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Abstract  
The quasi-exact solvability of symmetrized quartic anharmonic oscillators 
has been studied first by Znojil [2] and then by Quesne [3]. In this work, 
we examine the solvability of these models using, as basic parameter, the 
energy-dependent, constant (i.e. position-independent) term of a quotient 
polynomial. We examine the cases n=0 and n=1, and we show that our 

results are in agreement with those of Quesne. For n=2, following a 
different path from that of Znojil, we derive the cubic equation that our 

parameter satisfies and for the case it has a root at zero, we follow the zero 
root to obtain an even-parity, ground-state wave function and an odd-
parity, third-excited-state wave function. As in the case of the sextic 

anharmonic oscillator [6], the straightforwardness and transparency of the 
analysis demonstrates the eligibility of the quotient polynomial as a 

solvability tool of polynomial oscillators. 
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Introduction 
Within the framework of the Bethe ansatz [7], the solvability of one-dimensional, 
attractive at (least at) long distances, smooth and real polynomial potentials can be 
examined using a quotient polynomial [5, 6]. 
In this context, the bound energy eigenfunctions of the potential that can be found in 
closed form are given by the ansatz 

( ) ( ) ( )( )2; , expn n mx m n A p x g xψ =% % %  (1) 

with ( )np x%  being a dimensionless, real monic polynomial of degree 0n ≥ , and 

( )2mg x%  an also dimensionless, real polynomial of degree 2m  with negative leading 
coefficient, where the tilde indicates a dimensionless quantity [5]. 
The polynomial ( )np x%  satisfies the differential equation [5] 

( ) ( ) ( ) ( ) ( ) ( )2 2 12 ;n m n nmp x g x p x q x n p x−
′′ ′ ′+ = −% % % % %  (2) 

where ( ) ( )2 1 ;mq x n−
%  is the quotient polynomial, a ( )2 1m − -degree polynomial whose 

coefficients depend on n  [5]. 
In [5], we examine the case where m  is a positive integer, and thus both the 
exponential and the quotient polynomials are of even-degree. 

If 1
2

m = , then ( )deg 1q = − , i.e. ( )1 ;q x n− %  is not a polynomial, and the potential is not 

polynomial either. We’ll discuss this case in a separate work. 
If 1m ≥ , then ( ) ( )2 1 ;mq x n−

%  is still a polynomial even if m  is half-integer. 
The potential is given by the general expression [5] 

( ) ( ) ( ) ( ) ( )2
2 2 2 1; , ;m m mV x m n g x g x q x n E−

′ ′′= + − +% %% % % %  (3) 

with ( ) ( )deg 2 2 1V m= − . 

The case m=3/2 – Symmetrized quartic anharmonic oscillators 

If 3
2

m = , then ( )deg 4V = , i.e. the potential is quartic, and ( )deg 1q = , i.e. the 

quotient polynomial is a linear polynomial. 
Then, the potential (3) takes the form 

( ) ( ) ( )2
3 3 1

3; , ;
2

V x n g x g x q x n E  ′ ′′= + − + 
 

% %% % % %  (4) 

We want the potential to be symmetric, i.e. of even parity, and thus the energy 
eigenfunctions ( ); ,x m nψ %  have definite parity [8], i.e. they are of either even or odd 
parity. 
Then, from (1), the exponential part ( )( )2exp mg x%  must be of even parity, otherwise 

( ); ,x m nψ %  does not have definite parity, and then the exponential polynomial ( )2mg x%  
must also be of even parity. 
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Then, again from (1), ( ); ,x m nψ %  and ( )np x%  have the same parity, i.e. the energy 

eigenfunctions are of even/odd parity if and only if the polynomials ( )np x%  are of 
even/odd parity. 
Then, we construct the following symmetrized, and thus of the desired even-parity, 
exponential polynomial of degree 3, 

( )
2

3 23 2
3 13 2

g gg x x x g x= − + +% % % %  (5) 

with 3 0g ≠ . 

In (5), the factors 1
3

 and 1
2

 are put in for convenience. 

The constant term 0g  of the exponential polynomial corresponds to a constant 
exponential term ( )0exp g , which can be incorporated into the normalization constant 

nA  of ( ); ,x m nψ % , and thus, without loss of generality, we omit the constant term of 
the exponential polynomial. 
Also, the eigenfunction ( ); ,x m nψ %  must be square integrable, because it describes a 

bound state, and thus the exponential part ( )( )3exp g x%  must vanish at ±∞ , and thus 

( )3g ±∞ = −∞ , which is assured by the negativity of the leading coefficient 
2

3

3
g

− . 

Since both the potential and the exponential polynomial are of even parity, from (4) 
we see that the quotient polynomial is also of even parity*, and since it is linear, it will 
have the form 

( ) ( ) ( )1 1 0;q x n q n x q n= +% %  (6) 

* Since ( )3g x%  is of even parity, ( )3g x′ %  is of odd parity, but then ( )2
3g x′ %  is 

again of even parity. 

Also, ( )3g x′′ %  has the same parity as ( )3g x% , i.e. it is of even parity. 

Since from (4), ( ) ( ) ( )2
1 3 3

3; ; ,
2

q x n g x g x E V x n ′ ′′= + + −  
 

% %% % % % , we derive that 

( )1 ;q x n%  is of even parity, as sum of even-parity polynomials. 

As in the case of the sextic anharmonic oscillator [6], the quotient polynomial 
( )1 ;q x n%  has no intermediate terms, i.e. it is a binomial with a leading and a constant 

term. 
As discussed in [5], if the quotient polynomial has intermediate terms, we cannot find 
more than one energy eigenfunction of each of the respective potentials in closed 
form, which is the simplest – and in this sense a trivial – case of quasi-exact 
solvability. 
For 0x >% , (6) becomes 

( ) ( ) ( )1 1 0;q x n q n x q n= +% %  
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Then 

( ) ( )1 1;q x n q n′ =%  

Thus, we have 

( ) ( )1 00 ;q n q n+ =  

( ) ( )1 10 ;q n q n+′ =  

Similarly, for 0x <% , (6) becomes 

( ) ( ) ( )1 1 0;q x n q n x q n= − +% %  

Then 

( ) ( )1 1;q x n q n′ = −%  

Thus, we have 

( ) ( )1 00 ;q n q n− =  

( ) ( )1 10 ;q n q n−′ = −  

We see that the quotient polynomial is continuous at 0, but its derivative has at 0 a 
finite jump equal to 

( ) ( ) ( )1 1 10 ; 0 ; 2q n q n q n+ −′ ′− =  (7) 

For 0x >% , the exponential polynomial (5) becomes 

( )
2

3 23 2
3 13 2

g gg x x x g x= − + +% % % %  

Then 

( ) 2 2
3 3 2 1g x g x g x g′ = − + +% % %  

( ) 2
3 3 22g x g x g′′ = − +% %  

Thus, we have 

( )3 10g g+′ =  

( )3 20g g+′′ =  

Similarly, for 0x <% , the exponential polynomial (5) becomes 

( ) ( ) ( )
2 2

3 2 3 23 32 2
3 1 13 2 3 2

g gg gg x x x g x x x g x= − − + + − = + −% % % % % % %  

Then 

( ) 2 2
3 3 2 1g x g x g x g′ = + −% % %  
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( ) 2
3 3 22g x g x g′′ = +% %  

Thus, we have 

( )3 10g g−′ = −  

( )3 20g g−′′ =  

We observe that ( )3g x′ %  has a finite jump at 0, equal to 

( ) ( ) ( )3 3 1 1 10 0 2g g g g g+ −′ ′− = − − = , 

but ( )3g x′′ %  is continuous at 0, since ( ) ( )3 30 0g g+ −′′ ′′= . 

