=1 ρk ∈ Sp((

⊗K
k=1 Ak)

∗)). Then, the measurement M⊗K
k=1 Nk

(
⊗K

k=1 Ok = (×K
k=1Xk,

�K
k=1Fk,

⊗K
k=1 Fk), S[

⊗K
k=1 ρk]

) is called a parallel measurement of MNk
(Ok = (Xk,Fk, Fk), S[ρk]) (k =

1, 2, ...,K). Note that the parallel measurement always exists uniquely.

2 Bell’s inequality in quantum language

2.1 Our view about Bell’s inequality

In this paper, I assert that Bell’s inequality should be studied in the framework of quantum theory ( i.e.,

quantum theory with the linguistic Copenhagen interpretation). Let us start from the following definition,

which is a slight modification of the simultaneous observable in Definition 1.

4



Definition 2. [Combined observable] Let [A,N ]B(H) be a basic structure. Put X = {−1, 1}. Consider

four observables: O13 = (X2,P(X2), F13), O14 = (X2,P(X2), F14), O23 = (X2,P(X2), F23), O24 =

(X2,P(X2), F24) in N . The four observables are said to be combinable if there exists an observable O =

(X4,P(X4), F ) in N such that

F13({(x1, x3)}) = F ({x1} ×X × {x3} ×X), F14({(x1, x4)}) = F ({x1} ×X ×X × {x4})

F23({(x2, x3)}) = F (X × {x2} × {x3} ×X), F24({(x2, x4)}) = F (X × {x2} ×X × {x4}) (4)

for any (x1, x2, x3, x4) ∈ X4. The observable O is said to be a combined observable of Oij (i = 1, 2, j =

3, 4). Note that the O is regarded as a kind of simultaneous observable of Oij (i = 1, 2, j = 3, 4). Also,

the measurement MN (O = (X4,P(X4), F ), S[ρ0]) is called the conbined measurement of MN (O13, S[ρ0]),

MN (O14, S[ρ0]), MN (O23, S[ρ0]) and MN (O24, S[ρ0]).

The following theorem is all of our insistence concerning Bell’s inequality.

Theorem 3. [Bell’s inequality in quantum language] Let [A,N ]B(H) be a basic structure. Put X = {−1, 1}.
Fix the pure state ρ0

(
∈ Sp(A∗)

)
. And consider the four measurements MN (O13 = (X2,P(X2), F13), S[ρ0]),

MN (O14 = (X2,P(X2), F14), S[ρ0]), MN (O23 = (X2,P(X2), F23), S[ρ0]) and MN (O24 = (X2,P(X2), F24),

S[ρ0]). Or equivalently, consider the parallel measurement ⊗i=1,2,j=3,4MN (Oij = (X2,P(X2), Fij), S[ρ0]).

Define four correlation functions (i = 1, 2, j = 3, 4),

Rij =
∑

(u,v)∈X×X

u · v ρ0(Fij({(u, v)}))

Assume that four observables O13 = (X2,P(X2), F13), O14 = (X2,P(X2), F14), O23 = (X2,P(X2), F23)

and O24 = (X2,P(X2), F24) are combinable, that is, we have the observable O = (X4,P(X4), F ) in N
such that it satisfies (4). Then we have the combined measurement MN (O = (X4,P(X4), F ), S[ρ0]) of

MN (O13, S[ρ0]), MN (O14, S[ρ0]), MN (O23, S[ρ0]) and MN (O24, S[ρ0]). And further, we have Bell’s inequality

in quantum language as follows.

|R13 −R14|+ |R23 +R24| 5 2 (5)

Proof. Clearly we see, i = 1, 2, j = 3, 4,

Rij =
∑

(x1,x2,x3,x4)∈X×X×X×X

xi · xj ρ0(F ({(x1, x2, x3, x4)})) (6)

(
for example, R13 =

∑
(x1,x2,x3,x4)∈X×X×X×X x1 · x3 ρ0(F ({(x1, x2, x3, x4)}))

)
. Therefore, we see that

|R13 −R14|+ |R23 +R24|

=
∑

(x1,x2,x3,x4)∈X×X×X×X

[
|x1 · x3 − x1 · x4|+ |x2 · x3 + x2 · x4|

]
ρ0(F ({(x1, x2, x3, x4)}))

=
∑

(x1,x2,x3,x4)∈X×X×X×X

[
|x3 − x4|+ |x3 + x4|

]
ρ0(F ({(x1, x2, x3, x4)})) ≤ 2

This completes the proof.

