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Abstract

Exact solutions to the stationary spherically symmetric Newton-Schroedinger
equation are proposed in terms of integrals involving generalized Gaussians. The
energy eigenvalues are also obtained in terms of these integrals which agree with
the numerical results in the literature. A discussion of infinite-derivative-gravity
follows which allows to generalize the Newton-Schroedinger equation by replacing
the ordinary Poisson equation with a modified non-local Poisson equation associ-
ated with infinite-derivative gravity. We proceed to replace the nonlinear Newton-
Schroedinger equation for a non-linear quantum-like Bohm-Poisson equation involv-
ing Bohm’s quantum potential, and where the fundamental quantity is no longer the
wave-function Ψ but the real-valued probability density ρ. Finally, we discuss how
the latter equations reflect a nonlinear feeding loop mechanism between matter
and geometry which allows us to envisage a “Schwarzschild atom” as a spherically
symmetric probability cloud of matter which curves the geometry, and in turn, the
geometry back-reacts on this matter cloud perturbing its initial distribution over the
space, which in turn will affect the geometry, and so forth until static equilibrium
is reached.

Keywords: Quantum Mechanics, Newton-Schroedinger Equation, Infinite Derivative
Gravity, de Broglie-Bohm theory, Schwarzschild metric.

1 The Newton-Schroedinger Equation

Various arguments have been put forward from time to time to support the view that
quantum state reduction is a phenomenon that occurs objectively, because of some grav-
itational influence [3], [2], [4], [6], [7]. According to a particular argument put forward by
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Penrose [3], a superposition of two quantum states, each of which would be stationary on
its own, but for which there is a significant mass displacement between the two states,
ought to be unstable and reduce to one state or the other within a certain characteristic
average timescale TG. This argument is motivated by a conflict between the basic prin-
ciples of quantum mechanics and those of general relativity. It is accordingly proposed
that TG can be calculated in situations for which velocities and gravitational potentials
are small in relativistic units, so that a Newtonian approximation is appropriate, and TG
is the reciprocal, in Planckian units, of the gravitational self-energy EG of the difference
between the mass distributions of the two states.

There is of course a substantial literature on the problem of wavefunction collapse
and the related measurement problem. See, for example, [6], [7] and references therein.
For a different idea about gravitationally-induced wave-function collapse see [4]. It has
been pointed out by [2], [3] that one can regard the basic stationary states, into which a
superposition of such states is to decay into (on a timescale of order h̄/EG ), as stationary
solutions of the Schroedinger equation where there is an additional term provided by a
certain gravitational potential. The appropriate gravitational potential is the one which
arises from the mass density given by the expectation value of the mass distribution in the
state determined by the wave-function. In the practical situations under consideration
in [3] (such as with the proposed class of experiments put forward there), it would be
sufficient to consider Newtonian gravity. This leads us to consider what Penrose termed
the Schroedinger-Newton equation.

This equation has had a long long history since the 1950’s [1], [5]. It is the name given
to the system coupling the Schroedinger equation to the Poisson equation. In the case of
a single particle, this coupling is effected as follows: for the potential energy term in the
Schroedinger equation take the gravitational potential energy determined by the Poisson
equation from a matter density proportional to the probability density obtained from the
wavefunction. For a single particle of mass m the system consists of the following pair of
partial differential equations:

The Newton-Schroedinger equation is nonlinear and nonlocal modification of the
Schroedinger equation given by

ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) + V (~r, t) Ψ(~r, t) + mVG(~r, t) Ψ(~r, t) (1)

where V (~r, t) is the external potential acting on the particle and mVG(~r, t) is the self-
gravitational potential energy arising due a mass density obtained from the wave function
of the particle itself. Given the Poisson equation sourced by a mass density ρ = m|Ψ(~r, t)|2

∇2VG(~r, t) = 4π Gm |Ψ(~r, t)|2 (2)

it leads to a self-gravitational potential

VG(~r, t) = −G
∫ m|Ψ(~r′, t)|2

|~r − ~r′|
d3r′ (3)

Inserting eq-(3) into eq-(1) leads to the integro-differential form of the nonlinear and
nonlocal Newton-Schroedinger equation
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ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) + V (~r, t) Ψ(~r, t) −