Since ( ) ( )3 30 0g g+ −′ ′= − , and ( ) ( )3 30 0g g+ −′′ ′′= , the quantity ( ) ( )2
3 30 0g g′ ′′+  is 

continuous at 0, and it is equal to 2
1 2g g+ , i.e. 

( ) ( )2 2
3 3 1 20 0g g g g′ ′′+ = +  (8) 

Then, since the quotient polynomial is continuous at 0, from (4) we derive that the 

potential 3; ,
2

V x n 
 
 

% %  is continuous at 0. 

Thus, imposing the condition that the potential 3; ,
2

V x n 
 
 

% %  should vanish at 0, and 

using that 

( ) ( ) ( ) ( )1 1 0 10 ; 0 ; 0;q n q n q n q n+ −= = ≡ , 

(4) gives 

( ) ( ) ( ) ( ) ( ) ( )2 2
3 3 0 0 3 30 0 0 0 0g g q n E q n E g g′ ′′ ′ ′′+ − + = ⇒ = + +% %  

Using (8), the last equation becomes 

( ) 2
0 1 2q n E g g= + +%  (9) 

As in the case of smooth polynomial potentials [5], the constant term of the quotient 
polynomial is energy-dependent, and in this case, it is equal to the energy of the 
eigenstate described by the wave function (1) plus the constant 2

1 2g g+ . 
Let us now find the expression giving the leading coefficient ( )1q n  of the quotient 
polynomial. 
In the region 0x >% , using the expressions of the quotient polynomial and of the 
derivative of the exponential polynomial, the differential equation (2) is written as, for 

3
2

m =  , 

( ) ( ) ( ) ( ) ( )( ) ( )2 2
3 2 1 1 02n n np x g x g x g p x q n x q n p x′′ ′+ − + + = − +% % % % % %  (10) 

The polynomial ( )np x%  is of degree n . 
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As in the case of smooth polynomial potentials [5], we can incorporate, without loss 
of generality, the non-zero leading coefficient of ( )np x%  into the normalization 
constant of the energy eigenfunction. 
Then, in the positive region, where n nx x=% % , the leading term of ( )np x%  is nx% , and 

then the leading term of ( )np x′ %  is 1nnx −
% . 

Also, we have 

( )deg 2np n′′ = − , ( )( )2deg 1nx p x n′ = +% % , ( )( )deg nxp x n′ =% % , ( )( )deg 1np x n′ = −% , 

( )deg 1nxp n= +% , and ( )( )deg np x n=% . 

Then, the highest powers in x%  in both sides of (10) are of 1n +  degree, with one term 
in each side of the equation, with the respective coefficients being 2

32ng−  and 

( )1q n− . 
Since the coefficients of the same degree terms in both sides of (10) must be equal, 
we obtain 

( ) 2
1 32q n ng=  (11) 

In the region 0x <% , where x x= −% % , the leading term of ( )np x%  can be nx%  or nx− % , 

depending on whether the leading term of ( )np x%  is in absolute value and on whether 
n  is even/odd. 
Then, in the negative region, the leading term of ( )np x%  is, in general, nx± % , and the 

leading term of ( )np x′ %  is, in general, 1nnx −± % . 
In the region 0x <% , using the expressions of the quotient polynomial and of the 
derivative of the exponential polynomial, the differential equation (2) is written as, for 

3
2

m =  , 

( ) ( ) ( ) ( ) ( )( ) ( )2 2
3 2 1 1 02n n np x g x g x g p x q n x q n p x′′ ′+ + − = − − +% % % % % %  

As we did in the region 0x >% , equating the coefficients of the two ( )1n + -degree 
terms in x%  in the previous equation, we obtain 

( )( ) ( ) ( ) ( )2 2 2
3 1 3 1 1 32 1 2 2g n q n g n q n q n ng± = − − ± ⇒ ± = ± ⇒ =  

We see that the leading coefficient of the quotient polynomial is the same in the 
positive and negative regions, as expected, since the quotient polynomial is of even 
parity. 

The two continuity conditions 

The potential 3; ,
2

V x n 
 
 

% %  is continuous everywhere, and thus both the energy 

eigenfunction 3; ,
2

x nψ  
 
 

%  and its derivative must be continuous everywhere [1]. 
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Using (1) for 3
2

m = , the condition that 3; ,
2

x nψ  
 
 

%  is continuous at 0, i.e. 

3 30 ; , 0 ; ,
2 2

n nψ ψ− +   =   
   

, 

gives 

( ) ( )( ) ( ) ( )( )3 30 exp 0 0 exp 0n n n nA p g A p g− − + +=  

Using that 0nA ≠  and ( ) ( )3 30 0 0g g− += = , the previous equation becomes 

( ) ( )0 0n np p− +=  (12) 

i.e. the polynomial ( )np x%  is continuous at 0. 

Using again (1) for 3
2

m = , the first derivative of 3; ,
2

x nψ  
 
 

%  is 

( ) ( )( )( ) ( ) ( )( ) ( ) ( ) ( )( )3 3 3 3
3; , exp exp exp
2 n n n n n nx n A p x g x A p x g x A p x g x g xψ   ′ ′ ′′ = = + = 

 
% % % % % % % %

( ) ( ) ( )( ) ( )( )3 3expn n nA p x p x g x g x′ ′= +% % % %  

That is 

( ) ( ) ( )( ) ( )( )3 3
3; , exp
2 n n nx n A p x p x g x g xψ   ′ ′′ = + 

 
% % % % %  

Using the previous relation, the condition that 3; ,
2

x nψ  ′ 
 

%  is continuous at 0, i.e. 

3 30 ; , 0 ; ,
2 2

n nψ ψ− +   ′ ′=   
   

, 

gives 

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )3 3 3 30 0 0 exp 0 0 0 0 exp 0n n n n n nA p p g g A p p g g− − − − + + + +′ ′ ′ ′+ = +

 

Using that 0nA ≠  and ( ) ( )3 30 0 0g g− += = , the previous equation becomes 

( ) ( ) ( ) ( ) ( ) ( )3 30 0 0 0 0 0n n n np p g p p g− − − + + +′ ′ ′ ′+ = +  

Using that ( )3 10g g−′ = − , ( )3 10g g+′ = , and (12), the previous equation becomes 

( ) ( )( ) ( ) ( )1 10 0 0 0n n n np p g p p g− + + +′ ′+ − = +  

and thus 

( ) ( ) ( )10 0 2 0n n np p g p− + +′ ′= +  (13) 
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i.e. the first derivative of ( )np x%  has at 0 a finite jump. 
Note that if 1 0g = , i.e. if the linear term of the exponential polynomial vanishes, then 
the first derivative of ( )np x%  is continuous at 0. 

