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Abstract

Focusing on the properties and constraints of the decompositions of Fer-
mat’s equation and its elements —and employing only basic arithmetic
and algebraic techniques that would have been known to Fermat— we
identify certain specific requirements necessary for c, of (an + bn) = cn,
to be an integer, and establish that these requirements can only be met
at n = 2.
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JE Magee Fermat‘s Proof

1 Introduction

The decomposition of mathematical objects (integers, variables, equations, ex-
pressions or their elements, vectors, etc.) is a tool used in virtually all of math-
ematics, from geometry and algebra and number theory to the teaching of el-
ementary school math (decomposing 6,789 into 6 thousands + 7 hundreds + 8
tens + 9 ones).

While ‘decomposition‘ is generally characterized as the simplification or
breaking down of a selected object into its constituent sub-components (e.g.,
5 can be decomposed into [(1 + 1) + (1 + 1 + 1)]; 15 can be decomposed into
(3 · 5)), the critical usefulness of decomposition lies in the fact that it is always
the equivalent restatement of a selected mathematical object, expressed in terms
other than those of the original object.

Given the equation (p + q) = r, and the inverse operations (r − p) = q and
(r − q) = p; (r − p) and (r − q) can be viewed as decompositions (respectively)
of q and p, and can be further utilized to arrive at an equivalent to, and thus a
decomposition of, (p + q) and r; (p + q) = [(r − p) + (r − q)].

Such decompositions, particularly where they can be substituted in the orig-
inal equation, or employed (or further decomposed and employed) in new equa-
tions, have the significant potential of revealing properties and constraints that
might not otherwise be apparent, with any such properties and constraints in-
herent to the original object.

Pierre de Fermat’s margin note, 1637 [5, p. 139]:

“It is impossible for a cube to be the sum of two cubes, a fourth power
to be the sum of two fourth powers, or in general, for any number that
is a power greater than the second to be the sum of two like powers.

I have discovered a truly marvelous demonstration of this proposi-
tion that this margin is too narrow to contain” [7, p. 252][9].

Fermats Last Theorem. For all n > 2, there are no solutions to the
equation (an + bn) = cn where a, b, c, n are all positive integers.

Let c = n
√

(an + bn). Let a, b, n be positive integers with (a,b) coprime and of
opposite parity, a < b < c, and n ≥ 2. A discussion of the ”why” of these
constraints immediately follows.

If a and b are equal then an = bn and (an + bn) = (an + an) = 2an, and

n
√

(2an) = (
n
√

2 · n
√
an) = (

n
√

2 · a).

Given that for all n ≥ 2, n can be expressed in the form n = (v ·w) where v = 2

and w = (n/2), then n = (2 · (n/2)), and n
√

2 = 2·(n/2)
√

2 =
n/2
√

2
√

2 =
(n/2)

√√
2;
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and with the
√

2 an irrational non-integer [3, p. 20-21], and
(n/2)

√√
2 the ratio-

nal root of an irrational number, then the n
√

2 is irrational.

Demonstration

2
√

2 = (
√

2 = 1.41421356)

3
√

2 = 1.25992104 =
(2·(3/2))

√
2 =

(3/2)

√
(

2
√

2) =
(3/2)

√
(
√

2)

=
1.5
√

1.41421356 = (
√

1.41421356)(1/1.5) = 1.25992104

4
√

2 = 1.18920711 =
(2·(4/2))

√
2 =

(4/2)

√
(

2
√

2) =
(4/2)

√
(
√

2)

=
2
√

1.41421356 = (
√

1.41421356)(1/2) = 1.18920711

5
√

2 = 1.14869835 =
(2·(5/2))

√
2 =

(5/2)

√
(

2
√

2) =
(5/2)

√
(
√

2)

=
2.5
√

1.41421356 = (
√

1.41421356)(1/2.5) = 1.14869835.

. . .

Then the ( n
√

2 · a), the product of an irrational number and an integer, is also
irrational [2, p. 317], and n

√
(an + bn) being an integer is possible only if a and

b are not equal.

If a and b are both odd then a can be restated in the form (2x + 1); b in
the form (2y + 1); and c, an even integer, in the form 2z, where x, y, z are all
positive integers. Let the symbol ”⇒” be read as ”then”. Let n = 2:

(2z)2 = (2x + 1)2 + (2y + 1)2

4z2 = [(4x2 + 4x + 1) + (4y2 + 4y + 1)] = (4x2 + 4x + 4y2 + 4y + 2)

⇒ [4z2 − (4x2 + 4x + 4y2 + 4y)] = 2

2 = [4 · (z2 − (x2 + x + y2 + y))].

