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Abstract. Employing only basic arithmetic and algebraic techniques that would

have been known to Fermat, we identify certain specific requirements necessary
for c of (an + bn) = cn to be an integer, and establish that these requirements

can only be met at n = 2.
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1. Introduction

“It is impossible for a cube to be the sum of two cubes, a fourth
power to be the sum of two fourth powers, or in general, for any
number that is a power greater than the second to be the sum of two
like powers.

I have discovered a truly marvelous demonstration of this propo-
sition that this margin is too narrow to contain” [3].

Pierre de Fermat (1637 [2, p. 139])

In this paper, and operating on the premise that the construction and examination of
equivalent restatements of an equation (and its elements and inverse operations) may
reveal properties and relationships that might not otherwise be apparent (but are
fully applicable to the original equation), we construct such restatements and from

their analysis, are able to conclusively demonstrate that c = n
√

(an + bn) can never
be an integer for any value of n > 2.

Proposition 1.1. (Fermats Last Theorem) For all n > 2 there are no solutions
to the equation (an + bn) = cn where a, b, c, n are all positive integers.

Proof. Let a, b, n be positive integers with a and b coprime and of opposite parity and
n ≥ 2. With (an+bn) = (bn+an) then the base integer values to be assigned to a and

b are unrestrictedly open to assignment to a or b. Let a < b < c with c = n
√

(an + bn).
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Given (an + bn) = cn then (cn − an) = bn and (cn − bn) = an, and relatedly, for any1

a < b < c, a plus the difference between c and a; (i.e., (c− a)), and b plus the differ-
ence between c and b; (i.e., (c−b)), are both equal to c: c = (a+(c−a)) = (b+(c−b)).

Let r = (c − a) and s = (c − b). Then c can be restated in the form of a binomial,
c = (a + r) = (b + s), with

(cn − an) = ((a + r)n − an)

= [(a + (c− a))n − an],

and

(cn − bn) = ((b + s)n − bn)

= [(b + (c− b))n − bn].

From the binomial theorem we have that the expansion of (a+b)n proceeds according
to the form [1, p. 550],

(a + b)n = c0a
n + c1a

(n−1)b + c2a
(n−2)b2 + c3a

(n−3)b3 + . . .

+ c(n−1)ab
(n−1) + cnb

n,

and that for all (an + bn) = cn (let the symbol “=⇒” be read as “then”):

(a + b)n > cn =⇒ (a + b) > c;

(a + b)n = [an + c1a
(n−1)b + c2a

(n−2)b2 + c3a
(n−3)b3 + . . .(1.1)

+ c(n−1)ab
(n−1) + bn]

= [(an + bn) + c1a
(n−1)b + c2a

(n−2)b2 + c3a
(n−3)b3 + . . .

+ c(n−1)ab
(n−1)],

(c− a) < b;

(a + b) > c =⇒ ((a + b)− 1) > (c− 1)(1.2)

=⇒ ((a + b)− 2) > (c− 2)

. . .

=⇒ ((a + b)− a) > (c− a),

and (c− b) < a;

(a + b) > c =⇒ ((a + b)− 1) > (c− 1)(1.3)

=⇒ ((a + b)− 2) > (c− 2)

. . .

=⇒ ((a + b)− b) > (c− b).

Additionally, the binomial theorem gives us that the second term of a binomial is a
factor of every term of expansion except the leading term, and thus for all n ≥ 2,
(cn − an) is a product of (c− a) and (cn − bn) is a product of (c− b).

Without loss of generality, let (cn − an) serve as our illustration example:

1As we shall later demonstrate, the value of c can be arrived at independently of extracting
the nth root of (an + bn).
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(cn − an) = ((a + r)n − an)

= [(an + c1a
(n−1)r + c2a

(n−2)r2 + c3a
(n−3)r3 + . . .

+ c(n−1)ar
(n−1) + rn)− an]

= (an − an) + [c1a
(n−1)r + c2a

(n−2)r2 + c3a
(n−3)r3 + . . .

+ c(n−1)ar
(n−1) + rn]

= [c1a
(n−1)r + c2a

(n−2)r2 + c3a
(n−3)r3 + . . .

+ c(n−1)ar
(n−1) + rn]

[Replace r with (c − a).]

= [c1a
(n−1)(c− a) + c2a

(n−2)(c− a)2 + c3a
(n−3)(c− a)3 + . . .

+ c(n−1)a(c− a)(n−1) + (c− a)n]

= (c− a) · [c1a(n−1) + c2a
(n−2)(c− a)1 + c3a

(n−3)(c− a)2 + . . .

+ c(n−1)a(c− a)(n−2) + (c− a)(n−1)].

And with 2 being the least value of n, then (c − a) must divide b2 and (c − b) must
divide a2— and (c − a) can be comprised only of the distinct primes in b (and the
integer, 1, where b is odd); and (c − b) can be comprised only of the distinct primes
in a (and the integer, 1, where a is odd).