As the corollary of this theorem, we have the followings:
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Corollary 4. Consider the parallel measurement ⊗i=1,2,j=3,4MN (Oij = (X2,P(X2), Fij), S[ρ0]) as in The-

orem 3. Let

x =
(
(x113, x

2
13), (x

1
14, x

2
14), (x

1
23, x

2
23), (x

1
24, x

2
24)

)
∈ ×

i,j=1,2
X2(≡ {−1, 1}8)

be a measured value of the parallel measurement ⊗i=1,2,j=3,4MN (Oij = (X2,P(X2), Fij), S[ρ0]). Let N

be sufficienly large natural number. Consider N -parallel measurement
⊗N

n=1 [ ⊗i=1,2,j=2,3 MN (Oij :=
(X2,P(X2), Fij), S[ρ0]) ]. Let {xn}Nn=1 be the measured value. That is,

{xn}Nn=1 =



(
(x1,1

13 , x2,1
13 ), (x1,1

14 , x2,1
14 ), (x1,1

23 , x2,1
23 ), (x1,1

24 , x2,1
24 )

)
(
(x1,2

13 , x2,2
13 ), (x1,2

14 , x2,2
14 ), (x1,2

23 , x2,2
23 ), (x1,2

24 , x2,2
24 )

)
...

...
...(

(x1,N
13 , x2,N

13 ), (x1,N
14 , x2,N

14 ), (x1,N
23 , x2,N

23 ), (x1,N
24 , x2,N

24 )
)


∈ (X8)N

Here, note that the law of large numbers says:

Rij ≈
1

N

N∑
n=1

x1,nij x
2,n
ij (i = 1, 2, j = 3, 4)

Then, it holds, by the formula (5), that

|
N∑

n=1

x1,n13 x
2,n
13

N
−

N∑
n=1

x1,n14 x
2,n
14

N
|+ |

N∑
n=1

x1,n23 x
2,n
23

N
+

N∑
n=1

x1,n24 x
2,n
24

N
| ≤ 2, (7)

which is also called Bell’s inequality in quantum language.

Remark 5. [The conventional Bell’s inequality (cf. [13])] The mathematical Bell’s inequality is as follows:

Let (Θ,B, P ) be a probability space. Let (f1, f2, f3, f4) : Θ → X4(≡ {−1, 1}4) be a measurable func-

tions. Define the correlation functions R̂ij(i = 1, 2, j = 3, 4) by
∫
Θ
fi(θ)fj(θ)P (dθ). Then, the following

mathematical Bell’s inequality holds:

|R̂13 − R̂14|+ |R̂23 − R̂24| ≤ 2 (8)

This is easily proved as follows.

”the left-hand side of the above (8)” ≤
∫
Θ

|f3(θ) + f4(θ)|P (dθ) +
∫
Θ

|f3(θ)− f4(θ)|P (dθ) ≤ 2

3 Bell’s inequality is violated in classical systems as well as quan-
tum systems

In the previous section, we show that

(E1) Under the combinable condition (cf. Definition 1), Bell’s inequality (5) (or, (7)) holds in both classical

systems and quantum systems.

6



Or, equivalently,

(E2) If Bell’s inequality (5) (or (7)) is violated, then the combined observable does not exist, and thus, we

cannot obtain the measured value ( by the measurement of the combined observable).

This makes us expect that

(F) Bell’s inequality (5) (or (7)) is violated in classical systems as well as quantum systems without the

combined condition.

This (F) was already shown in my previous paper [7]. However, I got a lot of questions concerning (F) from

the readers. Thus, in this section, we again explain the (F) precisely.

For this, three steps ([Step:I] ∼[Step:III]) are prepared in what follows.

[Step: I]. Put X = {−1, 1}. Define complex numbers ak(= αk + βk
√
−1) (k = 1, 2, 3, 4) such that

|ak| = 1. Define the probability space (X2,P(X2), νaiaj ) such that (i = 1, 2, j = 3, 4)

νaiaj ({(1, 1)})= νaiaj ({(−1,−1)})= (1− αiαj − βiβj)/4

νaiaj ({(−1, 1)})= νaiaj ({(1,−1)})= (1 + αiαj + βiβj)/4 (9)

The correlation R(ai, aj) (i = 1, 2, j = 3, 4) is defined as follows:

R(ai, aj) ≡
∑

(x1,x2)∈X×X

x1 · x2νaiaj ({(x1, x2)}) = −αiαj − βiβj (10)