Alternately, with 2 the greatest common divisor (GCD) of

[4z2 = (4x2 + 4x + 4y2 + 4y + 2)],

then dividing both sides of our equation by 2 gives us

2z2 = (2x2 + 2x + 2y2 + 2y + 1)

= [(2 · (x2 + x + y2 + y)) + 1].

The first of our alternate resolutions gives us that 2 is equal to four times some
other positive integer, which is impossible; while our second resolution makes the
equally impossible declaration that an even integer is equal to an odd integer.
In both cases, z is ultimately equal to the square root of a non-integer, giving
us that where a and b are both odd, the square root of (a2 + b2) can never be
an integer.
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If two integers share a common multiple, M , and are raised to the nth
power, the integer M is irrelevant as to whether the nth root of their sum can
be an integer.

Let a, b, n and B.A.M. be positive integers with M common to B and A. Let
(B/M) = b and (A/M) = a. Then (An + Bn) = [(M · a)n + (M · b)n], and

n
√

(An + Bn) = n
√

[(M · a)n + (M · b)n]

= n
√

(Mn · an) + (Mn · bn)

=
n
√
Mn · n

√
(an + bn)

= M · n
√

(an + bn).

And where A and B are both even and a product of M– a power of 2; or M
is an odd factor common to A and B, the n

√
(An + Bn) will always resolve to

a product of the integer M times the nth root of the sum of the coprime ele-
ments of A and B (a and b) raised to the nth power, and it is only the nth root
of (an + bn) that determines if n

√
(An + Bn) can be an intege and only such

coprime values of a and b that we need consider in determining the veracity of
Fermat’s conjecture.

Then for all positive integers, a, b, c; where a and b are not equal, and a and b
are not both odd, and a and b do not share a common multiple, one of a and b
is always odd and the other even, with c always odd.

2 The Proof

Theorem 2.1 For all n > 2 there are no solutions to the equation (an+bn) = cn

where a, b, c, n are all positive integers.

Proof Given (an + bn) = cn then (cn − an) = bn and (cn − bn) = an. Since we
have that for any c, a plus the difference between a and c, and b plus the differ-
ence between b and c, are both equal to c, then c can be restated in the form of
a binomial, c = (a+(c−a)) = (b+(c−b)); with (cn−an) = [(a+(c−a))n−an]
and (cn − bn) = [(b + (c− b))n − bn].

From the binomial theorem1, we have that (a + b)n > ((an + bn) = cn) ⇒
[(a + b) > c, (c− a) < b, (c− b) < a]:

(an + bn) > cn ⇒ (a + b) > c;

(a + b)n = an + c1a
(n−1)b1 + c2a

(n−2)b2 + c3a
(n−3)b3

+ · · ·+ c(n−1)a
1b(n−1) + bn

= (an + bn) + c1a
(n−1)b1 + c2a

(n−2)b2 + c3a
(n−3)b3

+ · · ·+ c(n−1)a
1b(n−1),

1First proven by the Persian mathematician, al Karaji (953 - 1029 A.D) [5, p. 77].

4



JE Magee Fermat‘s Proof

(c− a) < b;

(a + b) > c⇒ ((a + b)− 1) > (c− 1)

⇒ ((a + b)− 2) > (c− 2)

. . .

⇒ [((a + b)− a) = b] > (c− a),

(c− b) < a;

(a + b) > c⇒ ((a + b)− 1) > (c− 1)

⇒ ((a + b)− 2) > (c− 2)

. . .

⇒ [((a + b)− b) = a] > (c− b).

and that the second term of a binomial is a factor of every term of expansion
except the leading term, giving us that for all n ≥ 2, (cn − an) is a product of
(c − a) and (cn − bn) is a product of (c − b). Letting (cn − an) serve as our
demonstration example:

Demonstration

(c2 − a2) = [(a + (c− a))2 − a2] = [a2 + 2a(c− a) + (c− a)2 − a2]

= [(a2 − a2) + 2a(c− a) + (c− a)2] = [2a(c− a) + (c− a)2]

= (c− a) · [2a + (c− a)].

