Laws of General Solutions of Partial Differential
Equations

Hong Lai Zhu *

School of Physics and FElectronic Information, Huaibei Normal University, Anhui 235000, China

Abstract

In this paper, four kinds of Z Transformations are used to get many laws of general solutions
of mth-order linear and nonlinear partial differential equations with n variables. Some general
solutions of first-order linear partial differential equations, which cannot be obtained by using
the characteristic equation method, can be solved by the Z Transformations. By comparing,
we find that the general solutions of some first-order partial differential equations got by the
characteristic equation method are not complete.
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Introduction

In recent years, some numerical methods have been developed to solve linear partial differ-
ential equations (PDEs), such as Finite integration method [1, 2], Bernoulli matrix method [3],
Chebyshev matrix method [4] and so on, the existence [5], uniqueness [6, 7] and stability [8] of
their solutions are also the focus of research.

In [9], we used new analytical methods to preliminarily study some laws of general solutions
of the mth-order linear PDEs with n variables. In this paper, we will use four kinds of Z Trans-
forms to further study the mth-order linear and nonlinear PDEs with n variables.

1. New principles and methods
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In order to obtain the general solutions of PDEs in various orthogonal coordinate systems, we
proposed the concepts and laws of the independent variable transformational equations (IVTEs)
and the dependent variable transformational equations (DVTEs) in [9]. About the IVTEs, there
is an important new theorem:

Theorem 1. In the domain D, (D CR™), if G (y1,Y2, - - - Un, Uy, Uy Uy - - - Uy, s Uy Uyrys - - -) =

0 is an arbitrary independent variable transformational equation of a mth-order PDE F(x1,z2 ... ¢

Uy Ugy s Ugsy -+ - Ug, s Uy gy Ugyag - - -) = 0, SO
1.If F=0 is a linear PDE, then G=0 is an mth-order linear PDFE.
2.1If F=0 is a nonlinear PDE, then G=0 is an mth-order nonlinear PDFE.

Proof. Since
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where i, j,k,p,q,r € {1,2,---n}, namely s, , U,z , Uz;z;a, - - - are linear relationship with wy,, uy,y,,

Uy,yqyr > and the highest order of the partial derivatives on both sides of the equations are
equal. Therefore each linear term in F = 0 is transformed into a new linear term; every non-
linear term in F' = 0 is transformed into a new nonlinear term; and the highest order of the
partial derivative of the dependent variable of each term is constant. So the independent variable
transformation not only does not change the linearity or non-linearity of the original PDEs, but
also does not change their order. Then Theorem 1 is proved. [

For the DVTESs, the specific [th-order transformation v = h(z1, - T, U, Uz, -+ Uz, s Uzymg, * -
may be linear or non-linear. For the linear transformation, each linear term of an mth-order
linear PDE is transformed into a new linear term, so a (I 4+ m)th-order linear PDE will be trans-
formed. For an mth-order nonlinear PDE, each nonlinear term will transform a new nonlinear
term, normally it will be transformed a (I + m)th-order nonlinear PDE.

For the nonlinear transformation, an mth-order linear PDE is usually transformed into a
(I+m)th-order nonlinear PDE, an mth-order nonlinear PDE may be transformed into a (I-++m)th-
order nonlinear PDE or a (I + m)th-order linear PDE.

In R™ whose independent variables are x1,xo, - - - x,, if the solution of a PDE contains an
arbitrary function, the number of independent variables of the arbitrary function is generally
not equal to n, unless the essence of the PDE is 0 = 0, such as

Ug;, — Uy, = 0. (4)
It is obvious that the general solution of Eq. (4) can be an arbitrary first differentiable function

with n variables, but this PDE has no practical meaning. We call a PDE whose essence is 0 = 0
a banal PDE , and a PDE whose nature is not 0 = 0 a non-banal PDE .



For non-banal PDEs, we propose a conjecture:

Conjecture 1. In R",(n > 2), if the solution of a non-banal PDE contains an arbitrary
function, the number | of independent variables of the arbitrary function satisfies 1 <1 <n —1.

In [10], we presented Z; — Z3 transformations with the following contents.

71 Transformation. In the domain D, (D C R™), any established mth-order PDE with n space

variables F(ﬂf]_, T T, Uy Ugq st Ugyy Ugqzgs *° ) = 0} set Yi = yi(x].a o xn) and u = f(y].7 T yl)
are both undetermined mth-differentiable functions (u,y; € C™(D),1 <i <1 <mn), y1,y2--y
are independent of each other, then substitute u = f(y1,---y;) and its partial derivatives into
F=0,

1. In case of working out y; = y;(x1,---xy) and f(y1,---yi), thenu = f(y1,---y1) is the solution
of F =0,

2. In case of dividing out u = f(y1,---y) and its partial derivative, also working out y; =
yi(x1, - xn), then uw = f(y1,---y) is the solution of F = 0, and f is an arbitrary mth-
differentiable function,

3. In case of dividing out uw = f(y1,---y;) and its partial derivative, also getting k = 0, but
in fact k # 0, then w = f(y1,---y;) is not the solution of F = 0, and f is an arbitrary mth-
differentiable function.