Now we have the following problem:

(G) Find a measurement MN (Oaiaj := (X2, P(X2), Faiaj ), S[ρ0]) (i = 1, 2, j = 3, 4) in a basic structure

[A,N ]B(H) such that

νaiaj (Ξ) = ρ0(Faiaj (Ξ)) (∀Ξ ∈ P(X2)) (11)

and

Fa1a3({x1} ×X) = Fa1a4({x1} ×X) Fa1a3(X × {x3}) = Fa2a3(X × {x3})

Fa2a3({x2} ×X) = Fa2a4({x2} ×X) Fa1a4(X × {x4}) = Fa2a4(X × {x4})

(∀xk ∈ X(≡ {−1, 1}), k = 1, 2, 3, 4)

[Step: II].
Let us answer this problem (G) in the two cases (i.e., classical case and quantum case), that is,

•

 (i):the case of quantum systems: [A = B(C2 ⊗ C2)]

(ii):the case of classical systems: [A = C0(Ω× Ω)]

(i):the case of quantum system: [A = B(C2)⊗B(C2) = B(C2 ⊗ C2)]

Put

e1 =

[
1
0

]
, e2 =

[
0
1

]
(∈ C2).
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For each ak (k = 1, 2, 3, 4), define the observable Oak
≡

(
X,P(X), Gak

)
in B(C2) such that

Gak
({1}) = 1

2

[
1 āk
ak 1

]
, Gak

({−1}) = 1

2

[
1 −āk

−ak 1

]
.

Then, we have four observable:

Ôai = (X,P(X), Gai ⊗ I), Ôaj = (X,P(X), I ⊗Gaj ) (i = 1, 2, j = 3, 4) (12)

and further,

Oaiaj = (X2,P(X2), Faiaj := Gai ⊗Gaj ) (i = 1, 2, j = 3, 4) (13)

in B(C2 ⊗ C2), where it should be noted that Faiaj is separated by Gai and Gaj .

Further define the singlet state ρ0 = |ψs〉〈ψs|
(
∈ Sp(B(C2 ⊗ C2)∗)

)
, where

ψs = (e1 ⊗ e2 − e2 ⊗ e1)/
√
2

Thus we have the measurement MB(C2⊗C2)(Oaiaj , S[ρ0]) in B(C2 ⊗ C2) (i = 1, 2, j = 3, 4). The followings

are clear: for each (x1, x2) ∈ X2(≡ {−1, 1}2),

ρ0(Faiaj
({(x1, x2)})) = 〈ψs, (Gai

({x1})⊗Gaj
({x2}))ψs〉 = νaiaj

({(x1, x2)}) (i = 1, 2, j = 3, 4) (14)

For example, we easily see:

ρ0(Faibj ({(1, 1)})) = 〈ψs, (Gai({1})⊗Gaj ({1}))ψs〉

=
1

8
〈(e1 ⊗ e2 − e2 ⊗ e1), (

[
1 āi
ai 1

]
⊗

[
1 āj
aj 1

]
)(e1 ⊗ e2 − e2 ⊗ e1)〉

= 1
8
〈(
[
1
0

]
⊗

[
0
1

]
−

[
0
1

]
⊗

[
1
0

]
), (

[
1 āi

ai 1

]
⊗

[
1 āj

aj 1

]
)(

[
1
0

]
⊗

[
0
1

]
−

[
0
1

]
⊗

[
1
0

]
)〉

=
1

8
〈(
[
1
0

]
⊗
[
0
1

]
−

[
0
1

]
⊗
[
1
0

]
), (

[
1
ai

]
⊗
[
āj
1

]
−
[
āi
1

]
⊗
[
1
aj

]
)〉

=
1

8
(2− aāj − āiaj) = (1− αiαj − βiβj)/4 = νaiaj ({(1, 1)}).

Therefore, the measurement MB(C2⊗C2)(Oaiaj , S[ρ0]) satisfies the condition (G).