The recursion relation and the (n+1)-degree equation of q0(n) 
Using (11), (10) is written as 

( ) ( ) ( ) ( )( ) ( )2 2 2
3 2 1 3 02 2n n np x g x g x g p x ng x q n p x′′ ′+ − + + = − +% % % % % %  (14) 

This is the differential equation the polynomials ( )np x%  satisfy in the region 0x >% . 

In the region 0x >% , k kx x=% % , and thus for the terms of degree k , we have the 
coefficients 

( ) ( )( ) 22 1n kp x k k p +
′′ → + +%  

( ) ( ) ( ) ( )( )2 2 2
3 2 1 3 1 2 1 12 2 1 1n k k kg x g x g p x g k p g kp g k p− +

′− + + → − − + + +% % %  

( )( ) ( ) ( )( )2 2
3 0 3 1 02 2n k kng x q n p x ng p q n p−− + → − +% %  

Thus, equating the coefficients of the terms of degree k  in x%  in both sides of (14), we 
obtain 

( ) ( ) ( ) ( )( ) ( )( )2 2
2 3 1 2 1 1 3 1 02 1 2 1 1 2k k k k k kk k p g k p g kp g k p ng p q n p+ − + −+ + + − − + + + = − + ⇒

( )( ) ( ) ( ) ( )2 2
2 3 1 2 1 1 3 1 02 1 2 1 2 2 1 2k k k k k kk k p g k p g kp g k p ng p q n p+ − + −⇒ + + − − + + + = − −

 

Thus, we obtain the four-term recursion relation 

( ) ( ) ( ) ( )( ) ( ) 2
2 1 1 0 2 3 12 1 2 1 2 2 1k k k kk k p k g p q n kg p k n g p+ + −+ + = − + − + + − −  (15) 

Observe that if 1 0g = , i.e. if the linear term of the exponential polynomial vanishes, 
(15) becomes a three-term recursion relation, which is typical of a quasi-exactly 
solvable system [4, 6]. 
For 0k = , dropping 1p− , whose index is negative, we obtain from (15) 

( )2 1 1 0 02 2p g p q n p= − −  (16) 

For 1, 2,..., 2k n= − , all four terms are present in (15). 
For 1k n= − , dropping 1np + , whose index exceeds the degree of ( )np x% , we obtain 
from (15) 

( ) ( )( ) 2
1 0 2 1 3 20 2 2 1 4n n nng p q n n g p g p− −= − − + − −  

In the region 0x >% , 1np = , and thus the previous equation becomes 

( ) ( )( ) 2
1 0 2 1 3 22 2 1 4 0n nng q n n g p g p− −− − + − − =  (17) 

For k n= , dropping 1np +  and 2np + , whose indices exceed the degree of ( )np x% , we 
obtain from (15) 
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( )( ) 2
0 2 3 10 2 2n nq n ng p g p −= − + −  

Using again that 1np = , the previous equation becomes 

( )( ) 2
0 2 3 12 2 0nq n ng g p −− + − =  

Since 2
3 0g ≠ , we end up to 

( )0 2
1 2

3

2
2n

q n ng
p

g−

+
= −  (18) 

For 1k n= + , dropping 1 2,n np p+ + , and 3np + , whose indices exceed the degree of 

( )np x% , we obtain from (15) 

{

2
3

0 1

0 2 1 1 0 0nn n g p
 

= + − − ⇒ = 
 
14243  

i.e. for 1k n= +  the recursion relation (15) holds identically. 
This is expected, since for 1k n= + , we calculate the leading coefficient of the 
quotient polynomial, which we have precalculated and incorporated into the initial 
differential equation (14). 
Since for 1k n= +  the recursion relation (15) holds identically, we’ll use it for 

0,1,..,k n= , 

as we did in the case of the sextic anharmonic oscillator [6]. 
From (18), we see that 1np −  is a first-degree polynomial in ( )0q n . 
Then from (17), which is written as 

( ) ( )( ) 2
1 0 2 1 3 22 2 1 4 0n nng q n n g p g p− −− − + − − = ⇒

{ ( ) ( )
2

3

2 1
2 0 1 12 2 2

3 3 30

11
4 2 2n n n

g

n g ngp q n p p
g g g− − −

≠

−
⇒ = − − − , 

we see that 2np −  is a second-degree polynomial in ( )0q n . 
Thus, since 1np = , we have 

0np −  is a zero-degree polynomial in ( )0q n , 

1np −  is a first-degree polynomial in ( )0q n , 

2np −  is a second-degree polynomial in ( )0q n . 

Besides, the recursion relation (15) is written as 

( ) ( )( ) ( ) ( )( )2
3 1 0 2 1 1 22 1 2 2 1 2 1k k k kk n g p q n kg p k g p k k p− + +− − = + + + + + + =

( ) ( ) ( )( )0 2 1 1 22 2 1 2 1k k k kq n p kg p k g p k k p+ += + + + + + +  

Since 1 1 0k n k n≤ ⇒ − − ≤ − ≠ , and also 2
3 0g ≠ , we end up to 
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( ) ( ) ( )
( )

( )
( )( )
( )

12
1 0 1 22 2 2 2

3 3 3 3

1 2 11  (19)
2 1 1 1 2 1k k k k k

k g k kkgp q n p p p p
k n g k n g k n g k n g− + +

+ + +
= + + +

− − − − − − − −
 

Then, we can easily show by induction that 

kp  is a ( )n k− -degree polynomial in ( )0q n , for , 1,...,0k n n= −  

Indeed, for , 1, 2k n n n= − − , it holds. 
Then, assuming that 

2kp +  is a polynomial of degree ( )2 2n k n k− + = − −  in ( )0q n . 

1kp +  is a polynomial of degree ( )1 1n k n k− + = − −  in ( )0q n . 

kp  is a polynomial of degree n k−  in ( )0q n , 

from (19) we derive that 

1kp −  is a polynomial of degree ( )1 1n k n k− + = − −  in ( )0q n . 

Thus 

2p  is a polynomial of degree 2n −  in ( )0q n , 

1p  is a polynomial of degree 1n −  in ( )0q n , and 

0p  is a polynomial of degree n  in ( )0q n . 

Then, (16), i.e. the recursion relation (15) for 0k = , is a polynomial equation of 
degree 1n +  in ( )0q n , and thus it can have up to 1n +  real roots. 
Then, solving (9) for E% , i.e. 

( ) ( )2
0 1 2E q n g g= − +%  (20) 

we obtain the energies of the respective symmetrized quartic anharmonic oscillator 
(4), which thus can be up to 1n + , with n  being the degree of the polynomial ( )np x% . 
Since in the one-dimensional bound states there is no degeneracy [8], each energy 
corresponds to only one eigenstate, and thus, for every value of n , we can find up to 

1n +  eigenstates of the respective symmetrized quartic anharmonic oscillator (4). 
Having calculated the polynomial ( )np x%  in the region 0x >% , we find its expression 

in the region 0x <%  by using that ( )np x%  is of either even or odd parity, and it satisfies 
the two continuity conditions (12) and (13). 