Zy Transformation. In the domain D, (D C R"), any established mth-order PDE with n
space variables F(x1, -« Tp, U, Uy, Ug, , Ugizq, -+ ) = 0, set y; = yi(z1, - xpn) known and
u = f(y1, - y) undetermined (u,y; € C™(D),1 < i <1< n), y1,y2, -y are independent of
each other, then substitute u = f(y1,---y1) and its partial derivatives into F =0

1. In case of working out f(y1,---yi), then u= f(y1,...y1) is the solution of F =0,

2. In case of dividing out u = f(y1,...y;) and its partial derivative, also getting 0 = 0, then
u= f(y1,---yi) is the solution of F =0, and f is an arbitrary mth-differentiable function,

3. In case of dividing out uw = f(y1,---y;) and its partial derivative, also getting k = 0, but
in fact k # 0, then w = f(y1,---y;) is not the solution of F = 0, and f is an arbitrary mth-
differentiable function.

Zs Transformation. In the domain D, (D C R"), any established mth-order PDE with n
space variables F (X1, Ty, U, Ugy, -+ Uz, , Ugy 2y, -+ ) = 0, setting g(x1, - xn), h(y1, - y1) and
yi = yi(z1, - xp) are all undetermined function, yi,ye,---y; are independent of each other,
(g,h,y; € C™(D),1 < i <1 < n), then substitute u = gh(y1,---y1) and its partial derivatives
mto F' =0,

1. In case of working out h,g and y;, then uw = gh(yi,---y;) is the solution of F =0,

2. In case of dividing out h and its partial derivative, also working out g and y;, then u =
gh(y1,---y) is the solution of F =0, and h is an arbitrary mth-differentiable function,

3. In case of getting k = 0, but in fact k # 0, then uw = gh(y1,---y1) is not the solution of F = 0.

In order to obtain general solutions or exact solutions of some PDEs, we further propose Z,
transformation.

Z, Transformation. In the domain D, (D C R™), any established mth-order PDE with n space
variables F (X1, Ty, Uy Ugyy - Uz, , Ugyzg, - ) = 0, set y; = yi(z1, -z, w) and f(y1, Y2, Yk,
Tpt1, Tht2, L) are both undetermined mth-differentiable functions (f,y; € C™(D),1 < i <
k<n),y1,y2, -y are independent of each other, and set f(y1,y2, Yk, Thi1, Tht2, Tn) =0,
then substitute u, ug,,- - Uz, , Uz zy, - Mt0 F =10



1. In case of working out y; = y;(x1, - xp,u) and f(y1,Y2, Yk, Tha1, Thio, - Tpn), then
fyi,y2, Yk, Thot 1, Tht2, - - - Tn) = 0 is the solution of F =0,

2. In case of dividing out all the partial derivatives of f(y1,Y2, " Yks Tht1, Thi2s ** Tpn), also
working out y; = yi(z1,- - Tk, u), then f(y1,y2, Yk, Tht1, Thi2, - - Tn) = 0 is the solution of
F =0, and f is an arbitrary mth-differentiable function,

3. In case of dividing out all the partial derivatives of f(y1,y2, Yk, Tht1, Tht2, - Tn), also
getting k = 0, but in fact k # 0, then f(y1,y2," Yk, Tht1, Tha2, - Tn) = 0 is not the solution
of F =0, and f is an arbitrary mth-differentiable function.

In Z4 Transformation, y; = y;(x1,---xg,u) and f(y1,- - Yk, Tkt1, - - Tn) are both undeter-
mined, y;(x1, - - T, u) may be an unknown function completely or has a determinate form with
unknown constants, the solution of f(y1,- -y, Trs1, - x,) may be an arbitrary or a certain
mth-differentiable function, the solution of y; and f may not be single, etc., which are determined
by the PDE and the specific solving process.

According to y; = yi(z1, - -z, w) and f(y1,- - Yk, Tht1, - - Tn) = 0, we get
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By Eqgs. (5-7), we can preliminarily judge that using Z, transformation to solve the first
order PDEs may be convenient, and to solve the second order or greater than the second order
PDEs may encounter difficulties.

2. General solutions’ laws of partial differential equations with variable coefficients
2.1. General solutions’ laws of linear PDEs with variable coefficients

In this section, if there is no special interpretation, the acquiescent independent variables of
R™ are o1, @2, Tp. @i = ai(®1, -+ k), aj, = a5, (T1, - Th), Qigigeiyy = Vigigeoiy, (T1, -~ Tp), by =
bi(x1,---xk) , and bj, = bj, (z1,...xy) are arbitrary known functions. y; = y; (x1,...2x), Dy, =
%. ¢; and ¢;, are arbitrary constants, f and f; are arbitrary smooth functions.(i,j = 1,2,---), (1 <
k<n)

Proposition 1. In R", if the exact solutions u = y; (x1,...x) of Eq. (8), which are inde-
pendent of each other, are known, (1 <i<1<k—1),

a1Ug, + a2Ug, + ... + apuy, =0, (8)
then the general solution of Eq. (8) is

u:f(y17y27"‘ylvxk+17$k+27”-xn)- (9)

Prove. By Z; Transformation, set u (x1,...x,) = f (y1,%2, - Y, Tht1, Tkt2, - - - Tp), then

AUy, + AUy + ..o + AUy,
= a1 (fp ey T fobar + -+ Futhiay) + 02 (fu V1o, + fro¥2m, T+ futhay) + -
+ ak (fy1Y1a, + foo¥20, + -+ Fulia,)
= fyr (@110, + Q2Y10y + -+ Y14,) + fyo (1920, + G224, + -+ arY2,, ) + - -
+ fu, (alylm +asyiy, +. ..+ akylxk) =0.
Since a1yi,, +a2Yiy, +- - Aaryi,, =0,(1 <i <1<k — 1), the above equation is correct eternally.