(ii):the case of classical systems: [A = C0(Ω)⊗ C0(Ω) = C0(Ω× Ω)]

Put ω0(= (ω′
0, ω

′′
0 )) ∈ Ω × Ω、ρ0 = δω0 (∈ Sp(C0(Ω× Ω)

∗
), i.e., the point measure at ω0) ). Define the

observable Oaiaj := (X2,P(X2), Faiaj ) in L
∞(Ω× Ω) such that

[Faiaj ({(x1, x2)})](ω) = νaiaj ({(x1, x2)}) (∀(x1, x2) ∈ X2, i = 1, 2, j = 3, 4, ∀ω ∈ Ω× Ω) (15)

Thus, we have four observables

Oaiaj
= (X2,P(X2), Faiaj

) (i = 1, 2, j = 3, 4) (16)

in L∞(Ω × Ω) ( though the variables are not separable (cf. the formula (13) ). Then, it is clear that the

measurement ML∞(Ω×Ω)(Oaiaj , S[δω0 ]
) satisfies the condition (G).

[Step: III].
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As defined by (9), consider four complex numbers ak(= αk + βk
√
−1; k = 1, 2, 3, 4) such that |ak| = 1.

Thus we have four observables

Oa1a3 := (X2,P(X2), Fa1a3), Oa1a4 := (X2,P(X2), Fa1a4),

Oa2a3 := (X2,P(X2), Fa2a3), Oa2a4 := (X2,P(X2), Fa2a4),

in theW ∗-algebraN . Thus, we have the parallel measurement ⊗i=1,2,j=3,4 MN (Oaiaj := (X2,P(X2), Faiaj ),

S[ρ0]) in ⊗i=1,2,j=3,4N .

Thus, putting

a1 =
√
−1, a2 = 1, a3 =

1 +
√
−1√
2

, a4 =
1−

√
−1√
2

,

we see, by (10), that

|R(a1, a3)−R(a1, a4)| + |R(a2, a3) +R(a2, a4)| = 2
√
2 (17)

Further, assume that the measured value is x(∈ X8). That is,

x =
(
(x113, x

2
13), (x

1
14, x

2
14), (x

1
23, x

2
23), (x

1
24, x

2
24)

)
∈ ×

i,j=1,2
X2(≡ {−1, 1}8)

LetN be sufficiently large natural number. ConsiderN -parallel measurement
⊗N

n=1 [⊗i=1,2,j=3,4 MN (Oaiaj :=

(X2,P(X2), Faiaj ), S[ρ0]) ]. Assume that its measured value is {xn}Nn=1. That is,

{xn}Nn=1 =



(
(x1,1

13 , x2,1
13 ), (x1,1

14 , x2,1
14 ), (x1,1

23 , x2,1
23 ), (x1,1

24 , x2,1
24 )

)
(
(x1,2

13 , x2,2
13 ), (x1,2

14 , x2,2
14 ), (x1,2

23 , x2,2
23 ), (x1,2

24 , x2,2
24 )

)
...

...
...(

(x1,N
13 , x2,N

13 ), (x1,N
14 , x2,N

14 ), (x1,N
23 , x2,N

23 ), (x1,N
24 , x2,N

24 )
)


∈
( ×
i=1,2,j=3,4

X2)N (≡ {−1, 1}8N )

Then, the law of large numbers says that

R(ai, aj) ≈
1

N

N∑
n=1

x1,nij x
2,n
ij (i = 1, 2, j = 3, 4)

This and the formula (17) say that

|
N∑

n=1

x1,n13 x
2,n
13

N
−

N∑
n=1

x1,n14 x
2,n
14

N
|+ |

N∑
n=1

x1,n23 x
2,n
23

N
+

N∑
n=1

x1,n24 x
2,n
24

N
| ≈ 2

√
2 (18)

Therefore, Bell’s inequality (5) (or (7)) is violated in classical systems as well as quantum systems.

4 Conclusions

In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try to discuss Bell’s inequality

in the framework of quantum theory with the linguistic Copenhagen interpretation of quantum mechanics.

And we show Theorem 3 ( Bell’s inequality in quantum language), which says the statement (E2), that is,

(H) (≡ (E2)): If Bell’s inequality (5) (or (7)) is violated, then the combined observable does not exist, and

thus, we cannot obtain the measured value.

9



Also, recall that Bell’s original argument (based on Einstein’s spirit) says, roughly speaking, that

(I) : If the mathematical Bell’s inequality (8) is violated, then hidden variables do not exist.

which is rather philosophical. It should be note that the (I) is a statement in Einstein’s spirit, on the

other hand, the (H) is a statement in scientific theory (i.e., quantum theory with the linguistic Copenhagen

interpretation). Therefore, we assert that our (H) is a scientific representation of the philosophical (I). If so,

we can, for the first time, understand Bell’s inequality in science.

We hope that our proposal will be examined from various points of view1.
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