(
Gm2

∫ |Ψ(~r′, t)|2

|~r − ~r′|
d3r′

)
Ψ(~r, t)

(4)
This equation is based on the assumption that the point-particle is smeared over space
such that its mass is distributed according to its wave function. Namely, there is a mass
cloud over space whose net mass m =

∫
m|Ψ(~r′, t)|2d3r′ coincides with the mass of the

point-particle. The mass cloud is self-gravitating and experiences a gravitational potential
energy given by eq-(3). 1

Let us set the external potential to zero and look for stationary solutions Ψ(~r, t) =
e−iEt/h̄ Φ(~r), such that the gravitational potential becomes time independent. Φ(~r) obeys
the equation

E Φ(~r) = − h̄2

2m
∇2 Φ(~r) −

(
Gm2

∫ |Φ(~r′)|2

|~r − ~r′|
d3r′

)
Φ(~r) (5)

The authors [9], [10] found numerical spherically-symmetric solutions to eq-(5). Varia-
tional forms of the stationary Newton-Schroedinger equation to find a lower bound for
the ground state energy have been studied by several authors, see references in [8], and
compared to numerical values in the literature.

If one replaces a delta function point-mass source distribution mδ3(~r) = mδ(r)/4πr2

for a normalized Gaussian mass distribution of width σ

ρ(r) =
m

π3/2

e−r
2/σ2

σ3
⇒ m =

∫ ∞
0

ρ(r) 4πr2 dr (6)

the solution to Poisson’s equation

∇2VG(r) = 4π G ρ(r) (7)

is given in terms of the error function Erf(r) 2 as follows

VG(r) = − Gm

r
Erf(

r

σ
) = − Gm

r

1√
π

∫ r/σ

−r/σ
e−t

2

dt (8)

In the asymptotic regime r → ∞, Erf(∞) → 1, the potential recovers the Newtonian
form −Gm2

r
. Because the error function Erf(r) admits a series expansion around r = 0 as

Erf(r) ' 2r√
π
− r3

√
π

+
11r5

20
√
π
− 241r7

840
√
π

+ . . . (9)

the potential VG(r) is no longer singular at the origin r = 0, but it behaves as

1This may be in conflict with Born’s rule of interpreting |Ψ(~r′, t)|2 as the probability density of finding
a particle at the point ~r if one has abandoned the notion of point-particles. At the moment we shall not
be concerned with this.

2Which is also related to the incomplete gamma function γ( 1
2 ; r) =

√
π Erf(r)
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VG(r) ' − 2Gm√
π σ

[ 1 − r2

2σ2
+

11r4

40σ4
+ . . . ] (10)

The normalized Gaussian wave function

Φ(~r) ≡ 1

π3/4

e−r
2/2σ2

σ3/2
(11)

satisfies ∫ ∞
0
|Φ(~r)|2 4π r2 dr = 1 (12)

Let us minimize the energy functional

E = − h̄2

2m

∫ ∞
0

(Φ(~r) ∇2 Φ(~r)) 4π r2 dr +
∫ ∞

0
m VG[Φ(~r)] |Φ(~r)|2 4π r2 dr (13)

using this Gaussian as a trial function, and which generates the regular potential at the
origin VG[Φ(~r)] = − Gm

r
Erf( r

σ
) given by eq-(8) after solving Poisson’s equation (7) .

The integrals to be evaluated in eq-(13) are of the form∫ ∞
0

(x4 − 3x2) e−x
2

dx = − 3

8

√
π Erf(x) − 1

4
e−x

2

x (2x2 − 3) (14)∫ ∞
0

x Erf(x) e−x
2

dx =
1

4

( √
2 Erf(

√
2 x) − 2 e−x

2

Erf(x)
)

(15)

After performing the definite integrals we find that

E(σ) =
3
√
π

4

h̄2

m σ2
−

√
2

π

Gm2

σ
(16)

