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Abstract

Bell’s inequality is usually considered to belong to mathematics and not quantum mechanics. We think
that this makes it difficult to understand Bell’s theory. Thus in this paper, contrary to Bell’s spirit (which
inherits Einstein’s spirit), we try to discuss Bell’s inequality in the framework of quantum theory with the
linguistic Copenhagen interpretation. And we clarify that whether or not Bell’s inequality holds does not
depend on whether classical systems or quantum systems, but depend on whether a kind of simultaneous
measurements exist or not. And further we assert that our argument ( based on the linguistic Copenhagen
interpretation) should be regarded as a scientific representation of Bell’s philosophical argument (based on
Einstein’s spirit).
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1 Review: Quantum language (= Measurement theory (=MT) )

1.1 Introduction

Following refs. [6, 7, 8, 9, 10, 11], we shall review quantum language ( i.e., quantum theory with the linguistic
Copenhagen interpretation, or measurement theory ), which has the following form:

’ Quantum language ‘ = | Measurement —1—’ Causality ‘ + ’ Linguistic ( Copenhagen ) interpretation‘ (1)

(= measurement theory) (Axiom 1) (Axiom 2) (how to use Axioms 1 and 2)

We think that the location of quantum language in the history of world-description is as follows.
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Figure 1: The history of the world-description
1



And in Figure 1, we think that the following four are equivalent (cf. ref. [10]):

Ag) to propose quantum language (c¢f. @ in Figure 1)

Ay) to clarify the Copenhagen interpretation of quantum mechanics (¢f. @) in Figure 1)

(Ao)
(A1)
(As) to clarify the final goal of the dualistic idealism (cf. in Figure 1, see ref. [11])
(Az)

Aj3) to reconstruct statistics in the dualistic idealism (¢f. @ in Figure 1)

In Bohr-Einstein debates (refs. [2, 5]), Einstein’s standing-point is on the side of the realistic view in
Figure 1. On the other hand, we think that Bohr’s standing point is on the side of the linguistic view in
Figure 1 ( though Bohr might believe that the Copenhagen interpretation (proposed by his school) belongs
to physics). In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try to discuss Bell’s
inequality (refs. [1, 13]) in quantum language (i.e., quantum theory with the linguistic Copenhagen inter-
pretation). And we clarify that whether or not Bell’s inequality holds does not depend on whether classical
systems or quantum systems (in Section 3), but depend on whether a kind of simultaneous measurements
exist or not (in Section 2). And further we assert that our argument ( based on the linguistic Copenhagen
interpretation) should be regarded as a scientific representation of Bell’s philosophical argument (based on
Einstein’s spirit).

1.2 Quantum language: Mathematical preparations

Now we briefly introduce quantum language as follows. Consider an operator algebra B(H) (i.e., an op-
erator algebra composed of all bounded linear operators on a Hilbert space H with the norm ||F| gz =
SUD||y| =1 [[F'ullzr ), and consider the pair [A, N]p(m), called a basic structure. Here, A(C B(H)) is a C*-
algebra, and N' (A C N C B(H)) is a particular C*-algebra (called a W*-algebra) such that A is the weak
closure of A in B(H).

The measurement theory (=quantum language= the linguistic interpretation) is classified as follows.

(B1): quantum system theory (when A = C(H))
(B) measurement theory =
(B2): classical system theory (when A = Cy(f2))

That is, when A = C(H), the C*-algebra composed of all compact operators on a Hilbert space H, the (B;)
is called quantum measurement theory (or, quantum system theory), which can be regarded as the linguistic
aspect of quantum mechanics. Also, when 4 is commutative (that is, when A is characterized by Cy(f2), the
C*-algebra composed of all continuous complex-valued functions vanishing at infinity on a locally compact
Hausdorff space Q (cf. [12, 14])), the (Bs) is called classical measurement theory.

Also, note (cf. [12]) that, when A = C(H),

(i) A* = Tr(H) (=trace class), N = B(H), N, = Tr(H) (i.e., pre-dual space),
thus T) =Tr, (pT) (p € Tv(H),T € B(H)).

? Tr(H) (p7 B(H)

Also, when A = Cy(Q),

(ii) A* =“the space of all signed measures on Q”, N = L°°(Q V)(C B(L?(Q
is some measure on €, thus, , (p, )me o = Jarw Jv(dw)

V), N = LY(Q, v), where v

(p € LY(Q, 1/) T € L>=(Q,v)) (¢f.
[12]). The measure v is usually omitted in this paper, that is, L>=°(Q,v) and L*(,v) is respectively
written by L°°(Q2) and L' ().