(c3 − a3) = [(a + (c− a))3 − a3] = [a3 + 3a2(c− a) + 3a(c− a)2 + (c− a)3 − a3]

= [3a2(c− a) + 3a(c− a)2 + (c− a)3]

= (c− a) · [3a2 + 3a(c− a) + (c− a)2]

(c5 − a5) = [(a + (c− a))5 − a5]

= [a5 + 5a4(c− a) + 10a3(c− a)2 + 10a2(c− a)3 + 5a(c− a)4 + (c− a)5 − a5]

= [5a4(c− a) + 10a3(c− a)2 + 10a2(c− a)3 + 5a(c− a)4 + (c− a)5]

= (c− a) · [5a4 + 10a3(c− a) + 10a2(c− a)2 + 5a(c− a)3 + (c− a)4].
· · ·

With (cn − an) = ((an + bn)− an) = bn and (cn − bn) = ((an + bn)− bn) = an,
and with 2 being the least value of n, then (c − a) must divide b2 and (c − b)
must divide a2. . . and (c−a) can be comprised only of distinct primes in b (and
the integer ’1’ where b is odd), and (c − b) can be comprised only of distinct
primes in a (and the integer ’1’ where a is odd).

Then (c − a) can only be an element of the set of the unique products of the
distinct primes in b, less than b, of the same parity as b, that divides b2; and
(c− b) can only be an element of the set of the unique products of the distinct
primes in a, less than a, of the same parity as a, that divides a2; with no power
of any distinct prime in (c− a) or in (c− b) greater than its power in b2 or a2.
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Let the symbol “∈” be read as “in”, “is contained in”. Let Pa denote the
qualifying set of the unique products of the distinct primes in a, and Pb the
qualifying set of the unique products of the distinct primes in b. Let n = 2.
Using the Pythagorean triple, (28,45,53), as an example, with 28 = (22 ·7) and
45 = (32 ·5), we have

Pa = {2, 4, 8, 14, 16}
Pb = {1, 3, 5, 9, 15, 25, 27},

and the possibility2 of c = n
√

(an + bn) being an integer exists only if (c−a) ∈ Pb

and (c− b) ∈ Pa such that (a + (c− a)) = (b + (c− b)):

[(a + (c− a)) = (b + (c− b))]

(28 + 25) = (45 + 8)

53 = 53.

Consider, given (an + bn) = cn, then

[(an/ bn) + (bn/ bn)] = (cn/ bn) [(bn/ an) + (an/ an)] = (cn/ an)
[(a/b)n + (b/b)n] = (c/b)n [(b/a)n + (a/a)n] = (c/a)n

[(a/b)n + 1] = (c/b)n; [(b/a)n + 1] = (c/a)n;

cn = (an + bn) = [bn · ((a/b)n + 1)] = [an · ((b/a)n + 1)];

c = n
√
cn = n

√
(an + bn)) = [b · n

√
((a/b)n + 1)] = [a · n

√
((b/a)n + 1)],

with the difference between c, and a and b, attributable to the amount by
which the factors, n

√
((a/b)n + 1) and n

√
((b/a)n + 1), exceed (b/b)n = 1 and

(a/a)n = 1:

(c− a) = [a · ( n
√

((b/a)n + 1)− 1)];

(c− b) = [b · ( n
√

((a/b)n + 1)− 1)].

Let the symbol “N” represent the set of positive whole numbers/integers. Then

for any specified value of n, c = n
√

(an + bn) can be an integer, if and only if:

[((a/b)n + 1) = (c/b)n] and [((b/a)n + 1) = (c/a)n];

(c− a) ∈ Pb and (c− b) ∈ Pa;

((c− a) ∈ N) = [a · ( n
√

((b/a)n + 1)− 1)] and ((c− b) ∈ N) = [b · ( n
√

((a/b)n + 1)− 1)];

c = [(a + (c− a)) = (b + (c− b))] = [b · n
√

((a/b)n + 1)] = [a · n
√

((b/a)n + 1)];

cn = [(bn · ((a/b)n + 1)) = (bn · (c/b)n)] = [(an · ((b/a)n + 1)) = (an · (c/a)n)].