Minimizing dE(σ)/dσ = 0 yields

σmin =
3π

2
√

2

h̄2

Gm3
(17)

and inserting this value of σ into E(σ) gives

Emin = − 2

3π3/2

G2m5

h̄2 = − 0.119
G2m5

h̄2 (18)

which is a satisfactory value since it is above the lower energy bound

Ebound = − 32

9π2

G2m5

h̄2 = − 0.360
G2m5

h̄2 (19)

derived by [8], and it is also close to the value −0.163 (G2m5/h̄2) obtained numerically by
[9], [10]. We can also verify that the value of σmin given by eq-(17) is consistent with the
virial theorem |U | = 2T , stating that the absolute value of the potential energy is twice the
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kinetic energy. It is also worth mentioning that a trial exponential ψ(r) = (k3/π)1/2e−kr

leads to an upper energy bound for the ground state of [8]

E0 ≤ − 75

512

G2m5

h̄2 = − 0.146
G2m5

h̄2 (20)

which is close to the value found numerically by [9], [10]. However the series expansion of
e−kr involves even and odd powers of r which is not the case of the numerical solutions
provided by [9], [10]. The spherically-symmetric solutions of the stationary Schroedinger-
Newton equations have been solved numerically by many authors [9], [10]. They have
demonstrated numerically the existence of a discrete set of “bound-state” solutions which
are everywhere finite and smooth (and which are associated with finite energy eigenvalues),
but which separate ever decreasing intervals of partial solutions which diverge alternately
to plus or minus infinity.

The value found for the ground state energy turned out to be

E0 = − 0.163
G2m5

h̄2 = − 0.163 (
m

MPlanck

)5 MPlanck c
2 (21)

these numerical values for the energy are very small for masses much smaller than the
Planck mass.

The width (spread) σ of the Gaussian wave-function is measured in units of (h̄2/Gm3),
which translated into Planckian units is (LP/LS)3(2LP ), where LP is the Planck length
(2h̄G/c3)1/2, and LS = 2Gm/c2 is the Schwarzschild radius. It was argued by the authors
[9] that for a nucleon mass m the value of σ is vast and is of order of 1024 cm. The
corresponding time ∆t = h̄/∆E for the largest (in magnitude) energy is about of 1053

seconds for the mass of the nucleon, and is of the order of 1 second for 1011 nucleon
masses. This is perfectly satisfactory for the state vector reduction of [3], because it tells
us that the state of a single nucleon will not self-reduce on a timescale of relevance to any
actual particle, in agreement with observation. For large collections of particles, on the
other hand, the reduction time can become important.

The coupled system of differential equations (1,2) can be recast after integrating twice,
and using dimensionless variables S, V , as [9]

S(r) = So −
1

l2

∫ r

0
x (1− x

r
) S(x) V (x) dx (22)

V (r) = Vo −
1

l2

∫ r

0
x (1− x

r
) S2(x) dx (23)

The value of Vo must be Vo > 0 to ensure convergence of S(r) and V (r) at r →∞. Scaling
arguments allow one to choose Vo = 1. The numerical solutions to eqs-(22,23) found by
[9], when Vo = 1, are

S(r) = So

(
1 − 1

6

r2

l2
+

(S2
o + 1)

120

r4

l4
+ . . .

)
(24)

V (r) =

(
1 − S2

o

6

r2

l2
+

S2
o

60

r4

l4
+ . . .

)
(25)
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The wavefunctions are Ψ(r) = α
l2
S(r), and where α, β are defined by

α ≡ [
h̄2

8πGm3
]1/2, β ≡ h̄2

2m
(26)

and l is a physical length parameter (the gravitational analog of the Bohr’s radius) given
by l = h̄2/Gm3, such that β/l2 = 1

2
(G2m5/h̄2).