So Proposition 1 is proved. According to the characteristic equation method and Conjecture 1
we can know: Usually | =k —1. O

According to Proposition 1, if the exact solutions v = y;(x1, - - x,) of a1uy, + aguy, + -+
apuz, = 0, which are independent of each other, are known, (1 <i <[ < n—1), then its general
solution is u = f(y1,y2, - y1)-

Proposition 2. InR", if the general solution u = f (y1,Y2, ... Y1, Tk, Tk2, - - - Tn) Of (b1 Dy, +
baDgy + ... + b Dy, )u = 0 is known, then

(b1Dgy +b2Dyy + ... 4 b Dy, )2u =0 (10)
The general solution of Eq. (10) is
uw=f1 W1, Y1, Thtt,.--Tn) + (121 + coxa + ... + cxx) fo (Y1, -+ Yy Tpa1,-- - Tn) . (11)

Prove. Because the general solution v = f (y1,y2, - - - Y1, Thi1s Tht2,- - - Tn) Of (b1 Dy + b2 Dy, +
...+ bx Dy, )u = 0 is known, apparently w = f (y1, Y2, ... Y, Tht1, Tht2, - - - Tp) is also the solution



of (b1Dy, +b2Dy, + ...+ kaxk)2u = 0, setting u = g(x1, - xk)f = csxsf is the solution of
(b1Dgy + b2 Dy, +...+ka$k)2u = 0 too, that is g(x1,---xr) = csxs, and ¢, are arbitrary
constants, (s =1,2,---k), then

(b1Dgy + b2Dyy + ... + b Dy, )? §:bZD2_+2§:bb<D%[%] (gf)
1<J

k
= Z b7,2 (gmzzzf + 292, fz; + gf:t,:t,) + 22 bib; (ga:ia:jf + gxifa:j + ngfl’qj + gf:rixj)
=1

i<j

k k k
=49 Z szfxzﬂfz + 22 bibjfxiwj + f Z bgng% =+ 22 bibjgxixj + 22 bzzgxi fmz

i=1 i<j i=1 i<j i=1

+ 2Zb bj g:c fx] +ngfxz = QZ b2gxlfocz + 2Zb bjgxlfocj + QZb bngCinL‘z

1<J 1<J 1<J

:zﬁ%ﬂb+2@m§:@ﬂﬁ+2%m§:mﬂ%:QQ@E:mﬁH:O

s<J 1<s i=1

That u = cszsf is the solution of (b1 Dy, + beDyy + ... + kamk)Qu = 0 is proved. So its general
solution is (11). O

According to Proposition 2, we present a conjecture.

Conjecture 2. In R", if the general solution uw = f(y1,y2," Yi, Tht1, Thi2, * Tn) Of (b1 Dyy +
baDy, + -+ + by Dy, )u = 0 is known, then the general solution of

18
m

u:Z(cjlx1+cj2x2+ A k) T (W Y Ty - T) - (13)
j=1

Theoretically Conjecture 2 can be proved by mathematical induction, we shall not analyse
it further.

In R"™, for the mth-order linear PDE with variable coefficients

E (i192...15) _
Qiyig.. 'Lkuz‘ybg T T 07 (14)
i1+io+...+ig=m

where ¢; are natural number, 1 < j < k < n, If Eq. (14) can be translated into

(b1,Dg, +b1,Dgy + ...+ b1, Dy, ) (b2, Dy + b2, Dy + ... + b2, Dy, ) ... (b Doy + by Dy + - ..

+ by, Dy, )u = 0.
(15)
For

(beriUl + ijDxQ + ...+ bjkak) u = bjluxl —+—bj2ux2 +...+ bjkuxk =0, (j =1,2,... m) . (16)



If the particular solutions u = y;, (x1,---x)) of Eq. (16), which are independent of each other,
are all known, (1 < s <), by Proposition 1 the general solution of Eq. (14) is

m
u = Zf] (yjlvyjza .. 'yjljvl‘k-i-laxk-i-% .. $n) . (17)
j=1

If Eq. (14) can be translated into:

q
(bjy Dy, +bjy,Dgy + ... + b, Dy, )PPu =0, (18)
j=1

q
where ) p; = m, its general solution of conjecture may be written by Conjecture 2.
j=1
Proposition 3. In R"™, if the particular solution g = g(x1,---x) of a1z, + a2gz, + -+ +
akYz, + art19 = 0 and the exact solutions u = y;(x1,- - xk) of a1uy, + agus, + - + apuy, =0,
which are independent of each other, are all known, (1 <i <1<k —1), then

a1z, + Q2Ugy + .+ AU, + agpru =0, (19)
then the general solution of Eq. (19) is

u=g(x1,...2k) fF (Y1, Yy Tht1, - - Tn) (20)