Examples 

n=0 
The polynomial ( )0p x%  is of zero degree, i.e. it is a constant, which, in the region 

0x >% , is 1. 
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Since ( )0p x%  must have definite parity, it can be only of even parity, and then 

( )0 1p x =%  in the region 0x <% . 
The condition (12) is then satisfied, while the condition (13) gives 

1 10 0 2 0g g= + ⇒ =  

We see that the linear term of the exponential polynomial vanishes. 
Besides, for 0n = , 0k = , and the recursion relation (15) gives 

( )0 00 0q p= − , 

where we also used that 1 0g = . 
Since 0 1p = , we end up to 

( )0 0 0q =  

Then, from (20), the energy is 

2E g= −%  (21) 

Also, for 0n = , (11) gives that ( )1 0 0q = , and since ( )0 0 0q = , the quotient 

polynomial is zero, i.e. ( )1 ;0 0q x =% . 
Then, from (4) we have 

( ) ( )2
3 3

3; ,0
2

V x g x g x E  ′ ′′= + + 
 

% %% % %  

Then, using (21) and the expressions the first and second derivatives of ( )3g x%  take in 
the region 0x >%  for 1 0g = , the potential in the positive region – let us denote it by 
V+
%  – is 

( ) ( )22 2 2 4 4 2 2 2 3 2
3 2 3 2 2 3 2 2 3 3

3; ,0 2 2 2
2

V x g x g x g x g g g x g x g g x g x+
  = − + + − + − = + − − 
 

% % % % % % % % %  

That is 

4 4 2 3 2 2 2
3 2 3 2 3

3; ,0 2 2
2

V x g x g g x g x g x+
  = − + − 
 

% % % % % %  

Since the potential is symmetric, we end up to 

34 4 2 2 2 2
3 2 3 2 3

3; ,0 2 2
2

V x g x g g x g x g x  = − + − 
 

% % % % % %  (22) 

Also, the energy eigenfunction (1) becomes 
2

3 23 2
0

3; ,0 exp
2 3 2

g gx A x xψ
   = − +  

   
% % %  (23) 

Since it has no zeros, (23) is the ground-state wave function. 
Therefore, the ground state of the symmetrized quartic anharmonic oscillator (22) is 
described by the even-parity wave function (23) and has energy given by (21). 
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Setting 

1g b= − , 2

2
g a= , i.e. 2 2g a= , and 2

3 1g = , 

the energy (21), the potential (22), and the wave function (23) are respectively written 
as 

2E a= −%  

34 2 23; ,0 4 4 2
2

V x x a x a x x  = − + − 
 

% % % % % %  

3 2
0

3 1; ,0 exp
2 3

x A x axψ    = − +   
   

% % %  

in agreement with Quesne [3]. 

n=1 
The polynomial ( )1p x%  is of first degree, i.e. it is a linear polynomial, and thus it has 
two coefficients, 0p  and 1p . 
For 1n = , 0,1k = . 
For 0k = , the recursion relation (15) gives 

( )1 1 0 00 2 1g p q p= − −  

For 1k = , the recursion relation (15) gives 

( )( ) 2
0 2 1 3 00 1 2 2q g p g p= − + −  

In the region 0x >% , the leading coefficient of ( )1p x%  is 1, i.e. 1 1p = , and then the 
previous two relations become, respectively, 

( )1 0 02 1 0g q p− − =  (24) 

( )( ) 2
0 2 3 01 2 2 0q g g p− + − =  (25) 

(25) is written as 

( )( ) 2
0 2 3 01 2 2q g g p− + =  

Since 2
3 0g ≠ , the previous equation gives 

( )0 2
0 2

3

1 2
2

q g
p

g
+

= −  (26) 

This is the relation we obtain from (18) for 1n = . 
Substituting (26) into (24) yields 

( ) ( ) ( ) ( )0 2 0 2
1 0 1 02 2

3 3

1 2 1 2
2 1 0 2 1 0

2 2
q g q g

g q g q
g g
+ + 

− − − = ⇒ − + = ⇒ 
 

( ) ( )2 2
1 0 02 2

3 3

12 1 1 0
2

gg q q
g g

⇒ − + + =  
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Thus, ( )0 1q  satisfies the quadratic equation 

( ) ( )2 2
0 2 0 1 31 2 1 4 0q g q g g+ − =  (27) 

The discriminant of the trinomial in the left-hand side is 
2 2

2 1 34 16g g g+  

If the discriminant is non-negative, i.e. if 
2 2

2 1 34 16 0g g g+ ≥  

or, since 2
3 0g > , 

2
2

1 2
34

gg
g

≥ −  (28) 

the equation (27) has real roots, which are 

( ) 2 2
0 2 2 1 31 4q g g g g= − ± +  (29) 

Substituting (29) into (26), we obtain 
2 2

2 2 1 3
0 2

3

4
2

g g g g
p

g
± +

= −  

or 
2 2

2 2 1 3
0 2

3

4
2

g g g g
p

g
− +

=
∓

 

Thus, in the region 0x >% , the polynomial ( )1p x%  is 

( )
2 2

2 2 1 3
1 2

3

4
2

g g g g
p x x

g
− +

= +
∓

% %  (30) 

The linear polynomial (30) must have definite parity. 
i. If 

2 2 2 2 2 2
2 2 1 3 2 2 1 3 2 2 1 34 0 4 4g g g g g g g g g g g g− + ≠ ⇒ ≠ + ⇒ ≠ + ⇒∓ ∓

{ {
2

2 3
2

2 2 2 2
2 2 1 3 1 3 1

0

4 0 4 0
gg

g g g g g g g
≠

⇒ ≠ + ⇒ ≠ ⇒ ≠ , 

i.e. if 1 0g ≠ , the polynomial (30) can be only of even parity, and this happens if and 
only if, in the region 0x <% , 

( )
2 2

2 2 1 3
1 2

3

4
2

g g g g
p x x

g
− +

= − +
∓

% % , 

and then 
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( )
2 2

2 2 1 3
1 2

3

4
2

g g g g
p x x

g
− +

= +
∓

% %  (31) 

The condition (12) is then satisfied, while the condition (13) takes the form 
2 2

2 2 1 3
1 2

3

4
1 1 2

2
g g g g

g
g

− +
− = +

∓
 

or 
2 2

2 2 1 3
1 2

3

4
2

g g g g
g

g
− +

= −
∓

 (32) 

As a consequence of (32), 1 0g ≠ , and 2 2
2 2 1 34 0g g g g− + ≠∓  which again gives 

1 0g ≠ . Thus, the assumption that 2 2
2 2 1 34 0g g g g− + ≠∓  is consistent with (32), as 

expected. 
From (32), we obtain 

2 2
2 2 1 3

2
3 1

4 1
2

g g g g
g g

− +
= −

∓
, 

and the polynomial (31) becomes 

( )1
1

1p x x
g

= −% %  (33) 

ii. If 1 0g = , the equation (27) becomes 

( ) ( ) ( ) ( )( ) ( )2
0 2 0 0 0 2 01 2 1 0 1 1 2 0 1 0q g q q q g q+ = ⇒ + = ⇒ =  or ( )0 21 2q g= −  