Let [A, N]p(m) be a basic structure. Let A(C B(H)) be a C*-algebra, and let A* be the dual Banach space
of A. That is, A* = {p | p is a continuous linear functional on A }, and the norm ||p||.4~ is defined
by sup{|p(F)| | F € Asuch that ||F|la(= [[F|p@)) < 1}. Define the mived state p (€ A*) such that
llplla» = 1 and p(F) > 0 for all F' € A such that F' > 0. And define the mixed state space &™(A*) such
that

G™(A*)={p € A" | p is a mixed state}.



A mixed state p(€ &™(A*)) is called a pure state if it satisfies that “p = 0p; + (1 — ) p2 for some p1, p2 €
6™ (A*) and 0 < § < 1”7 implies “p = p1 = p2”. Put

GP(A")={p € 8™ (A") | p is a pure state},

which is called a state space. It is well known (cf. [12]) that &P(C(H)") = {|u)u/ (i.e., the Dirac notation)
| lullz =1}, and &P(Co(Q)") = {dw, | duw, is a point measure at wy € Q}, where [, f(w)du, (dw) = f(wo)
(Vf € Cy(Q)). The latter implies that &G?(Cy(2)*) can be also identified with 2 (called a spectrum space or
simply spectrum) such as

SP(Co() )20, rwe  Q

(state space) (spectrum)

For instance, in the above (ii) we must clarify the meaning of the “value” of F(wg) for F € L>®(,v) and
wo € Q. An element F(€ N) is said to be essentially continuous at po(€ GP(A*)), if there uniquely exists
a complex number « such that

(C) if p (e N, = 1) converges to po(€ GP(A*)) in the sense of weak* topology of A*, that is,

p(G) — po(G) (VG € A(CN)),

then p(F') converges to a.

And the value of po(F) is defined by the «.
According to the noted idea (cf. [4]), an observable O :=(X, F, F) in N is defined as follows:

(i) [o-field] X is a set, F(C 2% (= P(X)), the power set of X) is a o-field of X, that is, “Z;,Zs,... € F =
UX E,eF, “BEeF=X\Z2ecF.

(ii) [Countable additivity] F' is a mapping from F to A satisfying: (a): for every E € F, F(E) is a non-
negative element in A such that 0 < F(2) < I, (b): F(f) =0 and F(X) = I, where 0 and I is the
0-element and the identity in N respectively. (c¢): for any countable decomposition {Z1,Zs,...,=,,...}
of = (i.e., EE, € F(n=123.), ULE =5 5NE; =0 # j)), it holds that F(Z) =
S>> | F(Z,) in the sense of weak* topology in \V.

n=1

1.3 Axiom 1 [Measurement| and Axiom 2 [Causality]

Measurement theory (B) is composed of two axioms (i.e., Axioms 1 and 2) as follows. With any system S,
a basic structure [A, N]p(g) can be associated in which the measurement theory (B) of that system can
be formulated. A state of the system S is represented by an element p(€ &P(A*)) and an observable is
represented by an observable O :=(X,F, F) in N. Also, the measurement of the observable O for the system
S with the state p is denoted by Mxr(O, Sp,)) ( or more precisely, My (O :=(X, F, F'), S[,)) ) An observer
can obtain a measured value x (€ X) by the measurement Mxr(O, S,)).

The Axiom 1 presented below is a kind of mathematical generalization of Born’s probabilistic interpre-
tation of quantum mechanics. And thus, it is a statement without reality.

Now we can present Axiom 1 in the W*-algebraic formulation as follows.
Axiom 1 [ Measurement |. The probability that a measured value x (€ X) obtained by the measurement
Mu (O :==(X,F, F), Si,) belongs to a set Z(€ F) is given by p(F(E)) if F(Z) is essentially continuous at
p(€ 6P(A")).

Next, we explain Axiom 2. Let [A;, N1]p(n,) and [Az, Na|p(n,) be basic structures. A continuous linear
operator @19 : Ny (with weak* topology) — Ni(with weak* topology) is called a Markov operator, if it
satisfies that (i): ®;2(F2) > 0 for any non-negative element Fy in Na, (ii): @1 2(l2) = I3, where I} is the
identity in NV, (k = 1,2). In addition to the above (i) and (ii), in this paper we assume that ®; 2(A2) C Ay
and sup{||®1,2(F2)||4, | F2 € Az such that ||Fz|j4, <1} =1.