Prove. By Z3 Transformation, set u = g (x1,...xx) f (y1,. .. Y1, Tkt1, ... Tpn), then
A1 Ug; + AUy + - .. + ApUg, + Q11U

l l l
=a (fgac1 +9) fyz-yixl> +as <f9372 +9) fyiyz'zg> +..+ag <fgmk +9) fyiyimk)

=1 =1 =1
+ag+19f

l
= f(a19z, + @29y + - .. + Ge, + ary19) + QZ fus (a1Yig, + Q2Vig, + - - + Yig, ) =0
i=1

Since a19y; + a2gz, + - - - + apGay, + ary19 = 0 and a1yi,, +a2yiz, +.. .+ akYiyz, = 0. The above
equation is correct eternally, so Proposition 3 is proved. [J
Proposition 4. In R", if the general solution w = g(x1, - k) (Y1, Y1, Thr1, - Tn) Of
(b1Dg, +b2Dyy + ... + b Dy, + biy1) u = 0 is known, then

(b1Dgy + b2Dgy + ... 4 b Dy + bi1)*u =0 (21)
The general solution of Eq. (21) is

u = g(.fEl, . .xk) (fl (yl, YL, Tty - - l’n) + (Cl:L'l +coxo + ...+ cka:k) f2 (y1, YL, Tty - - xn)) .
(22)

Prove. Because the general solution u = g(z1, - xk) f(y1, Y, Tht1, -+ - Tpn) Of (b1 Dyy +b2 Dy +
o+ 4+ bp Dy, + bry1)u = 0 is known, apparently v = g(x1,- - zx) f (Y1, - Yi, Tht1, - - Tn) is also
the solution of (b Dy, + by Dy, + ... + bp Dy, + bps1)?u = 0, setting

u=ht=csxsg (@1, .. xk) f (Y1, Y Tpg1, - 2n), 1< s<k), (23)



where h = csxs, t = g(x1, - xk) f (Y1, Y, a1, - Tn), and ¢, are arbitrary constants. Assum-
ing (23) is a solution of (21), then

(01D, + b2Dyy + ... 4 by Dyy + bpi1)u

k k
=[S 02D2 182, +2 > bib;Dy Dy, + 2641y 0Dy, | (1)
=1

1<i<j<k i=1

=3 07 (haya,t + 2N ta, + Bta,z) + bjy bt
=1
k

+2 > biby (haa,t + hagte, + hojte, + htagw,) + 2661 > by (hayt + hta,)
1<i<j<k i=1

k k k
=h (D bftee, +Viat+2 D bibjtea; + 20541 bite, |+ bhaya,

i=1 1<i<j<k i=1 i=1

k
+2) hate, +2t Y bibjhaa, 2 0Y  bibjhate, +2 Y bibihg t,
i=1 1<i<j<k 1<i<j<k 1<i<j<k
k

+ 2bp 1ty biha,
i=1

k k
=2) Blhute, +2 > bibjhate; +2 > bibjhate, + 2bp 1ty bils,
i=1 1<i<j<k 1<i<j<k i=1

= W2ha,te, + 2bshe, Y bjtw; + 2bsha, Y bite, + 2bpi1beha,t

1<s<j<k 1<i<s<k
k k
= 23Ny, Y bita, + 2bpr1bshy,t = 2bshy, (Z bits, + bk+1t> = 0.
i=1 =1

That (23) is a solution of (21) is proved. So its general solution is (22). O
According to Proposition 4, we present Conjecture 3.
Conjecture 3. In R", if the general solution v = g(x1, - xp)f(y1, Y1, Tht1, - Tn) Of
(b1Dg, + b2Dyy + - - + by Dy, + biy1)u = 0 is known, then the general solution of
(leﬂﬁ + 03Dy, + ...+ kaﬂCk + bk+1)mu =0 (24)
18

u=g(z1,. a:k)z (cihm1 + ot o F i n) T i (Y Y Tt 1y - Tn) 5 (M > 2) . (25)

m
j=1

In R™, for the mth-order linear PDE with variable coefficients
Z az‘lig.“ikugllg::?k) =0, (26)
0<ii+io+... 4+ <m
where ¢; are natural number, 1 < j < k < n. If Eq. (26) can be translated into
(bllel + b12D332 + ...+ blkak + b1k+1) (b21D:21 + b22Dx2 4+ ...+ kaka + b2k+1) A

(27)
(b Dy 4 bing Doy + .. + by Doy + by, ) u = 0.



If the particular solution v = g;(x1,---xy) of (bj, Dy + bjyDey + -+ + bjy Dgy 4 bj, . Ju = 0
and the exact solutions u = y;, (x1,---xx) of (bj; Dy + bjyDyy + -+ + bj, Dy, )u = 0, which are
independent of each other, are all known, (1 < j <m,1 <s <;), by Proposition 3 the general
solution of Eq. (26) is

m
u(z,...xy) = Z <9j (1, .- 2k) f; (yjl,ng, <o Yhiy Tkt 1) Tt 2, - :En)> : (28)
j=1

If Eq. (26) can be translated into:

q
(bJI D-Tl + ijDCCQ + tt + bjann + bjn+1)pju = 07 (29)
7=1

q
where ) p; = m, its general solution of conjecture may be written by Conjecture 3.
=1