The energy eigenvalues are E = U(r)+ β
l2
V (r). Because U(r = 0) is of the form∞×0

which is undefined, it is more convenient to evaluate the energy at r = ∞ where U(∞)
vanishes, as follows [9], [10], [11]

E = U(r =∞) +
β

l2
V (r =∞) =

β

l2

(
Vo −

1

l2

∫ ∞
0

x S2(x) dx
)
, Vo = 1 (27)

The values of So are fine-tuned such that the ground state wave-function has no zeros,
it is bounded at the origin and vanishes at infinity. By demanding that Ψ and U are finite
and smooth everywhere, the authors showed that the n-th eigenfunction has n zeros and
the wave-functions are normalizable. The corresponding energy eigenvalues are negative,
converging monotonically to zero as n increases. Each bound-state is unstable in the sense
that infinite precision is required in the initial value of S(r = 0) = So to ensure that the
solutions do not diverge to infinity as r increases. For the ground state, the numerical
value of So fell in the range given by 1.088 < So < 1.090 and it led to the ground state
energy E0 = −0.163 G2m5

h̄2
. For further details of how to obtain other energy eigenvalues

and eigenfunctions by choosing different values for So we refer to [10]. The study of the
Newton-Schroedinger equations in D dimensions other than D = 3 can be found in [11].

A careful inspection of the work by [9], [10], [11] inspired us to find the remarkable
numerical coincidence provided by the definite integral

−
∫ ∞

0
e−(y2+y4) y2 dy = − 0.160 ' −0.163 =

1

2

(
1 − 1

l2

∫ ∞
0

x S2(x) dx
)

(28)

(we set Vo = 1). The normalization of the wavefunction Ψ = α
l2
S(r)

α2

l4

∫ ∞
0

4πr2 S2 dr = 1 (29a)

allows to recast the right-hand side of (28) as

α2

2l4

∫ ∞
0

4πr2 S2 dr − 1

2l2

∫ ∞
0

x S2(x) dx (29b)

after relabeling the variable r for x in the above expression, eq-(28) becomes

− 0.160 = −
∫ ∞

0
e−(y2+y4) y2 dy ' 1

2

∫ ∞
0

(
4π α2

l
y − 1

)
y S2(y) dy = − 0.163

(30)
which allows to identify the variables y ≡ x

l
= r

l
, and basically equate the dimensionless

integrals. However this does not mean that the integrands are the same. The integral
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in the right-hand side of eq-(30) is evaluated after inserting the value of 4πα2/l = 1
2
.

The expression for S2(r) corresponding to the ground state is derived from eq-(24) after
inserting a value of So ' 1.088 (lying in the interval [1.088, 1.090]). The other “bound”
states require different values of So,n yielding different expressions for Sn(r) (Sn(r =
0) = So,n), and which have n nodes (zeros).

Next we shall present the novel and most salient results of this section. To our knowl-
edge these findings below are new. The following remarkable numerical coincidences for
the values of the remaining (negative) energy eigenvalues E1, E2, E3, ..... have also been
found. To obtain the values for the first excited state we replace the integral in the
left-hand side of (28) for :

n = 1 : − 1

22

∫ ∞
0

e−(y2+y4+y6) y2 dy = − 0.0302 ' − 0.0308 (31)

to get the second one

n = 2 : − 1

32

∫ ∞
0

e−(y2+y4+y6+y8) y2 dy = − 0.0120 ' − 0.0125 (32)

the third one

n = 3 : − 1

42

∫ ∞
0

e−(y2+y4+y6+y8+y10) y2 dy = − 0.00641 ' − 0.00675 (33)

the fourth one

n = 4 : − 1

52

∫ ∞
0

e−(y2+y4+y6+y8+y10+y12) y2 dy = − 0.00399 ' − 0.00421 (34)

and so forth ..... the pre-factors in front of the integrals for the n-th energy eigenvalue
are (n + 1)−2, which are “reminiscent” of the Balmer series for the Hydrogen atom, and
the arguments of the negative exponentials are y2 + y4 + · · · + y2(n+2). The authors [9]
plotted the ten energy eigenvalues as functions of n and found that the slope of log(n)
versus log(E(n)) was not −2 [9]. However, the slope is asymptotically close to −2 [12]
which would be the exact value for the Hydrogen atom as previously note by Bernstein
et al [10].