It is clear that the dual operator ®7, : A} — A3 satisfies that @7 ,(&™(A])) € &™(A3). If it holds
that @7 ,(6P(A7)) C &P(A3), the @5 is said to be deterministic. If it is not deterministic, it is said to



be non-deterministic or decoherence. Also, note that, for any observable Oy :=(X, F, F») in Ny, the (X, F,
®, 5 F5) is an observable in Nj.

Now Axiom 2 is presented as follows:
Axiom 2 [Causality]. Let t1 < ty. The causality is represented by a Markov operator @y, 1, : Ny, — Ny, .

1.4 The linguistic interpretation (= the manual to use Axioms 1 and 2)

In the above, Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, metaphysical statements),
and thus, it is nonsense to verify them experimentally. Therefore, what we should do is not “to understand”
but “to use”. After learning Axioms 1 and 2 by rote, we have to improve how to use them through trial
and error.

We can do well even if we do not know the linguistic interpretation. However, it is better to know the
linguistic interpretation (= the manual to use Axioms 1 and 2), if we would like to make progress quantum
language early.

The essence of the manual is as follows:

(D) Only one measurement is permitted. And thus, the state after a measurement is meaningless since
it can not be measured any longer. Thus, the collapse of the wavefunction is prohibited (cf. [9]).
We are not concerned with anything after measurement. That is, any statement including the phrase
“after the measurement” is wrong. Also, the causality should be assumed only in the side of
system, however, a state never moves. Thus, the Heisenberg picture should be adopted, and thus, the
Schrédinger picture should be prohibited.

and so on. For details, see [10].

1.5 Simultaneous measurement, parallel measurement
Definition 1. (i): Let [A,N]pm) be a basic structure. Consider observables Oy = (X, Fi, Fy) (k =
1,2,..,K) inN. Let (X le X, M 2(:1}';@) be the product measurable space. An observable O = X 2(:1 Ok =
(szl X, X le}'k,F) in N is called the simultaneous observable of Oy (k= 1,2,...,K), if it holds that
K K
k>:<1 Fi(B) = F(k>:<1 =) (VE, € Fr) (2)

Also, the measurement My (O, Sj,,) is called a simultaneous measurement of measurements Mar(Oy, Si,,))
(k = 1,2,...,K). Note that a simultaneous observable O = (><£,<:1 Xk, &,i{:l,F) in N always exists if
observables O = (><£<:1 X, X ,f:lfk, F) commute, i.e.,

Fy(Er)Fi(Z1) = Fi(Z) Fr(Ek) (VER € F1,VE € Fr, k #1) (3)
(ii): Let [Ag, Nilpem,) (k= 1,2,...,K) be basic structures, and let [®£(:1 Ak,®kK:1 Nilgr | B, be the
tensor basic structure (cf. [10]). Consider measurements My, (O = (Xg, Fr, Fr), Spp,y) (B = 1,2,..., K)
in Nj. Let ®kl,<:1 O = (Xszl Xy, WK Fy, ®sz1 Fy) be the parallel observable in a tensor W*-algebra
®sz1 Ni. And let ®sz1 P € GP((®kK:1 Ar)*)). Then, the measurement Mex | N, (®sz1 Oy = (X le Xk,

XE | Fr, ®§:1 Fk>75[®f:1pk]) is called a parallel measurement of M, (Or = (X, Fr, Fr),S}p,.) (k =
1,2,...,K). Note that the parallel measurement always exists uniquely.

2 Bell’s inequality in quantum language
2.1 Our view about Bell’s inequality

In this paper, I assert that Bell’s inequality should be studied in the framework of quantum theory ( i.e.,
quantum theory with the linguistic Copenhagen interpretation). Let us start from the following definition,

which is a slight modification of the simultaneous observable in Definition 1.