In R”, for the mth-order linear PDE with variable coefficients
Z a1112lku§czllagg€k) = A(z1,22,...2n), (30)
0<ii+ia+...+ix<m

where A(xy, z2, - xy) is an arbitrary known function. In general, we need to solve the particular
solution of (30) first, and then use the general solution of its homogeneous equation to obtain its
general solution. For some PDEs, we can get the general solution by Z Transformation directly,
such as

Proposition 5. In R", if the particular solutions u = y;(x1,--- k) of a1uy, + agug, + -+ +
agug, =0 are all known, (1 <i<k—1), then

a1Ug, + AUy, + ... + apUy, + agp1 =0, (31)
the general solution of Eq. (31) is

[ aks1 (W1, Yk, Tht1, - - - Tn) dyg
1Yk, + Q2Yky, + - AkYky,

w=f W1 Yr—15Tht1, - Tn) + (32)

where y1,Y2,- -y are independent of each other, and x; = xj(y1,Y2, - yr) can be solved,
(1<ji<k).

Prove. By Z; Transformation, set w(z1,x2, - n) = w(y1,Y2, " Yks Tht1, Tht2, - Tpn) and
CLi(fL’l,l’Q, c ZEn) - a’i(ylvyZa Yk k41 Th+2, " 0 -Tn), where Yt = yt($173327 e xk), (t = ]-a 25 e k)a
and y1, o, - - - Y are independent of each other, then
k k k
A1Ug, + A2Ugy + ... + AUz, + k1 = G1Z Yty Uy, + azz Yty Uy + oo+ akz Yt Uy + Qg1
t=1 t=1 t=1

= <a1y1$1 +agy1,, ...t akylxk) Uy, + (alygxl +agy2,, ...+ akyg%) Uy, + ...
+ (alykxl + a2y, + ...+ ak?/kxk) Uy, + Qg1 = 0.
(33)

If the particular solutions u = y;(x1,---zx) of ajuy, + agug, + -+ + aguy, = 0 are all known
(1 <i<k—1), then Eq. (33) can be translated into

(awkm1 + a2yp,, +- -+ kak1k> Uy, + ap1 = 0. (34)
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A particular solution of Eq. (34) is

" [ aks1 (Y1, - Yk, Thg1s - - - Tn) Ay
W Yky, T A2Ykyy + -+ QkYk,,

(35)

To compute (35) we need to find a first differentiable y, = yx(x1, 2, - - - ¥) and make y1, y2, - - - Y
independent of each other, and can solve z; = z;(y1,¥2, - - - Yx), then the general solution of (31)
s (32). So the proposition is proved. O

Proposition 6. In R"™, if the particular solutions y; = y;(x1, 2, - Tk, u) of 1Yz, + a2Ys, +
4 ARYg, — Ag+1Yu = 0, which are independent of each other, are all known, (1 <i <k <mn),
then

AUy, + a2Ugy + ... + apUy, + agr1 =0, (36)

the general solution of Eq. (36) is
F (Y, y2s o Yk, Tht 1, Thg2, - - Tn) = 0, (37)
where aj = aj(x1, 2, - x), u) are arbitrary known functions (1 < j <k+1).
Prove. By Z; Transformation, set f(y1,y2, " Yk, ka1, Tkt - Tn) = 0 and
yi = yi (1,22, ... xp,u), (1<i<k<n) (38)
Y1,Y2, - - - Yy are independent of each other. According to (5), we get

A1 Ug; + AUy + - .o + ApUgz, + Gf11

k k k
_ Zi:l fyiyixl Zi:1 fyiyixg ZZ‘:1 fyiyixk o
= —a1— — a2 —p SRR () ey re— +ag1 =0
>ie1 fuYia > i1 fuYia >iz1 JyiYia
k k k k
= a1 fylioy + 02> Fyliny T oot > Fylin, — ara1 Y Fyli
i=1 i=1 i=1 i=1
= (a1y111 T a2y, + ot ARY1,, — ak+1?/1u) fu
+ (a1y24, + Q2Y24, + - - - T W20, — Cr1Y2,) Fyp + - --
+ (1Ykg, + O2Ukgy + - + WkYkz, — Wk+1Yk, ) fyp = 0.
Set
1 Yig, * 02Yig, + -+ OkYig, — Ut1Yi, = 0, (1=1,2,...k). (39)
For
1Yz, + 02Yy + -+ QYzy, — Q1Y = 0. (40)

If the particular solutions y; = y;(x1, x2, - - - ¢, u) of (40), which are independent of each other,
are all known, then the general solution of (36) is (37). So the proposition is proved. O

2.2. General solutions’ laws of some nonlinear partial differential equations with
variable coefficients

Methods for solving exact solutions of nonlinear PDEs are complex and diverse, such as
homogeneous balance method [11-13], multiple exp-function method [14,15], tanh-sech method
[16-18] and so on. For certain seemingly complex nonlinear PDEs, we can obtain their general
solution by using algebraic algorithm and some conclusions in the previous section. For example,
according to Proposition 1 we can get Proposition 7 directly:
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Proposition 7. In R"™, if the general solutions u = fi(yil,yiz,"‘yili,$k+17xk+27'",I;n) of
iy Uz, + QigUgy + -+ + @i Uz, = 0 are known, (1 <i<m,1<1[; <k—1), then

C C:
(@1, Ugy + Q1Ugy + .o+ Q1 Us, ) (a2, Upy + Q2oUzy + ..+ a2, Ug, )P ..