2(a+(c−a)) = (b+(c− b)) holds for all (c > b) and multiple complementary (c−a),(c− b)

values may exist in Pb, Pa— though with (c − a) = [a · ( n
√

((b/a)n + 1) − 1)] and (c − b) =

[b · ( n
√

((a/b)n + 1)− 1)] in N, only one matching (c−a) and (c− b) value can exist in Pb, Pa.
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Demonstration

Let n = 2:

((a/b)2 + 1) = (c/b)2

((28/45)2 + 1) = (53/45)2

(0.622222222 + 1) = 1.177777772

(0.38716049 + 1) = 1.38716049

1.38716049 = 1.38716049.

c = [b ·
√

((a/b)2 + 1)]

= [45 ·
√

((28/45)2 + 1)] = [45 ·
√

(0.622222222 + 1)]

= [45 ·
√

(0.38716049 + 1)] = (45 ·
√

1.38716049)

= (45 · 1.17777777).

= 53

c2 = [b2 · ((a/b)2 + 1)] = [452 · ((28/45)2 + 1)]

= [452 · (0.622222222 + 1)] = [452 · (0.38716049 + 1)]

= (2025 · 1.38716049) = 2809.

= 532

and
(c− a) = [a · ( n

√
((b/a)2 + 1)− 1)] = [28 · (

√
((45/28)2 + 1)− 1)]

= [28 · (
√

(1.607142852 + 1)− 1)] = [28 · (
√

(2.58290816 + 1)− 1)]

= [28 · (
√

(3.58290816)− 1)] = [28 · (1.89285714− 1)]

= (28 · 0.89285714).

= 25

(c− b) = [b · ( n
√

((a/b)2 + 1)− 1)] = [45 · (
√

((28/45)2 + 1)− 1)]

= [45 · (
√

(0.622222222 + 1)− 1)] = [45 · (
√

(0.38716049 + 1)− 1)]

= [45 · (
√

(1.38716049)− 1)] = [45 · (1.17777777− 1)]

= (45 · 0.17777777).

= 8.

While (c− a) = [a · ( n
√

((b/a)n + 1)− 1)] and (c− b) = [b · ( n
√

((a/b)n + 1)− 1)]
will always give us the complements to a and b, yielding c for any value of n,

c = 3
√

(a3 + b3) = 3
√

(283 + 453) = 3
√

(21952 + 91125) =
3
√

113077

= 48.35685999;

(c− a) = (48.35685999− 28) = 20.35685999;

(c− a) = [a · ( n
√

((b/a)n + 1)− 1)] = [28 · ( 3
√

((45/28)3 + 1)− 1)]

= [28 · ( 3
√

(1.607142853 + 1)− 1)] = [28 · ( 3
√

(4.15110240 + 1)− 1)]

= [28 · ( 3
√

5.15110240− 1)] = [28 · (1.72703071− 1)] = (28 · 0.72703071)

= 20.35685999,

7
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where c = n
√

(an + bn) is an integer, then (c − a) and (c − b) are also integers
and (c−a) must divide (c2−a2) = ((a2 + b2)−a2) = b2, and (c− b) must divide
(c2 − b2) = ((a2 + b2)− b2) = a2;
• And with (c− a), the divisor of b2, equal to [a · (

√
((b/a)2 + 1)− 1)], and

(c− b) the divisor of a2, equal to [b · (
√

((a/b)2 + 1)− 1)], with (c− a) ∈ Pb and
(c− b) ∈ Pa;
• And their being no possibility that for any n > 2, [a · ( n

√
((b/a)n + 1)−1)]

can equal [a · (
√

((b/a)2 + 1) − 1)], or that [b · ( n
√

((a/b)n + 1) − 1)] can equal

[b · (
√

((a/b)2 + 1)− 1)],
• Then there can exist no other values of (c− a) and (c− b) that will divide

all bn and an, and c = n
√

(an + bn) can be an integer only where n = 2 and

(c−a) ∈ Pb and (c− b) ∈ Pa, and c = a+ [(c−a) = (a · (
√

((b/a)2 + 1)− 1))] =

b + [(c− b) = (b · (
√

((a/b)2 + 1)− 1))].

Further, where c =
√

(a2 + b2) is an integer, the increase in the magnitude of
(c/b)2 above that of (b/b)2 is equal to (a/b)2; and with a < b < c, (a/b) < 1 and3

(c/b) > 1 <
√

2; as n increases beyond 2, the magnitude of (a/b)n continually
decreases while the magnitude of (c/b)n continually increases, such that for all
n > 2, ((a/b)n+1) < (c/b)n. . . and [bn ·((a/b)n+1)] can never equal [bn ·(c/b)n].