Substituting into (26) the two values of ( )0 1q , we obtain, respectively, 

2
0 2

3

gp
g

= −  or 0 0p = , 

and thus, in the region 0x >% , 

( ) 2
1 2

3

gp x x
g

= −% %  or ( )1p x x=% % , 

respectively. 
Besides, for 1 0g = , the condition (13) takes the form ( ) ( )1 10 0p p− +′ ′= , and since in 

both previous cases ( )1 0 1p +′ = , we obtain ( )1 0 1p −′ = , i.e. the leading term of ( )1p x%  
in the negative region is also x% , in both cases. 
Then, since ( )1p x%  must have definite parity, it can be only of odd parity, and thus the 

accepted solution is the second, i.e. ( )1p x x=% % , which corresponds to 0 0p = , and thus 

( )0 21 2q g= − . 
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The linear polynomial ( )1p x x=% % , for x ∈% ¡ , satisfies both continuity conditions (12) 
and (13). 
Therefore, if 1 0g = , then 

( )0 21 2q g= −  (34) 

and 

( )1p x x=% %  (35) 

To summarize, 

If 
2

2
1 2

34
gg
g

≥ −  and 1 0g ≠ , then 

( ) 2 2
0 2 2 1 31 4q g g g g= − ± +  and ( )1

1

1p x x
g

= −% %  (even parity), with 

2 2
2 2 1 3

1 2
3

4
2

g g g g
g

g
− +

= −
∓

. 

If 1 0g = , then 

( )0 21 2q g= −  and ( )1p x x=% %  (odd parity). 

Note that in this case, the condition 
2

2
1 2

34
gg
g

≥ − , i.e. the non-negativity of the 

discriminant of (27), holds. 

 In the first case, i.e. if 
2

2
1 2

34
gg
g

≥ −  and 1 0g ≠ , solving the condition (32) for 

2g   yields 
22 2 2

2 2 2 2 2 23 3 3
2 2 1 3 2 2 1 3 2 2 1 3

1 1 1

2 2 24 4 4g g gg g g g g g g g g g g g
g g g

 
− + = − ⇒ − + = ± + ⇒ − + = + ⇒ 

 
∓

{
2

3

4 2 2 4 2
2 2 2 23 2 3 2 3 3 32

2 2 1 3 1 3 12 2 2
1 1 1 1 1 10

4 4 4 44 4
g

g g g g g g ggg g g g g g g
g g g g g g≠

⇒ + − = + ⇒ − = − ⇒ − = −  

Thus 
2

2 3
2 1

1

gg g
g

= − +  (36) 

Note 

For 2g  given by (36), the condition 
2

2
1 2

34
gg
g

≥ −  holds. 

Indeed, using (36), the previous condition becomes 
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22 4
2 4 23 3

1 1 1 3 6 4 3 22
1 1 3 1 31

1 2 2 2 2
3 3 1 3

2
2

4 4 4

g gg g g g
g g g g ggg

g g g g

 
− + + −  + − ≥ − = − = −  

That is 
6 4 3 2

1 3 1 3
1 2 2

1 3

2
4

g g g gg
g g

+ −
≥ −  

Since 2 2
1 34 0g g > , the previous inequality becomes 

( )3 2 6 4 3 2 3 2 6 4 3 2
1 3 1 3 1 3 1 3 1 3 1 34 2 4 2g g g g g g g g g g g g≥ − + − ⇒ − ≤ + − ⇒

( )26 4 3 2 3 2
1 3 1 3 1 32 0 0g g g g g g⇒ + + ≥ ⇒ + ≥ , which holds. 

Besides, from (29) we obtain 

( )2 2
2 1 3 2 04 1g g g g q+ = − −∓ , 

and substituting into (32), we obtain 

( ) ( ) ( )
2 2

2 2 0 3 3
1 2 0 0 22

3 1 1

1 2 2
2 2 1 1 2

g g q g gg g q q g
g g g

− − −
= − ⇒ − − = − ⇒ = − +  

By means of (36), the last equation becomes 

( )
2 2

2 23 3
0 1 1

1 1

21 2 2g gq g g
g g

 
= − − + + = 

 
 

That is 

( ) 2
0 11 2q g=  (37) 

By means of (36) and (37), (20) becomes, for 1n = , 
2 2

2 2 2 23 3
1 1 1 1

1 1

2 2g gE g g g g
g g

 
= − − + = − 

 
%  

That is 
2

2 3
1

1

2
gE g
g

= −%  (38) 

This is the energy of the eigenstate corresponding to the linear polynomial (33). 
Besides, for 1n = , from (11) we obtain ( ) 2

1 31 2q g=  and thus, using also (37), the 

quotient polynomial ( )1 ;1q x% , for the case where 
2

2
1 2

34
gg
g

≥ −  and 1 0g ≠ , is 

( ) 2 2
1 3 1;1 2 2q x g x g= +% %  (39) 

Also, by means of (36), the exponential polynomial (5) becomes 
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( )

2
2 3

12 2 3 2
3 32 23 3 1 31

3 1 1
13 2 3 2

gg
g g g ggg x x x g x x x g x

g

− +
− +

= − + + = − + +% % % % % % %  

That is 

( )
2 3 2

3 23 1 3
3 1

13 2
g g gg x x x g x

g
− +

= − + +% % % %  

Then, for 0x >% , we have 

( )
3 2

2 2 1 3
3 3 1

1

g gg x g x x g
g

− +′ = − + +% % %  

( )
3 2

2 1 3
3 3

1

2
g gg x g x

g
− +′′ = − +% %  

Plugging the previous derivatives, the quotient polynomial (39) for 0x >% , and the 
energy (38) into the potential (4), we obtain 

( )
23 2 3 2 2

2 2 2 2 2 21 3 1 3 3
3 1 3 3 1 1

1 1 1

3; ,1 2 2 2 2
2

g g g g gV x g x x g g x g x g g
g g g+

 − + − +  = − + + − + − + + − =  
   

% % % % % %

( )
23 2 3 2

4 4 2 2 2 3 2 2 3 2 21 3 1 3
3 1 3 1 3 1 3 3

1 1

2 2 2 2g g g gg x x g g x g g x g g x g x
g g

   − + − +
= + + − − + − + − +   

   
% % % % % %

23 2 2 3 2 3 2
2 2 2 4 4 2 3 2 21 3 3 1 3 1 3

3 1 1 3 3 1 3
1 1 1 1

2 2 2 2 2g g g g g g gg x g g g x g x g g x
g g g g

  − + − + − + + − − + − = − + − −    
% % % %

( )
3 2 2

3 2 2 1 3 3
1 3 1

1 1

2
g g gg g x g

g g
− +

− + + + − =%

( )
3 2 6 4 3 2 3 2

4 4 2 3 2 3 21 3 1 3 1 3 1 3
3 3 1 32

1 1

2 2
2 2

g g g g g g g gg x g x x g g x
g g

− + + − −
= − + − +% % % %  

That is, the potential in the region 0x >%  is 

( )
3 2 6 4 3 2

4 4 2 3 2 3 21 3 1 3 1 3
3 3 1 32

1 1

43; ,1 2 2
2

g g g g g gV x g x g x x g g x
g g+

− + −  = + + − + 
 

% % % % % %  

Since the potential is symmetric, we end up to 

( )
3 2 6 4 3 2

34 4 2 2 3 21 3 1 3 1 3
3 3 1 32

1 1

43; ,1 2 2
2

g g g g g gV x g x g x x g g x
g g
− + −  = + + − + 

 
% % % % % %  (40) 

Therefore, the symmetrized quartic anharmonic oscillator (40) has an eigenstate of 
energy (38), which is described by the even-parity wave function 

2 3 2
3 23 1 3

1 1
1 1

3 1; ,1 exp
2 3 2

g g gx A x x x g x
g g

ψ
   − +  = − − + +    

     
% % % % %  (41) 

with 1 0g ≠ . 
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Observe that we’ve expressed the potential, the energy, and the wave function in 
terms of 1g  and 3g  only, 2g  does not appear. 