(41)
(g Ugy F+ Qg Uy + -+ oo+ Ay U, )™ = 0,
the general solution of Eq. (41) is
m
(U — fi (yil,yig, co Wi s ThA 1y Thg 2 - - - fvn)) = 0. (42)
i=1

According to Proposition 3 we can obtain directly Proposition 8:

Proposition 8. InR", if the general solutions u = g; (z1,...x%) fi (yil,yiz, co Yip s Thep s Thg 2, - - xn>
of @iy Ugy + QipUgy + -+ + Q4 Uy, + gy, u =0 are known, (1<i<m,1<l;<k-—1), then

c1 c2
(ahuxl + a1,y + ..o+ Q1 Uz, + aikHu) (a21ux1 + a2 Ugy + .-+ G2 Uy, + agkﬂu)

em (43)
... (amlugc1 + AUy + - oo+ Ay Ugy, + amk+1u) =0,
the general solution of Eq. (43) is
m
1T (U —gi(x1,...2k) fi (yi17yi27 e Yiy s Thet 1, T2, - ﬂ?n)) =0. (44)

i=1

According to Proposition 6 we can get directly Proposition 9:

Proposition 9. In R", if the general solutions fi(Yi,,Viys- " Yips Thtl, Tht2, - Tn) = 0 of
Ajy Ugy + AigUgy + -+ + Qi Ugy, + a4, = 0 are known, where a;; = aj; (x1, 2, xR, u) are arbi-
trary known functions (1 <i<m,1 <j<k+1), then

c1 c2
(ahuml +a, Uy, + ..o+ a1, Uy + aikH) (aglugg1 + ag,Ugy, + ...+ G2 Uy, + a2k+1)

em (45)
. (amluxl + g Uzy + oo+ Ay Ugy, + amk+1) =0,
the general solution of Eq. (45) is
m
I1 /i irsvins - Vi a1, g2, - ) = 0. (46)
i=1

3. General solutions laws of partial differential equations with constant coefficients

Here we will research the general solutions’ laws of PDEs with constant coefficients, which
are the special cases of PDEs with variable coefficients. In this section, if there is no special inter-
pretation, the acquiescent independent variables of R™ are x1,za, - p, (2 < k <n), Dy, = 8%1“
a;, b;,b; : and a;,;,...;,, are arbitrary known constants, c;, ¢;;, ¢;,;,l; and [, are arbitrary constants,

f and f; are arbitrary smooth functions (i,7,s =1,2,---).

Proposition 10. In R",

AUy, + Q2Ugy + ... + apUg, = A(T1,22,...2,), (2<k<n), (47)
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the general solution of Eq. (47) is

[ A1, y2, - Yks Tt 1, Tht2, - - - Tn) dYie

U = s Y2y - e Yk—1, Thtly Tht2s - - - Tyy) + , 48
f W92, Yh—1, Tht1, Ty n) e T a0 . T e (48)
where
Yi = ci1x1 + Cpxe + ..+ ez, (1 <i<k), (49)
o (y1,v2, ... Y, , - o (y1, o, - .-
(Y1, Y25 - Yhos Tt 15 Ty 2, - - Tn) O (Y1, 425 - Yk 40, (50)
0 (x1,x2,...2p) 0 (x1,x2,...2k)
e = —a92C;2 — azc;iz — ... — akcl-k7 (1 S i S k‘ _ 1) ' (51)
ai

Prove. According to Z; Transformation, set u (1,2, ... 2n) = w (Y1,Y2, - - - Yk Tht1s Tht2, - - - Tn)s
A(x1,22,...xn) = A(Y1,Y2, - - - Yk Tht 1, Tht2, - - - Tp) and

Y1 = €111 + C1222 + ... + C1p Tk
= C21%1 + C22X9 + ... + CokTk,
Y2 2121 2212 2k Lk (52)

Yk = Ck1X1 + Ck2X2 + .. . + Ckip Tk

and

a(y17y27 .. yk)
0, 50
8(%1,%2,...1};) ?é ( )

where ¢;; are undetermined constants. According to (50, 52), x; = xi(y1, Y2, - - - yx) always has a

unique solution (1 <4,j < k). So

k k

k
A Ugy + A2Ugy + - - . + UL, = G E Ci1Uy; + a2 E CigUy, + ...+ ag g Cik Uy,
i=1 i=1 i=1

= (a1011 + ascio + ...+ akclk) Uy + (a1621 + agcoo + ...+ a/k-CQk) Uy, 4+ ...

+ (a1cp1 + ascpe + . . .+ apcik) Uy, -

Set
aiciitagciz+. .. +agcip = a1c21+ac2+. .. +agCop = 1€ 1)1 +@2Ck—1)2+- . . +arcr_1) = 0.