Let the symbol “=? ” serve to indicate that the actual equality of the left-hand-
side and right-hand-side of the immediately following equations are indeter-
minable until we arrive at their final resolution. Continuing with (a, b) =
(28, 45):

Demonstration

Let n = 2;

((an/bn) + (bn/bn)) =? ((a + (c− a)) / b)n

[(a/b)n + 1] =? ((28 + 25) / 45)n

[(28/45)2 + 1] =? (53/45)2

(0.622222222 + 1) =? 1.177777772

(0.38716049 + 1) =? 1.177777772

1.38716049 = 1.38716049.

Let n = 3;

[(a/b)n + 1] =? ((28 + 25) / 45)n

[(28/45)3 + 1] =? (53/45)3

(0.622222223 + 1) =? 1.177777773

(0.24089986 + 1) =? 1.177777773

1.24089986 6= 1.63376680.

3If (c/b) >
√
2 then (c/b)n > 2, c > (a+ b), and cn > 2bn > (an + bn).

8



JE Magee Fermat‘s Proof

Let n = 4;

[(a/b)n + 1] =? ((28 + 25) / 45)n

[(28/45)4 + 1] =? (53/45)4

(0.622222224 + 1) =? 1.177777774

(0.14989324 + 1) =? 1.177777774

1.14989324 6= 1.92421423.

And this I believe was Fermat’s ”truly marvelous” discovery:

That where c is an integer, and thus (c − a) and (c − b), they are all defined
for all values of n at n = 2; that c = n

√
(an + bn) can be an integer, if and

only if [(a/b)n + 1] = (c/b)n; and that it is only at n = 2 that such an equality
between [(a/b)n + 1] and (c/b)n can occur. . . giving us that n

√
(an + bn) can

be an integer only at n = 2, and that for all n > 2 there are no positive integers
a, b, c, n such that (an + bn) = cn. �

3 The Proof – Further Implications

Remark Paulo Ribenboim in ”Lecture One” of his book, 13 Lectures on Fer-
mat’s Last Theorem (1979), and Thomas Koshy in Elementary Number Theory
With Applications, point out the fact that since every integer n > 2 is a product
of 4 or of an odd prime [8, p. 2], then with Fermat (and others) having proved
the case for n = 4 [8, p. 2][1, p. 44], all that is required to complete the proof of
Fermat’s conjecture is to prove that it holds true for all odd primes [8, p. 3][6,
p. 546].

Proposition 3.1 For all odd n > 2, encompassing the set of all odd primes,
(an + bn) is a product of (a + b) and n

√
(an + bn) can never be an integer.

Proof Per the binomial theorem the expansion of (a + b)n proceeds according
to the form [4, p. 550],

(a + b)n = c0a
nb0 + c1a

(n−1)b1 + c2a
(n−2)b2 + c3a

(n−3)b3 + . . .

+ c(n−1)a
1b(n−1) + cna

0bn,

where c0 through cn are the integer coefficients of the successive terms of ex-
pansion, with c0 and cn equal to 1, c1 and c(n−1) equal to n, and c1 through cn
determinable by simple calculation.

The expansion generates a total of (n + 1) terms where the sum of the ex-
ponents of a and b in each term is equal to n; with the second term of our
binomial a factor of every term of expansion except the leading term such that
if we exclude the leading term, each of the remaining terms (and their sum) is
a product of the second term of our binomial.

9
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Where n > 2 is odd, the expansion of (a+b)n consists of two groups of (n+1)/2
terms where the integer coefficients of the first (n + 1)/2 terms repeat in the
subsequent (n + 1)/2 terms, with the exponents of a and b in the coefficient
corresponding terms of the second group the reverse of those in the first group.

If we reassociate the terms of our expansion by integer coefficient, each of our
reassociated pairs can be reduced to a product of our coefficient and the least
exponent power of a and b within that pair, times the sum of equal powers of a
and b; with the matching exponents of a and b equal to the greatest exponent
within our pair minus the least exponent. The sequence of reassociated pairs of
(a + b)n are then of the form,

(a + b)n = [c0(an + bn) + c1ab(a
(n−2) + b(n−2)) + c2a

2b2(a(n−4) + b(n−4))

+ c3a
3b3(a(n−6) + b(n−6)) + · · ·+ c(n−1)/2(a(n−1)/2 · b(n−1)/2(a + b)].