Then (c− a) can only be an element of the set of the unique products of the distinct
primes in b, less than b (see equations 1.1 and 1.2), of the same parity as b, that
divides b2; and (c− b) can only be an element of the set of the unique products of the
distinct primes in a, less than a (see equations 1.1 and 1.3), of the same parity as a,
that divides a2; with no power of any distinct prime in (c − a) or in (c − b) greater
than its power (respectively) in b2 or a2.

Let Pa denote the qualifying set (as set forth in the previous paragraph) of the unique
products of the distinct primes in a, and Pb the qualifying set of the unique products of
the distinct primes in b. Let n = 2. Let the Pythagorean triple, (a, b, c) = (28, 45, 53),
with 28 = (22 ·7) and 45 = (32 ·5), serve as our working values. Then

Pa = {2, 4, 8, 14, 16};
Pb = {1, 3, 5, 9, 15, 25, 27},

and the possibility2 of c being an integer exists only if (r = (c − a)) ∈ Pb and
(s = (c− b)) ∈ Pa, such that (a + r) = (b + s) = (a + (c− a)) = (b + (c− b)):

(a + (c− a)) = (b + (c− b))

[(28 + 25) = (45 + 8)]

53 = 53.

2It is possible for there to exist more than one complementary (c− a) and (c− b) value in Pa

and Pb such that (a + (c− a)) = (b + (c− b)). However, as we shall demonstrate, there can exist no
more than one pre-determinable (c−a) and (c−b) value in Pa and Pb that satisfies the requirements

for n
√

(an + bn) to be an integer.
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Consider, given (an + bn) = cn, then

[(an/an) + (bn/an)] = (cn/an) [(an/bn) + (bn/bn)] = (cn/bn)

[(a/a)n + (b/a)n] = (c/a)n [(a/b)n + (b/b)n] = (c/b)n

[1 + (b/a)n] = (c/a)n, [(a/b)n + 1] = (c/b)n;

cn = [an · (1 + (b/a)n)] cn = [bn · ((a/b)n + 1)],

and

c = [a · n
√

(1 + (b/a)n)] c = [b · n
√

((a/b)n + 1)].

Then

(c− a) = [(a · n
√

(1 + (b/a)n))− (a · 1)] (c− b) = [(b · n
√

((a/b)n + 1))− (b · 1)]

= [a · ( n
√

(1 + (b/a)n)− 1)]; = [b · ( n
√

((a/b)n + 1)− 1)],

with the difference between c, and a and b, attributable to the amount by which the
factors, n

√
(1 + (b/a)n) and n

√
((a/b)n + 1), exceed (a/a)n = 1 and (b/b)n = 1; and

n
√

(an + bn) can be an integer if and only if the difference between (b/b)n and (c/b)n

is equal to (a/b)n.

And since (c − a) must divide (cn − an) and (c − b) must divide (cn − bn) at n = 2;

and at n = 2, (c−a) = [a · (
√

((b/a)2 + 1)−1)] and (c− b) = [b · (
√

((a/b)2 + 1)−1)];

and c = n
√

(an + bn) an integer only if (c− a) ∈ Pb and (c− b) ∈ Pa, with no element
in Pa and Pb having a value greater than that in an and bn at n = 2, then it is at
n = 2 that the integers (c−a), (c− b), and c = (a+ (c−a)) = (b+ (c− b)) are defined
for all values of n.

Then at n = 2, where there does not exist (c − a) = [a · (
√

((b/a)2 + 1) − 1)] ∈ Pb

and (c − b) = [b · (
√

((a/b)2 + 1) − 1)] ∈ Pa, (c − a) and (c − b) cannot be integers
and there can exist no value of n for which c = (a+(c−a)) = (b+(c−b)) is an integer.

And where n = 2 and

(c− a) = [a · (
√

((b/a)2 + 1)− 1)] ∈ Pb and (c− b) = [b · (
√

((a/b)2 + 1)− 1)] ∈ Pa,

then (c− a) and (c− b) are both integers, and so too c = (a+ (c− a)) = (b+ (c− b)),

and c =
√

(a2 + b2) is an integer. And for all n > 2, it is this unique integer, raised to

the nth power, that (an+bn) must equal in order for n
√

(an + bn) to be an integer. To

avoid confusion with c = n
√
an + bn for n > 2, let ic denote the integer c =

√
(a2 + b2).

Where ((a/b)2 + 1) = (c/b)2 and c =
√

(a2 + b2) is an integer— with ic > b and
(a/b) < 1, then for each increase in n beyond 2, (a/b)n continually decreases while
(ic/b)

n continually increases; such that for all n > 2, ((a/b)n + 1) < (ic/b)
n, and

(an+bn) = [bn·((a/b)n+1)] can never equal the perfect nth power, (ic)
n = [bn·(ic/b)n];

and n
√

(an + bn) can never be an integer. �
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