Definition 2. [Combined observable] Let [A,N]p) be a basic structure. Put X = {—=1,1}. Consider
four observables: O13 = (X2, P(X?),Fi3), O = (X2, P(X?),Fu), O = (X%, P(X?), Fp3), 09y =
(X2, P(X?), Fyy) in N. The four observables are said to be combinable if there exists an observable O =
(X4, P(X1), F) in N such that

Fis({(w1,23)}) = F({z1} x X x{zs} x X),  Fu({(z1,24)}) = F({z1} x X x X x {24})

Fas({(w2,23)}) = F(X x {z2} x {zs} x X),  Faa({(w2,24)}) = F(X x {z2} x X x {24}) (4)
for any (z1,x9,23,24) € X*. The observable O is said to be a combined observable of O;; (i = 1,2,j =
3,4). Note that the O is regarded as a kind of simultaneous observable of O;; (1 = 1,2,5 = 3,4). Also,
the measurement My (O = (X*,P(X*), F),S,,)) is called the conbined measurement of Myr(O1s, S,
Mar(O14, S[p))s Mar(O23, Spp)) and Mar(Oay4, Siy))-

The following theorem is all of our insistence concerning Bell’s inequality.

Theorem 3. [Bell’s inequality in quantum language] Let [A,N}B(H) be a basic structure. Put X = {—1,1}.
Fiz the pure state po( € &P (A*)). And consider the four measurements Mar(O13 = (X2, P(X?), F13), Sipo))
Mar(O1q = (X2, P(X2), F14), Sjpoy), Mar(Ozs = (X2, P(X2), Fas), Sppo) and Mar(Ozg = (X2, P(X2), Fay),
Sipo))- Or equivalently, consider the parallel measurement ®;=1 2 j=34Mn(0i; = (XQ,P(X2),Fij),S[p0]).
Define four correlation functions (i = 1,2, = 3,4),
Rij= Y u-v po(Fi;({(u,v)}))

(u,v)EX x X
Assume that four observables O3 = (X2, P(X?), F13), O14 = (X2, P(X?), F14), O23 = (X2, P(X?), F)3)
and Ooy = (X2,P(X?), Fa4) are combinable, that is, we have the observable O = (X* P(X*),F) in N
such that it satisfies (4). Then we have the combined measurement My (O = (X*, P(X*),F),S,,) of
Mar(O13, S(pe1)s MAr(O14, S1p01); Mar(O23, Sipg)) and Mar(Oaa, Sip)). And further, we have Bell’s inequality

in quantum language as follows.
|R13 — R1a| + |R23 + Roa| £ 2 (5)
Proof. Clearly we see, i =1,2,j = 3,4,

Rij = > zi -y po(F({ (21, 2,73, 24)})) (6)

(z1,2,23,24) EX XX XX XX

(for example, Ry3 = D (o1 ma s r)eXx X x X xx L1 T3 po(F({(z1, 22, 23, 24)})) ). Therefore, we see that

|R13 — R1a| + |R23 + Rou|

- 2 [l -5 — 1 al - s 5+ 2 - 4l o0 (F({ (0,02, 73, 74)})
(z1,72,23,04) EX X X X X x X
- > {|$3 — 24| + |73 + 334|}P0(F({(331,x2,x3,x4)})) <2

(z1,22,23,24) EX XX XX XX

This completes the proof. O

As the corollary of this theorem, we have the followings:



Corollary 4. Consider the parallel measurement ®;—1 2 j—34Mpr(0i; = (X2, P(X?), Fy;), Sipy)) as in The-

orem 8. Let

T = (($%3>$%3)7 (ﬁszi)’ (@37@3)7 (95%4@%4))

e X XY(={-1,1}
i,j=1,2
be a measured value of the parallel measurement ®;=12 j=34Mpn(0;; = (X2 P(X?),Fy;5),S)py)). Let N

be sufficienly large natural number. Consider N-parallel measurement ®n 1 | ®i=12,j=23 Ma(0;5 =
(X2, P(X?),Fi;), Sipy)) |. Let {z"}2_, be the measured value. That is,

- 1 2 121 1 2 1 2 -
((wlslvxml) (x}4 S TTh ), (5523175”231) (xé4 vx241))

((313275&32) (m}f,asz) (xéf,xiﬁ) (méf:ng))

(&™) = . . , e (XY

1,N _2,N 1L,N _2,N 1,N _2,N 1,N _2,N
((x13 o1y ), (2 2ry ), (o @3 ), (@), 23 ))_

Here, note that the law of large numbers says:

N
ij NZ 1n 2n (221,2;]:3,4)

Then, it holds, by the formula (5), that

1,n_2mn N I,n_2n N 1,n_2n N I,n_2n

‘waxm _Z%‘ |Z%+Z%|<2 (7)

n=1 n=1 n=1

which is also called Bell’s inequality in quantum language.