Using these expressions in eq-(28), and eqs-(31-34), we find that energy values are
remarkably close to the numerical results obtained in [12], and given by the numbers in
the right-hand side of eqs-(28, 31-34). We don’t believe this is a numerical coincidence and
could point to the fact that an integrability may underlie the solutions of the stationary
spherically symmetric Newton-Schroedinger equations. It was emphasized by [9], [10], [11]
that one would need to know the values of Sn(r = 0) = So,n with infinite precision in
order to ensure that Sn(r) does not shoot off to ±∞ at a finite value of r. All the numerical
results appearing in the right-hand side of eqs-(28, 31-34) are obtained by narrowing in
the values of So,n within certain domains. For this reason we find the analytical results
in the left-hand side of eqs-(28,31-34) very appealing.

To conclude this section we shall recur to the virial theorem < U >= −2 < T >
⇒ E =< T + U >= − < T > to write the most general expression for the energy after
integration by parts, in the form
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En = − < T >n =
h̄2

2m

∫ ∞
−∞

(Ψn(~r))∗ ∇2 Ψn(~r) d3r = − h̄2

2m

∫ ∞
−∞
|(∇Ψn(~r))|2 d3r '

− 1

(n+ 1)2

G2m5

h̄2

∫ ∞
0

e−(y2+y4+y6+ ··· + y2(n+2)) y2 dy (35)

the wave-functions must be normalized and vanish at ±∞. One must emphasize that one
is comparing (roughly equating) the values of the integrals in (35) and not the integrands.

If one were to equate the integrands one would arrive at a contradiction. In the
spherically symmetric case, for real-valued wave-functions, and after setting y = r/l, it
gives

h̄2 l

2m
(∂yΨn(y))2 4πy2 ' 1

(n+ 1)2

G2m5

h̄2 e−(y2+y4+y6+ ··· + y2(n+2)) y2 ⇒

(∂yΨn(y))2 ' 1

(n+ 1)2

1

2πl3
e−(y2+y4+y6+ ··· + y2(n+2)) (36)

Given Ψn an even, or an odd function, for n = even, odd, respectively, the left hand side
is always even due to the squaring of the derivatives, as it should, since the right hand
side of (36) is an even function 3. For this reason, if one is going to take the square root
of eq-(36) we must choose n = odd ⇒ ∂Ψ = even. Hence

∂yΨn(y) ' 1

(n+ 1)

1√
2πl3

e−
1
2

(y2+y4+y6+ ··· + y2(n+2)), n = odd (37)

integrating (37) between 0 and y we arrive finally

Ψn(y) − Ψn(0) ' 1

(n+ 1)

1√
2πl3

∫ y

0
e−

1
2

(y2+y4+y6+ ··· + y2(n+2)) dy, n = odd (38)

we still need to check that Ψ vanishes at ±∞, and include a normalization constant to
enforce

∫
|Ψ|2d3r = 1. When n = odd, Ψ(0) = 0 because antisymmetric functions must

vanish at the origin. Here is where the contradiction arises. The integral in the right-
hand side is not zero when y = ∞. It is given by a finite number. This would force
Ψn(∞) 6= 0 since Ψn(0) = 0, for n = odd. Since the wave-functions do not vanish at
∞ these solutions are unphysical. For this reason one cannot equate the integrands in
eq-(35). It is only the integrals which can be equated.

To conclude this section, based on the numerical results by [9], [10], [11] we have
arrived at the integrals

3This assumes that one can extend r to negative values r < 0, which is not unreasonable because
r = ±

√
x2 + y2 + z2. Black-hole solutions can be extended to r < 0. The Schwarzschild metric solution

is invariant under r → −r,m→ −m
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∫ y

0
(∂yΨn(y))2 y2 dy ' 1

(n+ 1)2

1

2πl3

∫ y

0
e−(y2+y4+y6+ ··· + y2(n+2)) y2 dy, n = 0, 1, 2, . . .

(39)
which furnish implicitly the stationary spherically symmetric wave-function solutions to
the Newton-Schroedinger equation in terms of integrals involving generalized Gaussians.
The energy eigenvalues are provided by the left hand side of eqs-(28,31-34). Eqs-(39)
must be supplemented by the normalization condition of the wave-function. The time-
dependent evolution of the Schroedinger-Newton equations has been studied by many
authors, in particular [13], [14]. The experimental tests of the validity of the nonlinear
Newton-Schroedinger equation pose a technologically formidable challenge due to the
weakness of gravity and the difficulty of controlling quantum coherence [14]

.