If 1 0g < , then 
1

1 0x
g

− >% , and then the wave function (41) has no (real) zeros, and 

thus it describes the ground-state of the symmetrized quartic anharmonic oscillator 
(40). 

If 1 0g > , then the equation 
1

1x
g

=%  has two real roots, at 
1

1x
g

= ±% , and then (41) has 

two zeros, and thus it describes the second-excited state of the symmetrized quartic 
anharmonic oscillator (40). 
Setting 

1g b= − , 2

2
g a= , i.e. 2 2g a= , and 2

3 1g = , 

the energy (38), the potential (40), and the wave function (41) are respectively written 
as 

( )
3

2 21 1 2 12 2 bE b b
b b b

+
= − − = + =

−
%  

( ) ( ) ( )
( )

( )( )
3 6 3

3 34 2
2

1 1 43; ,1 2 2 1
2

b b b
V x x x x b x

b b
− − − + − −  = + + − − + =  −  −

% % % % % %

( )
3 6 3

34 2 3
2

1 1 42 2 1b b bx x x b x
b b

− − + +
= + + − − + =

−
% % % %

( )
3 6 3

34 2 3
2

1 4 12 2 1b b bx x x b x
b b
+ + +

= + + + −% % % %  

( )
( ) ( )

3
3 2

1

13 1 1; ,1 exp
2 3 2

b
x A x x x b x

b b
ψ

 − − +   = − − + + − =      − −     
% % % % %

3 3
3 32 2

1 1
1 1 1 1 1 1exp exp

3 2 3 2
b bA x x x b x A x x x b x

b b b b
   + +   = + − + − = + − − −      −      

% % % % % % % %  

in agreement with Quesne [3]. 
 In the second case, i.e. if 1 0g = , then ( )0 21 2q g= − , and then (20) gives, for 

1n = , 

23E g= −%  (42) 

The leading coefficient of the quotient polynomial is the same as in the previous case, 
since n  remains 1, and thus in this case the quotient polynomial is 

( ) 2
1 3 2;1 2 2q x g x g= −% %  (43) 

Also, for 1 0g = , the exponential polynomial (5) becomes 

( )
2

3 23 2
3 3 2

g gg x x x= − +% % %  
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Then, in the region 0x >% , we have 

( ) 2 2
3 3 2g x g x g x′ = − +% % %  

( ) 2
3 3 22g x g x g′′ = − +% %  

Plugging the previous derivatives, the quotient polynomial (43) for 0x >% , and the 
energy (42) into the potential (4), we obtain 

( ) ( )22 2 2 2
3 2 3 2 3 2 2

3; ,1 2 2 2 3
2

V x g x g x g x g g x g g+
  = − + − + − − − = 
 

% % % % % %

4 4 2 2 2 3 2
3 2 2 3 32 4g x g x g g x g x= + − −% % % %  

That is, the potential in the region 0x >%  is 

4 4 2 3 2 2 2
3 2 3 2 3

3; ,1 2 4
2

V x g x g g x g x g x+
  = − + − 
 

% % % % % %  

Since the potential is symmetric, we end up to 

34 4 2 2 2 2
3 2 3 2 3

3; ,1 2 4
2

V x g x g g x g x g x  = − + − 
 

% % % % % %  (44) 

Therefore, the symmetrized quartic anharmonic oscillator (44) has an eigenstate of 
energy (42), which is described by the odd-parity wave function 

2
3 23 2

1
3; ,1 exp
2 3 2

g gx A x x xψ
   = − +  

   
% % % %  (45) 

The wave function (45) has one (real) zero, at zero, and thus it describes the first-
excited state of the symmetrized quartic anharmonic oscillator (44). 
Setting 

1g b= − , 2

2
g a= , i.e. 2 2g a= , and 2

3 1g = , 

the energy (42), the potential (44), and the wave function (45) are respectively written 
as 

6E a= −%  

34 2 23; ,1 4 4 4
2

V x x a x a x x  = − + − 
 

% % % % % %  

3 2
1

3 1; ,1 exp
2 3

x A x x axψ    = − +   
   

% % % %  

in agreement with Quesne [3]. 
Regarding the case 1n = , we observe that the parameter 1g , i.e. the coefficient of the 
linear term of the exponential polynomial, determines the degree of the excitation of 
the one known eigenstate of the respective symmetrized quartic anharmonic 
oscillator. 
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If the parameter 1g  is negative, the one known eigenstate is the ground state, if it is 
zero, the one known eigenstate is the first-excited state, while if it is positive, the one 
known eigenstate is the second-excited state. 
We remind that, in the case 0n = , the parameter 1g  is zero and the one eigenstate we 
found was the ground state of the respective symmetrized quartic anharmonic 
oscillator. 
Note also that the symmetrized quartic anharmonic oscillators (22) and (44) differ 
only in the coefficients of their linear terms. This happens because, in both cases, 

1 0g = , and the respective exponential polynomials have the same form. 

n=2 
The polynomial ( )2p x%  is a second-degree polynomial, and thus it has three 
coefficients, 0 1,p p , and 2p . 
For 2n = , 0,1, 2k =  in the recursion relation (15). 
For 0k = , the recursion relation (15) gives 

( )2 1 1 0 02 2 2p g p q p= − −  

Since 2 1p =  in the region 0x >% , the previous equation becomes 

( )1 1 0 02 2 2g p q p= − −  (46) 

in agreement with (16) for 2n = . 
For 1k = , using again that 2 1p =  in the region 0x >% , we obtain from (15) 

( )( ) 2
1 0 2 1 3 00 4 2 2 4g q g p g p= − − + −  (47) 

For 2k = , using again that 2 1p =  in the region 0x >% , we obtain from (15) 

( )( ) 2
0 2 3 10 2 4 2q g g p= − + −  

Since 2
3 0g ≠ , the previous equation gives 

( )0 2
1 2

3

2 4
2

q g
p

g
+

= −  (48) 

in agreement with (18) for 2n = . 
Substituting (48) into (47) yields 

( )( ) ( )0 2 2
1 0 2 3 02

3

2 4
0 4 2 2 4

2
q g

g q g g p
g
+ 

= − − + − − = 
 

( )( ) ( )0 2 2
1 0 2 3 02

3

2 4
4 2 2 4

2
q g

g q g g p
g
+

= − + + −  

Thus 

( )( ) ( )( )0 2 0 22
3 0 1 2

3

2 2 2 4
4 4

2
q g q g

g p g
g

+ +
= − +  

Since 2
3 0g ≠ , we finally obtain 
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( )( ) ( )( )0 2 0 21
0 2 4

3 3

2 2 2 4
8

q g q ggp
g g

+ +
= − +  (49) 