Remark 5. [The conventional Bell’s inequality (¢f. [13])] The mathematical Bell’s inequality is as follows:
Let (©,B,P) be a probability space. Let (fi, f2, f3,f1) : © — X*(= {-1,1}*) be a measurable func-
tions. Define the correlation functions ﬁij(i =1,2,j = 3,4) by [g fi(0)f;(0)P(df). Then, the following

mathematical Bell’s inequality holds:
|Riz — Rua| + |Ros — Roa| < 2 (8)
This is easily proved as follows.
"the left-hand side of the above (8)” < /@ | f3(0) + f4(0)|P(dO) + /@ |f3(0) — f4(0)|P(df) <2

O

3 Bell’s inequality is violated in classical systems as well as quan-
tum systems
In the previous section, we show that

(E1) Under the combinable condition (cf. Definition 1), Bell’s inequality (5) (or, (7)) holds in both classical

systems and quantum systems.



Or, equivalently,

(E2) If Bell’s inequality (5) (or (7)) is violated, then the combined observable does not exist, and thus, we

cannot obtain the measured value ( by the measurement of the combined observable).
This makes us expect that

(F) Bell’s inequality (5) (or (7)) is violated in classical systems as well as quantum systems without the

combined condition.

This (F) was already shown in my previous paper [7]. However, I got a lot of questions concerning (F) from

the readers. Thus, in this section, we again explain the (F) precisely.

For this, three steps ([Step:I] ~[Step:III]) are prepared in what follows.
[Step: I] Put X = {-1,1}. Define complex numbers ax(= ax + Bxv—1) (k = 1,2,3,4) such that
lax| = 1. Define the probability space (X2, P(X?),vq,q,) such that (i =1,2,j = 3,4)

Vasa; ({1, D} = Vaa, {(=1, 1)} = (1 — ciaj — Bi ;) /4
Vaza;({(=1, D)} = vaa; ({(L, =1)}) = (1 + cicj + 5:55) /4 9)

The correlation R(a;,a;) (i =1,2,j = 3,4) is defined as follows:

R(ai, a;) = Z Ty - ToVaa; ({(21,22)}) = —io; — B3 (10)

(z1,22)eX XX

Now we have the following problem:
(G) Find a measurement Mp/(Oq,a, := (X2, P(X?), Fy.a,), Sip)) (i = 1,2, = 3,4) in a basic structure
[A, N]g(m) such that
Vaia; (E) = po(Fuie; (B)) (V2 € P(X?)) (11)
and

Falas({xl} X X) = Fa1a4({$1} X X) Fa1a3(X X {$3}) = Fa2a3(X X {$3})
Fa2a3 ({l‘g} X X) = Fa2a4({x2} X X) Fa1a4(X X {1‘4}) = Fa2a4(X X {1‘4})
(Vo € X(={-1,1}),k=1,2,3,4)

[Step: IIJ.

Let us answer this problem (G) in the two cases (i.e., classical case and quantum case), that is,

(i):the case of quantum systems: [A = B(C? @ C?)]

(ii):the case of classical systems: [A = Cp(2 x Q)]

(i):the case of quantum system: [4 = B(C?) @ B(C?) = B(C2 © C?)]

Put
oof). el o



For each ar (k= 1,2,3,4), define the observable O,, = (X,P(X),G,,) in B(C?) such that

Galt =3[0 %] ewtcm=3[L ]
Then, we have four observable:
Ou, = (X, P(X),Gq, @ 1), Ou, = (X,P(X),]®Ga,) (i=1,2,j=34) (12)
and further,
Oasa; = (X2, P(X?), Faa; = Gq, ® Gq;)  (i=1,2,j=3,4) (13)

in B(C? ® C?), where it should be noted that Fa,a, is separated by G,, and G;.
Further define the singlet state po = |1)5) (15| ( € &P(B(C? ® C?)*)), where

s = (e1 ®€2—€2®€1)/\/§

Thus we have the measurement Mpc2gc2)(Oq,a,: S)po]) in B(C? @ C?) (i = 1,2,5 = 3,4). The followings
are clear: for each (71,z2) € X2(= {-1,1}?),

Po(Faza; ({(21,22)})) = (s, (Ga; ({21}) ® Go; ({22}))s) = Vasa;({(z1,22)}) (1 =1,2,5=3,4)  (14)

For example, we easily see:

pO(Faibj ({(17 1)})) = <"/}sv (Gal({l}) ® Gaj ({1}))¢s>

((e1®e2 —ea®en), (L;l, afl ® {1 aﬂ)(€1®62€2®€1)>

B BeBbds Hele 1Dl f1- BB
o[- el lePi-Elo

Therefore, the measurement Mp(c2gc2)(Oa,a;, S)p,) satisfies the condition (G).

