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Abstract  
A new Lagrangian functional of the simple harmonic oscillator has been 
proposed. The derived equation of motion is almost same as that of the 
conventional Lagrangian functional. The equation of motion is derived from 
Euler-Lagrange equation by performing partial derivatives on the Lagrangian 
functional of the second variation of the calculus of variations. The new 
Hamiltonian functional of the simple harmonic oscillator has also been derived.   
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Introduction 
The simple harmonic oscillator model is very important in physics (Classical 
and Quantum). Harmonic oscillators occur widely in nature and are exploited in 
many manmade devices, such as clocks and radio circuits. They are the source 
of virtually all sinusoidal vibrations and waves.  
 
Discussion 
(1) First variation of the Calculus of Variation 
It is known that the Euler-Lagrange equation resulting from applying the first 
variation of the Calculus of Variations of a Lagrangian functional ( , ( ), ( ))L t q t q t  
of a single independent variable ( )q t , its first derivative ( )q t  of following action  

   [ ( )] ( , ( ), ( ))I q t L t q t q t dt         

when varied with respect to the arguments of integrand and the variation are set 
to zero, i.e. 
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Provided that the variation q  vanishes at the end points of the integration and 

the Lagrangian function doesn’t depend explicitly on time (i.e. 0L
t





). 

 
Defining the generalized momentum p as  

    

Lp
q
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Then, the Euler-Lagrange equation may be written as 
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Defining the generalized force F as  
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Then, the Euler-Lagrange equation has the same mathematical form as 
Newton’s second law of motion: 

    
F p   

 
(i) The Lagrangian functional of simple harmonic oscillator  
The Lagrangian functional of simple harmonic oscillator in one dimension is 
written as:  
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L k x m x     
The first term is the potential energy and the second term is kinetic energy of 
the simple harmonic oscillator.  
The equation of motion of the simple harmonic oscillator is derived from the 
Euler-Lagrange equation:  

0L d L
x dt x
 
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To give 
0kx mx  
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This is the same as the equation of motion of the simple harmonic oscillator 
resulted from application of Newton's second law to a mass attached to spring 
of spring constant k   and displaced to a position x  from equilibrium position.  
 
Solving this differential equation, we find that the motion is described by the 
function 

0 0( ) cos( ),x t x t    

where 0 0( )x x t t 
 
and 0

2k
m T


   . 

 
(ii) The first Hamiltonian functional of simple harmonic oscillator 
The Hamiltonian functional ( , )H H q p is derived from the first Lagrangain with 
the use of the Legendre transfom; 

    
H pq L   

and defining Lp
q



 

 as the generalized momentum. Calculating the right hand 

side in the equation defining the Hamiltonian, we get  
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(2) Second Variations of the Calculus of Variations  
It is known that the Euler-Lagrange equation resulting from applying the second 
variations of the Calculus of Variations of a Lagrangian functional 

( , ( ), ( ), ( ))L t q t q t q t   of a single independent variable ( )q t , its first and second 
derivatives ( )q t , ( )q t  of following action  

   [ ( )] ( , ( ), ( ), ( ))I q t L t q t q t q t dt          

When varied with respect to the arguments of integrand and the variation are set 
to zero, i.e. 
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is given by 
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Provided that the variations q and q  vanish at the end points of the integration. 
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The Model 
(1) The Lagrangian functional of the simple harmonic oscillator 
The new Lagrangian functional of the simple harmonic oscillator in one 
dimension is written as 

21
2

L kx mxx     
The equation of motion is derived from Euler-Lagrange equation by performing 
the partial derivatives on the Lagrangian functional ( ( ), ( ), ( ))L x t x t x t  :    
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With the terms calculated as follows 
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The equation of motion is   
0kx mx mx    

 Or, 
  2 0kx mx    

 
It differs from the equation of motion of the simple harmonic oscillator derived 
from the first variation method by the factor 2 in the second term.  
 
(2) The Hamiltonian functional of the simple harmonic oscillator 
The Hamiltonian functional ( ( ), ( ), , )LH H q t q t p

q








of the simple harmonic 

oscillator in the second variation can obtained form the Euler-Lagrange 
equation of the second variation as follows:

 
 

First, define the generalized momentum in the second variation as  
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Then, the Euler-Lagrange equation may be written as 
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This yield 
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This has the same mathematical form as of the Euler-Lagrange equation of the 
first variation and the Newton’s second law of motion. 
 
The corresponding Legendre transformation in the second variations is written 
as: 
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Substituting the corresponding variables of the simple harmonic oscillator  
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in the Legendre transformation to obtain the Hamiltonian of the SHO  
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which is off the Hamiltonian obtain in the first variation by a factor of 1
2

in the 

first term.  
  

Conclusion:   
The second variation of the method of calculus of variation is rich in its 
applicability than the first variation. Although there were no kinetic energy term 
(first derivative) in the new Lagrangian of the simple harmonic oscillator we 
almost obtained the correct equation of motion similar to those of the first 
variation and of the Newton’s second law of motion. The second variation of 
the calculus of variations is promising in constructing Lagrangian of dynamical 
system which were difficult to construct by following the first variation. It is 
possible to construct the long looked for: The Lagrangian of the damped 
harmonic oscillator using the second variation of the method of the calculus of 
variations. 
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