With n an odd integer, the exponents (n− 2), (n− 4), (n− 6), . . . , (n− (n− 1))
are all odd and each of our reduced reassociated pairs is the product of the sum
of the successively declining odd exponent powers of a and b from n to 1, such
that (a + b)n is the sum of the products of

(an + bn), (a(n−2) + b(n−2)), (a(n−4) + b(n−4)), . . . , (a1 + b1).

Demonstration

(a + b)3 = [a3 + 3a2b + 3ab2 + b3]

= [(a3 + b3) + (3a2b + 3ab2)]

= [(a3 + b3) + 3ab(a1 + b1)].

(a + b)5 = (a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5)

= [(a5 + b5) + (5a4b + 5ab4) + (10a3b2 + 10a2b3)]

= [(a5 + b5) + 5ab(a3 + b3) + 10a2b2(a1 + b1)].

(a + b)7 = (a7 + 7a6b + 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + b7)

= [(a7 + b7) + (7a6b + 7ab6) + (21a5b2 + 21a2b5) + (35a4b3 + 35a3b4)]

= [(a7 + b7) + 7ab(a5 + b5) + 21a2b2(a3 + b3) + 35a3b3(a1 + b1)].

(a + b)9 = (a9 + 9a8b + 36a7b2 + 84a6b3 + 126a5b4 + 126a4b5 + 84a3b6 + 36a2b7

+ 9ab8 + b9)

= [(a9 + b9) + (9a8b + 9ab8) + (36a7b2 + 36a2b7) + (84a6b3 + 84a3b6)

+ (126a5b4 + 126a4b5)]

= [(a9 + b9) + 9ab(a7 + b7) + 36a2b2(a5 + b5) + 84a3b3(a3 + b3)

+ 126a4b4(a1 + b1)].

Then (an+bn) is equal to (a+b)n, minus our reduced reassociated inside terms—
and for each successive increase in our odd n exponent, we are able to replace

10
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each lesser exponent sum of powers of (a+ b) with its equivalent reduction to a
product of (a + b); and, given (a + b)n = [(a + b)(a + b)(n−1)], reduce (an + bn)
to a product of (a + b):

(a + b)3 = (a3 + 3a2b + 3ab2 + b3)

= (a3 + b3) + (3a2b + 3ab2)

= [(a3 + b3) + 3ab(a + b)]

⇒
(a3 + b3) = [(a + b)3 − 3ab(a + b)]

= [(a + b)(a + b)2 − 3ab(a + b)]

= (a + b) · [(a + b)2 − 3ab].

(a + b)5 = (a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5)

= [(a5 + b5) + 5ab(a3 + b3) + 10a2b2(a1 + b1)]

⇒
(a5 + b5) = (a + b)5 − [5ab(a3 + b3) + 10a2b2(a + b)]

Replace (a
3
+ b

3
) with equivalent product of (a + b):

= (a + b)5 − [5ab((a + b) · ((a + b)2 − 3ab)) + 10a2b2(a + b)]

= (a + b)(a + b)4 − [(a + b) · (5ab(((a + b)2 − 3ab)) + 10a2b2)]

= (a + b) · [(a + b)4 − (5ab(((a + b)2 − 3ab)) + 10a2b2)]

= (a + b) · [(a + b)4 − (5ab(a + b)2 − 15a2b2 + 10a2b2)]

= (a + b) · [(a + b)4 − (5ab(a + b)2 − 5a2b2)]

= (a + b) · [(a + b)4 − (5ab((a + b)2 − ab))].

With the final term of (an + bn) always a product of (a + b), and (a5 + b5) and
(a3 + b3) products of (a+ b), then (a7 + b7) is reducible to a product of (a+ b);

(a7 + b7) = (a + b)7 − [7ab(a5 + b5) + 21a2b2(a3 + b3) + 35a3b3(a + b)],

and with (a7 + b7), (a5 + b5) and (a3 + b3) all products of (a+ b), then (a9 + b9)
is a product of (a + b);

(a9 + b9) = (a + b)9 − [9ab(a7 + b7) + 36a2b2(a5 + b5) + 84a3b3(a3 + b3)

+ 126a4b4(a + b))],

then (a11 + b11) is a product of (a + b). . .

(a11 + b11) = (a + b)11 − [11ab(a9 + b9) + 55a2b2(a7 + b7)

+ 165a3b3(a5 + b5) + 330a4b4(a3 + b3) + 462a5b5(a + b)]

. . .

11
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and our operations repeat with each increase in n, giving us that for all odd
n > 2, (an + bn) is a product of (a + b).