(ii):the case of classical systems: [4 = Cy(Q) @ Co(2) = Co(2 x Q)]
Put wo(= (wh,wy)) € 2 x Q. po = by (€ GP(Co(Q x Q2)7), i.e., the point measure at wp) ). Define the
observable Og,q, := (X?,P(X?), Fy,q,) in L>®(Q x Q) such that

[Fuia; ({(z1,22) )W) = vaya; ({(z1,22)})  (V(z1,22) € X2,i=1,2,j =3,4Vw e Qx Q)  (15)
Thus, we have four observables
Oaiﬂj = (X27P(X2)7Faiaj) (i: 1727j :374) (16)

in L (Q x Q) ( though the variables are not separable (¢f. the formula (13) ). Then, it is clear that the

measurement Mze(ox0)(Oa;a;, 5[5%]) satisfies the condition (G).

[Step: III].



As defined by (9), consider four complex numbers ai(= ap + Bkv/—1;k = 1,2,3,4) such that |ax| = 1.

Thus we have four observables

Oa1a3 = (X27P<X2)?Fa1a3)a Oa1a4 = (X27P(X2)7Fa1a4)7
Oa2a3 = (XQ’P(X2)7FG2113)7 Oa2a4 = <X27P(X2)7Fa2a4)7

in the W*—algebra N. Thus, we have the parallel measurement ®;—1 2 j—34 Mar(Oq,q, := (X2, P(X?), Fu,a,),

Thus, puttlng

14++v-1 1—+v-1
ar=v-1, az =1, ang, a4=T’

we see, by (10), that
|R(a1,a3) — R(a1, as)| + |R(az, a3) + R(az, as)| = 2v2 (17)
Further, assume that the measured value is z(€ X®). That is,

T = ((m%va%BL ($%47.'L‘%4), (37%371‘%3)7 (37%4733%4)) € ij>:<1 2X2(E {_1’ 1}8)

Let N be sufficiently large natural number. Consider N-parallel measurement ®g:1 [®i=1,2,j=34 MA(Og,q, :=
(X2, P(X?),Fa,a,)s Sipo]) |- Assume that its measured value is {z"}2_,. That is,

[ ((xi:alvﬁsl) (35141,93?41) (x§31,x§31) (@41’4”341)) i
((ﬁ??vﬁgz) (35142,73?42) (1%3271332) (35;42»73342))

{z"}nos = _ ‘ ‘ e( X xXHV(={-1,11*")

i=1,2,j=3,4

1,N 2N 1,N 2N 1,N 2N 1N 2N
((3513 2y )y (T > wry ), (o @5y ), (Tay T3y ))_

Then, the law of large numbers says that

1 al 1n 2n .
R(aj,a;) NZ (i=1,2,j=3,4)

This and the formula (17) say that

1,n _2n N 1,n 1,n 2n 1,n _2n

|Z$13x13 _Zx14$14‘+|2$23 23 +Z$243324|N2\[ (18)

n=1

Therefore, Bell’s inequality (5) (or (7)) is violated in classical systems as well as quantum systerms.

4 Conclusions

In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try to discuss Bell’s inequality
in the framework of quantum theory with the linguistic Copenhagen interpretation of quantum mechanics.

And we show Theorem 3 ( Bell’s inequality in quantum language), which says the statement (Es), that is,

(H) (= (Eg)): If Bell’s inequality (5) (or (7)) is violated, then the combined observable does not exist, and

thus, we cannot obtain the measured value.



Also, recall that Bell’s original argument (based on Einstein’s spirit) says, roughly speaking, that
(I) : If the mathematical Bell’s inequality (8) is violated, then hidden variables do not exist.

which is rather philosophical. It should be note that the (I) is a statement in Einstein’s spirit, on the
other hand, the (H) is a statement in scientific theory (i.e., quantum theory with the linguistic Copenhagen
interpretation). Therefore, we assert that our (H) is a scientific representation of the philosophical (I). If so,
we can, for the first time, understand Bell’s inequality in science.

We hope that our proposal will be examined from various points of view!.
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