We obtain
—agC;2 —asgcCiz — ... — QrC;
ci1 = 2642 3Ci3 k Zk" (1§Z§k_].) (51)
ai

Then

a1Ug, +a2ua;2+. . .+akuzk = (alckl + ascCpo + ...+ akckk) Uy, = A (yl, Yo, o Yky Tht1y Th4+25 - - - .Cl:n) .
(52)

A(Y1,Y2,--- Yk, & T yeeelm ), .
S AW 2, Yb T 1 B2 2n) Y% " so the general solution of

a1Ck1+a2CK2+...+aKCkk

The particular solution of (52) is u =
Eq. (47) is (48). O

According to Proposition 10, in R™,

A Uz, + A2Ugy + ... + apuy, = A(x1,22,...24,), (53)
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the general solution of Eq. (53) is

[ A(yr,y2, - yn) dyn

u = s Y2y Yn—1) + , 54
F 192 ynt) aicn1 + agcna + ... + apcpn (54)
where
Yi = Ci1T1 + Ci22 + ... + Cinn, (55)
i = —a9C;2 —asciz — ... — akcik’ (1 < i <n-— 1) ' (56)
ai
According to Proposition 10 we can get Proposition 11:
Proposition 11. In R”,
a1y, + aUg, + ... + apuy, =0, (57)
the general solution of Eq. (57) is
U= f(Y1,Y2, - Yb—15 Tht 1, Thi2s - - - Tn) 5 (58)

where y; satisfy (49-51).
The proof of Proposition 11 is not complicated, the readers can try it.
According to Proposition 2 and 11, we can get directly Proposition 12:

Proposition 12. In R", if the general solution v = f(y1,Y2, ... Yk—1,Thk+1, Tk+2,---Tn) Of
(01Dg, +b2Dyy + ... + by Dy, ) u =0 is known, y; = y; (x1,...2x), (1 =1,2,...k — 1), then

(b1Dgy +b2Dyy + ...+ b Dy, )2u =0 (59)
the general solution of Eq. (59) is

w=f1 Y1y Y1, Thtls---Tpn) + (121 + coxa + ... + k) fo (Y1, -+ Yk—1, Tht1,-- - Tn). (60)

According to Conjecture 2, we may present Conjecture 4:

Conjecture 4. In R", if the general solution u = f(y1, - Yk—1,Tkt1, - Tn) Of (b1 Dy +
baDy, + -+ + by Dy, )u = 0 is known, then the general solution of

(b1Dg, + b D, + ... + 0Dy, )™ u = 0 (61)
18
m .
u = Z (61'1171 + Ccijoxo + ...+ Cikl‘k)z_lfi (yl, e Yk—1s Tht1y- - :L'n) . (62)

i=1

In R"™, for the mth-order linear PDE with constant coefficients

E o (Biendg)
a7/112---'5ku1‘112...$k - 07 (63)
i1+io+...+ig=m
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where 7; are natural number, 1 < j < k <n. If Eq. (63) can be translated into

(thII + blgD:rg + ...+ blkak) (b21D11 + bQQDIQ + ...+ kaDmk)

(64)
oo (b Day + by Dy + ...+ by Dy, ) u = 0.
According to Proposition 11, we can get the general solution of Eq. (63) is
m
u = Zfr (yrlvym, e Yrp 1 T4, - - $n) s (1 <r< m) , (65)
r=1
where
Ypy = Cr @1+ Crpy@o+ ...+ o0k, (1<s<k—-1), (66)
Crsl _ _b520r51 — b330252 — ... — bskcrsk ‘ (67)
s1
If Eq. (63) can be translated into:
q
1 . Dz, +bj,Day + ... + bj, Dy )PPu = 0, (68)
j=1
q
where ) p; = m, its general solution of conjecture may be written by Conjecture 3.
j=1
Proposition 13. In R",
a1y, + a2Ugy + ...+ AUy, + Ap+1U = 0 (69)
the general solution of Eq. (69) is
—ap 1T
U = f(y17y27"'yk—laxk+laxk+27‘"xn)zlie @i } (70)

=1

where l; are arbitrary constants, and y; satisfy (49-51).

Prove. According to Z3 Transformation, set u (x1,...2,) = g (1, ... 2k) b (Y1,Y2, - - - Yks Tht1, Tht2s - -

Yi = ¢i1T1 + ¢iaxo + ... + cipxp and

9 (y1,y2,- - Yr)
0. 50
G(wl,:vg,...a:k) ?é ( )

So

a1z, + a2z, + ...+ agtg, + ap1u
k k k
= a1gnh+a19Y  cithy, + asga,h + a2g)  ciohy, + ...+ Grga b+ arg Y Cirhy, + apy1gh
i=1 i=1 i=1
= (aic11 + agciz + ... + agciy) ghy, + (a1co1 + agean + ... + arcar) ghy, + ...
+ (a1ck1 + agcpa + - .. + agcrr) ghy, + (@192, + a2y + - - + axGz, + axr19) h = 0.

Set
—agC;o — azCi;y — ... — ApC;
a

And set
19z, + 2Gzy + - + QGa;, + akr19 = 0, (71)

. Tn),
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And set g(x1,---xr) = g(x;), (i =1,2,---k), Then

“9%+1%4

192, + @20z, + - + QkGay, + k119 = Qige, + apr19 =0 =g (z;) = lie = (72)
k —ap11T;
where [; are arbitrary constants. Namely g (z1,...25) = >_ l;e % is a particular solution of
i=1

19z, + @29z, + ... + args, + apy19 = 0, Thus
A1 Uy, + A2Ugy + . .. + ARy, + ap1u = (a1ck1 + ascka + . .. + agcrr) ghy, = 0= hy, = 0.