2 Infinite Derivative Gravity, Modified Newton-

Schroedinger Equation and Schwarzschild Atoms

Since Quantum Mechanics is notoriously non-local, it is not farfetched that a theory of
Quantum Gravity may require to modify Einstein’s theory of gravity (and other local
theories of gravitation ) to include a modified gravitational theory involving infinite
derivatives, which by construction, is non-local. It turned out that the infinite derivative
gravity (IDG) can resolve the problem of massive ghosts as well as it may avoid the
singularity of the Newtonian potential at the origin, when one chooses the exponential
of an entire function. This model is also named super-renormalizable quantum gravity
[17]. However, one does not understand fully how this non-local gravity could provide a
regular potential. It was argued that the cancellation of the singularity at the origin is
an effect of an infinite amount of hidden ghost-like complex poles [16].

A regular potential at the origin of the form (8) has been studied by several authors
[15] in connection to infinite derivative gravity [16] which is ghost-free and renormaliz-
able when one choses the exponential of an entire function in the construction of the
infinite-derivative gravitational (IDG) action SIDG [16]. For this IDG case, the corre-
sponding Newtonian potential generated from the delta function is non-singular at the
origin. However, the authors [15] explicitly showed that the source generating this non-
singular potential is given not by the delta-function due to the point-like source of mass,
but by the Gaussian mass distribution. This explains clearly why the IDG with the
exponential of an entire function yields the finite potential at the origin.

Because the Fourier transform of a Gaussian is a Gaussian, one can infer that the
infinite-derivative (non-local) modified Poisson equation

(e−
σ2

4
∇2∇2) V = 4π Gm δ3(~r) = Gm

δ(r)

r2
(40)
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sourced by a point-mass at r = 0, leads to identical solutions to the potential as the
ordinary Poisson equation sourced by a Gaussian mass distribution [15]. This can be
shown by taking the 3D Fourier transform of eq-(40)

e
σ2

4
k2

k2 Ṽ (k) = Gm ⇒ Ṽ (k) = Gm
e−

σ2

4
k2

k2
(41)

and then performing the inverse 3D Fourier transform it yields VG(r) = − Gm
r
Erf( r

σ
),

see [15] for further details.
One can generalize the Newton-Schroedinger coupled system of equations (1,2) by

replacing the ordinary Poisson equation with the modified non-local Poisson equation
associated with infinite-derivative gravity (IDG)

(e−
σ2

4
∇2 ∇2) VIDG(~r) = 4π Gρ = 4π Gm |Φ(~r)|2 (42)

In this case

VIDG(~r) 6= Gm
∫ |Φ(~r′)|2

|~r − ~r′|
d3r′ (43)

therefore to find (numerical) solutions of the highly nonlinear and nonlocal modified
Newton-Schrodinger equation

E Φ(~r) = − h̄2

2m
∇2Φ(~r) + mVIDG[Φ(~r)] Φ(~r) (44)

becomes more problematic. However, solutions to the infinite-derivative modified Poisson
equation are not that difficult to find. For example, in the case when ρ(r) is given by
a Gaussian profile, after performing the Fourier transform procedure it gives VIDG =
−Gm2

r
Erf( r√

2σ
), which is almost identical to −Gm2

r
Erf( r

σ
), the main difference being

that Erf( r
σ
) 6= Erf( r√

2σ
).

Bohm’s quantum potential VQ = − h̄2

2m
(∇2√ρ/√ρ) has a geometrical derivation as

the Weyl scalar curvature produced by an ensemble density of paths associated with one,
and only one particle [18]. This geometrization process of quantum mechanics allowed
to derive the Schroedinger, Klein-Gordon [18] and Dirac equations [19]. Most recently, a
related geometrization of quantum mechanics was proposed [20] that describes the time
evolution of particles as geodesic lines in a curved space, whose curvature is induced
by the quantum potential. This formulation allows therefore the incorporation of all
quantum effects into the geometry of space-time, as it is the case for gravitation in the
general relativity. Based on these results we propose the following nonlinear quantum-like
Bohm-Poisson equation for static solutions ρ = ρ(~r)

∇2VQ = 4πGmρ ⇒ − h̄2

2m
∇2 (

∇2√ρ
√
ρ

) = 4πGmρ (44)

such that one could replace the nonlinear Newton-Schroedinger equation for the above
non-linear quantum-like Bohm-Poisson equation (44) where the fundamental quantity is
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no longer the wave-function Ψ (complex-valued in general) but the real-valued probability
density ρ = Ψ∗Ψ.