By means of (48) and (49), (46) becomes 

( ) ( ) ( )( ) ( )( )0 2 0 20 2 1
1 02 2 4

3 3 3

2 2 2 42 4
2 2 2

2 8
q g q gq g gg q

g g g
 + ++ 

= − − − − + =       

( ) ( ) ( ) ( )( ) ( )( )0 0 2 0 21 0 1 2 1 0
2 2 4

3 3 3

2 2 2 2 42 4 2
8

q q g q gg q g g g q
g g g

+ ++
= + − =

( ) ( ) ( ) ( )( )2 2
0 0 2 0 21 0 1 2

2 4
3 3

2 2 6 2 82 2 4
8

q q g q gg q g g
g g

+ ++
= − =  

( ) ( ) ( ) ( )3 2 2
0 2 0 2 0 1 0 1 2

4 2
3 3

2 6 2 8 2 2 2 4
8

q g q g q g q g g
g g

+ + +
= − +  

That is 

( ) ( ) ( ) ( )3 2 2
0 2 0 2 0 1 0 1 2

4 2
3 3

2 6 2 8 2 2 2 4
2

8
q g q g q g q g g

g g
+ + +

− + = ⇒

( ) ( ) ( )( ) ( )( )3 2 2 2 4
0 2 0 2 0 3 1 0 1 2 32 6 2 8 2 8 2 2 4 16q g q g q g g q g g g⇒ − + + + + = ⇒

( ) ( ) ( ) ( )( )3 2 2 2 4
0 2 0 2 0 3 1 0 1 2 32 6 2 8 2 8 2 2 4 16q g q g q g g q g g g⇒ + + − + = − ⇒

( ) ( ) ( ) ( )3 2 2 2 2 4
0 2 0 2 0 1 3 0 1 2 3 32 6 2 8 2 16 2 32 16q g q g q g g q g g g g⇒ + + − − = −  

Thus, ( )0 2q  satisfies the following cubic equation 

( ) ( ) ( ) ( ) ( )3 2 2 2 2 2
0 2 0 2 1 3 0 3 3 1 22 6 2 8 2 2 16 2 0q g q g g g q g g g g+ + − + − =  (50) 

As an odd-degree equation with real coefficients, (50) has at least one real root. 
If 2

3 1 22 0g g g− = , i.e. if 
2

3 1 22g g g=  (51) 

the equation (50) is written as 

( ) ( ) ( ) ( )( )2 2
0 0 2 0 2 2 12 2 6 2 8 4 0q q g q g g g+ + − = , 

and thus 

( )0 2 0q =  (52) 

or 

( ) ( ) ( )2 2
0 2 0 2 2 12 6 2 8 4 0q g q g g g+ + − =  

We’ll examine the root at zero. 
Since 2

3g  is non-zero, from (51) we derive that both 1g  and 2g  are non-zero, and 
thus all three parameters are non-zero. 
Substituting (52) into (48) and (49), we obtain, respectively, 
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2 2
1 2

3 1 2 1

2 2 1
2

g gp
g g g g

= − = − = −  

( )
( )22 22 2 2 2

2 2 12 1 31 2 2 1 2 2 1
0 22 4 4 2 2 2

3 3 3 1 2 1 21 2

22 2
4 42

g g gg g gg g g g g g gp
g g g g g g gg g

−− − −
= − + = = = =  

where we used (51). 
Thus, in the region 0x >% , 

( )
2

2 2 1
2 2

1 1 2

21
4

g gp x x x
g g g

−
= − +% % %  

The polynomial ( )2p x%  must have definite parity, and thus 

i. If ( )2p x%  is of even parity, then 

( )
2

2 2 1
2 2

1 1 2

21
4

g gp x x x
g g g

−
= − +% % %  (53) 

ii. If ( )2p x%  is of odd parity, then 0p  must vanish, i.e. 

2
2 12g g=  (54) 

and 

( )

2

1
2

2

1

1 ,  0

1 ,  0

x x x
g

p x
x x x

g

 − >= 
− − <


% % %

%

% % %

 (55) 

In this case, substituting (54) into (51) yields 
2 3

3 14g g=  (56) 

Note that (54) and (56) give 2g  and 2
3g  in terms of 1g . 

Also, from (54), we see that 2g  is positive, while from (56), we see that 3
1g  is also 

positive, which means that 1g  is positive too. 
Thus, for the odd-parity ( )2p x% , both 1g  and 2g  are positive. 
The polynomials (53) and (55) must satisfy the two continuity conditions (12) and 
(13). 
The condition (12) is satisfied by both polynomials (53) and (55). 
The first derivative of the even-parity polynomial (53) is 

( ) 1
2

1

12 ,  0

12 ,  0

x x
g

p x
x x

g

 − >′ = 
 + <


% %

%

% %

 

Also, from (53), we have 
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( )
2

2 1
2 2

1 2

20
4

g gp
g g

+ −
=  

Thus, for the even-parity ( )2p x% , the continuity condition (13) takes the form 

2
2 1

1 2
1 1 1 2

21 1 2
4

g gg
g g g g

 −
= − +  

 
 

Solving for 2g  yields, after a little algebra, 

2
2 1

2
3

g g= −  (57) 

Substituting (57) into (51) yields 

2 3
3 1

4
3

g g= −  (58) 

Thus, for the even-parity ( )2p x% , 2g  and 2
3g  are also given in terms of 1g . 

From (57), we see that 2g  is negative, and from (58) we see that 3
1g  is negative, 

which means that 1g  is also negative. 
Thus, for the even-parity ( )2p x% , both 1g  and 2g  are negative. 
Besides, using (57), the even-parity polynomial (53) becomes 

( )
2 2

2 21 1
2 2 21 1

2 4 2
2 21 1 1 1 1

1 1

2 2 2 61 1 1 13
2 84
3

g g g gp x x x x x x x
g g g g gg g

− − − −
= − + = − + = − +

− − 
 

% % % % % % %  

That is 

( ) 2
2 2

1 1

1 1p x x x
g g

= − +% % %  (59) 

with 1 0g < . 
The first derivative of the odd-parity polynomial (55) is 

( )2
1

12p x x
g

′ = −% %  

Also, from (55), ( )2 0 0p + = , and the continuity condition (13), for the odd-parity 

( )2p x% , is written as 

1 1

1 1 0 0
g g

− = − ⇒ =  

i.e. it holds. 
Thus, for ( )0 2 0q = , we obtain the even-parity polynomial (59) with the conditions 
(57) and (58), and the odd-parity polynomial (55) with the conditions (54) and (56). 



Constructing Quasi-Exactly Solvable Symmetrized Quartic Anharmonic Oscillators 
Using a Quotient Polynomial 

  1 October 2017  25 

The condition (12) ensures that the polynomials ( )np x%  are continuous at 0x =% , and 

thus they are defined at 0x =% , with their values at zero being equal to ( )0np −  or 

( )0np + , i.e. 

( ) ( ) ( )0 0 0n n np p p− +≡ =  

Thus, we can include the point 0x =%  in the domain of the two polynomials ( )2p x% . 
Then, the odd-parity polynomial (55) is written as 

( )

2

1
2

2

1

1 ,  0

1 ,  0

x x x
g

p x
x x x

g

 − ≥= 
− − ≤


% % %

%

% % %

 

or 

( ) ( ) 2
2

1

1sgnp x x x x
g

= −% % % %  (60) 

where ( )sgn x%  is the sign function, i.e. 