With a < b < c and (a + b) > c then c = n
√

(an + bn) can be an integer only if
c ∈ {(b+1), (b+2), (b+3), . . . , ((b+a)−1))} and c = [(a+(c−a)) = (b+(c−b))];
with ((c−a) = [a ·(

√
((b/a)2 + 1)−1)]) ∈ Pb and ((c−b) = [b ·(

√
((a/b)2 + 1)−

1)]) ∈ Pa.

But it can never happen. For we have that (a + b), the divisor of all odd n,
(an + bn), can be restated in the form,

(a + b) = [(a + (c− a)) + (b− (c− a))].

And with the integer c equal to (a+ (c−a)) and b coprime to c; and (c−a) < b
comprised only of distinct primes in b, then (b− (c−a)) will contain prime(s) in
b, coprime to c; and (a+b) = [c+(b−(c−a))], will always contain primes not in c.

Then (a + b), the divisor of all odd n, (an + bn), can never be a divisor of
cn = [(a+ (c− a))n = (b+ (c− b))n]. . . and for all odd n (encompassing the set
of all odd primes), (an + bn) can never equal [(a + (c − a))n = (b + (c − b))n]
and n

√
(an + bn) can never be an integer. �

Proposition 3.2 For all odd n > 2, encompassing the set of all odd primes,
c = n

√
(an + bn) can never be an integer.

Proof Where c = n
√

(an + bn) is an integer then c is odd and a and b are of
opposite parity and one of (c − a) and (c − b) is also odd and the other even.
Let (c− a) be the even quantity of (c− a) and (c− b) (Note: The results would
be the same if we let (c − b) be the even quantity). With (c − a) a factor of
every term of (cn − an),

(cn − an) = [(a + (c− a))n − an]

= na(n−1)(c− a) + c2a
(n−2)(c− a)2 + c3a

(n−3)(c− a)3 + . . .

+ c(n−2)a
(n−(n−2))(c− a)(n−2) + na(n−(n−1))(c− a)(n−1) + cn(c− a)n,

and the exponents of (c− a) beginning at 1 and incrementing to n, then (cn −
an) = [(a + (c− a))n − an] is further reducible to the form,

(cn − an) = (c− a) · [na(n−1) + (c− a) · (c2a(n−2) + (c− a) · (c3a(n−3)

+ · · ·+ (c− a) · (c(n−2)a
(n−(n−2)) + (c− a) · (na + (c− a)))))],

Demonstration

(c2 − a2) = [(a + (c− a))2 − a2]

= [a2 + 2a(c− a) + (c− a)2 − a2]

= [2a(c− a) + (c− a)2)]

= (c− a) · [2a + (c− a)].

12
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(c3 − a3) = [3a2(c− a) + 3a(c− a)2 + (c− a)3]

= (c− a) · [3a2 + 3a(c− a) + (c− a)2]

= (c− a) · [3a2 + (c− a)(3a + (c− a))]

(c4 − a4) = (c− a) · [4a3 + 6a2(c− a) + 4a(c− a)2 + (c− a)3]

= (c− a) · [4a3 + (c− a)(6a2 + 4a(c− a) + (c− a)2)]

= (c− a) · [4a3 + (c− a)(6a2 + (c− a)(4a + (c− a)))]

(c5 − a5) = [(c− a) · [5a4 + 10a3(c− a) + 10a2(c− a)2 + 5a(c− a)3 + (c− a)4]

= (c− a) · [5a4 + (c− a)(10a3 + 10a2(c− a) + 5a(c− a)2 + (c− a)3)]

= (c− a) · [5a4 + (c− a)(10a3 + (c− a)(10a2 + 5a(c− a) + (c− a)2))]

= (c− a) · [5a4 + (c− a)(10a3 + (c− a)(10a2 + (c− a)(5a + (c− a))))]

. . .

And with the further reduction pattern the same for all (cn − an),

(c2 − a2) = (c− a) · [na(n−1) + (c− a)]

(c3 − a3) = (c− a) · [na(n−1) + (c− a) · (na + (c− a))]

(c4 − a4) = (c− a) · [na(n−1) + (c− a) · (6a2 + (c− a) · (na + (c− a)))]

(c5 − a5) = (c− a) · [na(n−1) + (c− a) · (10a3 + (c− a) · (10a2

+ (c− a) · (na + (c− a))))],

and with 2 the least value of n, then (c − a) must divide bn at n = 2 and no
power of any distinct prime in (c− a) can be greater than its power in b2.