It has been proposed by [21], [22] to give up the description of physical states in
terms of ensembles of state vectors with various probabilities, relying instead solely on
the density matrix as the description of reality. The time evolution of ρ is governed
by the Lindblad equation. The authors [22] also investigated a number of unexplored
features of quantum theory, including an interesting geometrical structure- which they
called subsystem space-that they believed merits further study.

The infinite-derivative-gravity generalization of eq-(44) is

− h̄2

2m
(e−

σ2

4
∇2 ∇2) (

∇2√ρ
√
ρ

) = 4πGmρ (45)

the above equation is nonlinear and nonlocal. If one wishes to introduce a temporal
evolution to ρ via the Linblad equation, for instance, this would lead to an overdetermined
system of differential equations for ρ(~r, t). This problem might be another manifestation
of the problem of time in Quantum Gravity. For the time being we shall just focus on
static solutions ρ(~r).

Integrating (44) gives the integro-differential equation for ρ(~r)

− h̄2

2m
(
∇2√ρ
√
ρ

) = − Gm
∫ ρ(~r′)

|~r − ~r′|
d3r′ (46)

The right hand side of (46) can be written as

− GmMeff (~r)

r
, Meff (~r) = r

∫ ρ(~r′)

|~r − ~r′|
d3r′ (47)

where extreme caution must be taken because Meff (~r) is not the same as the enclosed
mass inside a spherical region of radius r encircling the origin. It is convenient to write
(46) in this form (47) because it reminds us of a “Schwarzschild atom” analog, in the
spherically symmetric case, where the g00 metric component for signature (+,−,−,−) is

g00(r) = (1− 2GMeff (r)

r
), grr = − 1

g00(r)
, Meff (~r) = Meff (r) (48)

see [24] for many references related to the solutions (48). In the weak field limit, for slowing
moving masses, one has g00 ∼ η00 +h00 = 1 + 2V , and from eqs-(46-48) one arrives at the
relation between the temporal components of hµν and the matter/probability distribution

h00(r) = − h̄2

m2
(
∇2√ρ(r)
√
ρ(r)

) = − 2GMeff (r)

r
(49)

The eqs-(44-49) reflect the back− reaction that the geometry has on matter, and in turn,
the effect that this matter has on the geometry. Such eqs-(44-49) reflect a nonlinear
feeding loop mechanism between matter and geometry. The probability distribution ρ
cannot be arbitrary due to the restrictions imposed by eqs-(44-47). One may envisage the
“Schwarzschild atom” as a spherically symmetric probability cloud of matter which curves
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the geometry, and in turn, the geometry back-reacts on this matter cloud perturbing its
initial distribution over the space, which in turn will affect the geometry, and so forth
until static equilibrium is reached.

The author [23] described the gravitational degrees of freedom of the Schwarzschild
black hole by one free variable and introduced an “Schroedinger equation” for the
Schwarzschild black hole corresponding to this model. The mass spectrum of the black
hole was obtained as such as it can be observed by an observer very far away and at rest
relative to the black hole. Such “Schroedinger equation” implied that there is no singu-
larity inside the Schwarzschild black hole, and that the black hole has a certain ground
state in which its mass is non-zero. A modern treatment of this approach can be found
in [24].

Finding solutions to the nonlinear eqs-(44-46) is a worthy project. We believe the
picture of this “Schwarzschild atom” model will cast some light into Quantum Gravity.
We leave the geometry of quantum information theory, fractal spacetimes, Moyal-Fedosov
deformation quantization (based on non-local star products), κ-deformed Poincare sym-
metry, curvature of momentum spaces, · · · for future investigations.
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