( )
1,  0

sgn 0,  0
1,  0

x
x x

x

>
= =
− <

%

% %

%

 

Now, for the two previous polynomials ( )2p x% , we’ll calculate the respective 
symmetrized quartic anharmonic oscillators, the energies, and the eigenfunctions. 
For the even-parity polynomial (59), substituting the conditions (57) and (58) into the 
exponential polynomial (5), we obtain 

( )
3 2

1 1
3 32 3 2 2

3 1 1 1 1

4 2
4 13 3

3 2 9 3

g g
g x x x g x g x g x g x

   − −   
   = − + + = − +% % % % % % %  

That is 

( ) 33 2 2
3 1 1 1

4 1
9 3

g x g x g x g x= − +% % % %  

Thus, we obtain the even-parity wave function 

32 3 2 2
2 1 1 12

1 1

3 1 1 4 1; ,2 exp
2 9 3

x A x x g x g x g x
g g

ψ
    = − + − +    

    
% % % % % %  (61) 

The negativity of 1g  ensures the square integrability of the wave function. 

Since 1g  is negative, 2
2 2

1 1 1

1 1 1 0x x
g g g

− + ≥ >% % , and thus the wave function (61) has 

no (real) zeros, and then it describes the ground state of the symmetrized quartic 
anharmonic oscillator that we’ll calculate now. 
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Using (11), the leading coefficient of the quotient polynomial for 2n =  is 

( ) 2
1 32 4q g= , which by means of (58) becomes ( ) 3

1 1
162
3

q g= − . 

Then, the quotient polynomial ( )1 ; 2q x%  for ( )0 2 0q =  is 

( ) 3
1 1

16;2
3

q x g x= −% %  (62) 

Also, substituting ( )0 2 0q =  and (57) into (20), we obtain the ground-state energy, 
which is 

2
1

3
gE = −%  (63) 

Observe that the ground-state energy is negative. 
Using the exponential polynomial we found, in the region 0x >%  we have 

( ) 3 2 2
3 1 1 1

4 2
3 3

g x g x g x g′ = − +% % %  

( ) 3 2
3 1 1

8 2
3 3

g x g x g′′ = −% %  

Plugging the previous derivatives, the quotient polynomial (62) for 0x >% , and the 
energy (63) into the potential (4), we obtain 

2 2
3 2 2 3 2 3 1

1 1 1 1 1 1
3 4 2 8 2 16; , 2
2 3 3 3 3 3 3

gV x g x g x g g x g g x+
     = − + + − − − − =     
     

% % % % % %

2
6 4 4 2 2 5 3 4 2 3 3 2 3 1

1 1 1 1 1 1 1 1 1
16 4 16 8 4 8 2 16
9 9 9 3 3 3 3 3 3

gg x g x g g x g x g x g x g g x= + + − + − + − + − =% % % % % % %

2
6 4 5 3 4 2 3 2 2 1

1 1 1 1 1 1
16 16 4 8 4 8 16 2
9 9 9 3 3 3 3 3 3

gg x g x g x g x g g   = − + + + − + + + − − =   
   

% % % %

6 4 5 3 4 2 3
1 1 1 1

16 16 28 20
9 9 9 3

g x g x g x g x= − + +% % % %  

That is 

6 4 5 3 4 2 3
1 1 1 1

3 16 16 28 20; , 2
2 9 9 9 3

V x g x g x g x g x+
  = − + + 
 

% % % % % %  

Since the potential is symmetric, we end up to 

33 3 4 2 2
1 1 1 1

3 4 4 4 7; , 2 5
2 3 3 3 3

V x g g x g x g x x   = − + +   
   

% % % % % %  (64) 

with 1 0g < . 
Therefore, the ground state of the symmetrized quartic anharmonic oscillator (64) is 
described by the even-parity wave function (61) and has energy given by (63). 
For the odd-parity polynomial (60), substituting the conditions (54) and (56) into the 
exponential polynomial (5), we obtain 
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( ) 33 2 2
3 1 1 1

4
3

g x g x g x g x= − + +% % % %  

Then, we obtain the odd-parity wave function 

( ) 32 3 2 2
2 1 1 1

1

3 1 4; , 2 sgn exp
2 3

x A x x x g x g x g x
g

ψ
    = − − + +    

    
% % % % % % %  

Using that ( )sgn x x x=% % % , we write the wave function as 

33 2 2
2 1 1 1

1

3 1 4; ,2 exp
2 3

x A x x g x g x g x
g

ψ
    = − − + +    

    
% % % % % %  (65) 

In this case, the square integrability of the wave function is ensured by the positivity 
of 1g . 

Since 1g  is positive, the wave function (65) has three zeros, at 0, and at 
1

1x
g

=% , i.e. 

at 
1

1x
g

= ±% , and thus it describes the third-excited state of the symmetrized quartic 

anharmonic oscillator that we’ll calculate now. 
Using (56), the leading coefficient ( ) 2

1 32 4q g=  of the quotient polynomial for 2n =  

becomes ( ) 3
1 12 16q g= , and then, the quotient polynomial for this case is 

( ) 3
1 1;2 16q x g x=% %  (66) 

Also, substituting ( )0 2 0q =  and (54) into (20), we obtain the third-excited-state 
energy, which is 

2
13E g= −%  (67) 

Observe that the third-excited-state energy is negative. 
Using the exponential polynomial we found, in the region 0x >%  we have 

( ) 3 2 2
3 1 1 14 2g x g x g x g′ = − + +% % %  

( ) 3 2
3 1 18 2g x g x g′′ = − +% %  

Plugging the previous derivatives, the quotient polynomial (66) for 0x >% , and the 
energy (67) into the potential (4), we obtain 

( )23 2 2 3 2 3 2
1 1 1 1 1 1 1

3; , 2 4 2 8 2 16 3
2

V x g x g x g g x g g x g+
  = − + + − + − − = 
 

% % % % % %

6 4 4 2 2 5 3 4 2 3 3 2 3 2
1 1 1 1 1 1 1 1 1 116 4 16 8 4 8 2 16 3g x g x g g x g x g x g x g g x g= + + − − + − + − − =% % % % % % %

( )6 4 5 3 4 2 3 3 3 4 2 3 2
1 1 1 1 1 1 1 116 16 4 20 4 4 4 5g x g x g x g x g g x g x g x x= − − − = − − −% % % % % % % %  

That is 

( )3 3 4 2 3 2
1 1 1 1

3; , 2 4 4 4 5
2

V x g g x g x g x x+
  = − − − 
 

% % % % % %  



Constructing Quasi-Exactly Solvable Symmetrized Quartic Anharmonic Oscillators 
Using a Quotient Polynomial 

  1 October 2017  28 

Since the potential is symmetric, we end up to 

( )33 3 4 2 2
1 1 1 1

3; , 2 4 4 4 5
2

V x g g x g x g x x  = − − − 
 

% % % % % %  (68) 

with 1 0g > . 
Therefore, the third-excited state of the symmetrized quartic anharmonic oscillator 
(68) is described by the odd-parity wave function (65) and has energy given by (67). 
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