Namely
h=fWivy2, - Yk—1,Tht1s Tht2s---Tn),

where f is an arbitrary first differentiable function, so the general solution of Eq. (69) is

i=1

According to Proposition 4 and 13, we can get Proposition 14 directly:
Proposition 14. In R",
(b1Dy, +boDyy + ... + bp Dy, + bpy1)*u = 0, (73)

the general solution of Eq. (73) is

2 .
U= Z (sj121 + sjo22 + ... + sjkmk)j_lfj (Y1, -« - Yk—1s Tht1y- - - Tn) Z lie_bkbitm, (74)
j=1 i=1
where l;, sj are arbitrary constants (1 <r,i < k), and y; satisfy (49-51).
According to Proposition 14, we may present Conjecture 5:
Conjecture 5. In R"”,
(b1 Dy, + bsDgy + ... + by Dy, + bpy1)™u =0 (75)
the general solution of Eq. (75) is
m ) —bp41%;
u = Z (sj171 + 8202 + ... + Sjkﬂﬁk)rlfj (Y1, Yh—1, Tht 15 - - - Tn) ZlieT, (76)
j=1 i=1

where l;, sj are arbitrary constants (1 < r,i < k), and y; satisfy (49-51).
In R™, for the mth-order linear PDE with constant coefficients

g (tedg)
§ a/217»2-~-2ku.§;‘1932...x13 =Y, (77)
0<i1+io+...+ip<m



where 7; are natural number, 1 < j < k <n. If Eq. (77) can be translated into
(bllDfl + blszQ + ...+ blkDmk + b1k+1) (b2le1 + bgszQ + ...+ kaDmk + b2k+1)
oo (bmy Dy + by Day + ... 4 by, Doy 4 by, ) u = 0.

By Proposition 13, the general solution of Eq. (77) is

m k 7bjk+lzi
_ L: by,
u = fT (y’r‘17y7‘27"'y’r‘k_laxk+17--~xn) ]ie v )

r=1 i=1

where y, satisfies (66-67), (1 <s<k—1).
If Eq. (77) can be translated into:

q
(bj1Dx1 + ijDx2 + ...+ kaka =+ bjk+1)pju =0,
7j=1

q
where ) p; = m, its general solution of conjecture may be written by Conjecture 5.
j=1

Proposition 15. In R”,

AUy, + Uy, + ...+ apuy, = A(u)
the general solution of Eq. (81) is

W, y2s o Yy Tht 1, Thg2, - - - Tn) = 0,

where A(u) is an arbitrary known function, and

a;c;1 + ascio + ...+ apCik

A du,

Yi = Ci1T1 + o2 + ... + CipTE — /

a(y17y27 .. yk)
G(xl,xg, .. :L‘k)

40,

cij which satisfy (50) are relatively arbitrary constants (1,5 € {1,2,---k}).

Prove. According to Z; Transformation, set f(y1,v2, Yk, Tk+1, Tht2, - Tn) = 0 and
Yi = ci1r1 + cpxa + ...+ e+ Bi(w), (1=1,2,...k),

Y1,Y2, - - -y are independent of each other. According to (5), we get

k k k
o Zi:l ci1 fy; Zi:l ciafy; Zi:1 Cik fy; N
A1 Ugy + A2Ugy + - .- + AUz, = —a1 % —ax = IR ey e
Zi:l B;, fyi Zi:l B;, fyi Zi:l B;, fyz-
k k k k
= a1 _cify a2 cofy+...tary cinfy + AW Bify,
i=1 i=1 i=1 i=1

= (a1011 + ascio+ ...+ arcik + BluA) fy1 + (a1621 + agcog + ... + agpcCop + B2uA) fy2 + ...

+ (a1cp1 + ascpe + . . . + arcir, + B, A) fy, =0,

where B;, = dd]ii’ set

aiCil+a20i2+...+ak0ik+BiuA:0, (i:1,2,...k‘).

16

(78)

(81)

(37)
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Then

aiCi1 + a2cCig + ... + arCig
B; (u) = —/ A du. (86)

So the general solution of Eq. (81) is (37)

f(ylayQ)'"yk7xk+17xk+27”'x’n) :O) (37)

where y; satisfy (50, 82). O

It is not difficult to verify that the incomplete general solution of (81) only be got by using
the characteristic equation method.

For some special nonlinear PDEs with constant coefficients, their general solutions can be
obtained by similar methods in 2.2 section, we will not specifically study here.

4. Conclusions

In this paper, we first prove a new theorem for the independent variable transformational
equations, that is, the independent variable transformation not only does not change the linearity
or non-linearity of the original PDESs, but also does not change their order.

We propose the concept of the banal PDE and the non-banal PDE, and then use the proposed
four kinds of Z Transformations to obtain the plentiful laws of general solutions of the linear
PDEs with variable coefficient and constant coefficients, and get some laws of general solutions
of the nonlinear PDEs, and present five new guesses.

The characteristic equation method is a basic method to solve first order linear and quasilin-
ear PDEs. By comparing with the Z Transformations, we can find that it has many limitations,
such as using it cannot get the general solutions of the first order linear PDEs (31.47), cannot
obtain the complete general solutions of (57,81) and so on.
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