Then with (c − a) a product of 2 and the power of 2 in (c − a) never greater
than the square of the power of 2 in b; and for all n > 2, the power of 2 in bn

equal to the power of 2 in b raised to the nth power; then the possibility that
(cn − an) = bn only exists if the power of 2 in (cn − an) can be elevated to a
power greater than that in (c− a). Let n > 2 be odd.

Analyzing the sequence of operations, from right-to-left (RTL), within the further-
reduced bracketed co-factor of (c−a), we have an initial rightmost operation of
(na + (c− a)).

With a coprime to (c − a) and a and n odd, (na + (c − a)) is odd and void of
any factors of 2.

Our next operation (stepping to the left) is the multiplication of our initial
operation result by (c−a), giving us a product of (c−a); to which we then add
the product of a power of a and it’s coefficient.

As previously, with a coprime to (c− a), our sum can contain a factor of 2
only if the coefficient of a is also a product of 2.

And this multiplication-then-addition process continually repeats until we
arrive at the final operation within our bracketed co-factor of (c − a), the sum
of na(n−1) plus a product of (c− a).

13
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Again, with a and n odd and a coprime to (c − a), na(n−1) plus a product of
(c−a) is odd and void of any factors of 2. . . and (cn−an) = [(a+(c−a))n−an]
is the product of a unique and distinct factor of (c− a), with the power of 2 in
(c− a), and thus in (cn − an), never greater than the power of 2 in b2.
Let (a, b, c) = (5, 12, 13).

Demonstration

(c2 − a2) = [(c− a)(c + a)]

= [(13− 5)(13 + 5)] = (8 · 18) = (23 · (2 · 32))

(c3 − a3) = (133 − 53) = [(2197− 125) = 2072] = (23 · 259)

(c5 − a5) = (135 − 55) = [(371293− 3125) = 368168] = (23 · 46021)

(c7 − a7) = (137 − 57) = [(62748517− 78125) = 62670392] = (23 · 7833799)

. . .

Then for all odd n > 2, encompassing the set of all odd primes, the power of 2
in (cn − an) can never equal the power of 2 in bn, (cn − an) can never equal bn,
and c = n

√
(an + bn) can never be an integer. �

Proposition 3.3 Where n > 2 is equal to a power of 2 and (c − a) is even,
c = n

√
(an + bn) can never be an integer

Proof Let n > 2 be a power of 2. Given (an + bn) = cn then (cn − an) = bn

and (cn−bn) = an. Let (cn−an) be the even quantity of (cn−an) and (cn−bn).

With n > 2 equal to a power of 2 then (cn − an) can be restated as a difference
of squares of exponent n/2, (cn − an) = [(cn/2 − an/2)(cn/2 + an/2)], with each
resulting, greater than 2, even-exponent-quotient difference of powers further
reducible to a sum and difference of squares, such that (cn − an) is ultimately
a product of (c2 − a2) = (c− a)(c + a), times the sums of powers of c and a of
exponents 2 to n/2. Let n = (24 = 16). Then

Demonstration

(c16 − a16) = [(c8)2 − (a8)2] = [(c8 − a8)(c8 + a8)] = [((c4)2 − (a4)2) · (c8 + a8)]

= [(c4 − a4)(c4 + a4)(c8 + a8)] = [((c2)2 − (a2)2) · (c4 + a4)(c8 + a8)]

= [(c2 − a2)(c2 + a2)(c4 + a4)(c8 + a8)]

= [(c− a)(c + a) · (c2 + a2)(c4 + a4)(c8 + a8)].

With (cn−an) even and (c2−a2) = (c−a)(c+a), and with 2 common to (c−a)
and (c + a), then

(c + a) = ((c− a) + 2a)

= [2 · ((c− a)/2 + a)].

14
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And with a odd and coprime to (c − a), no odd integer in (c − a) can exist in
(c + a). Then if the power of 2 in (c − a) is equal to 21, (c − a)/2 is odd and
((c − a)/2 + a)] is even; and the power of 2 in (c + a) = [2 · ((c − a)/2 + a)] is
greater than 21.

If the power of 2 in (c − a) is greater than 21 then (c − a)/2 remains even
and ((c− a)/2 + a)] is odd, and the power of 2 in (c + a) = [2 · ((c− a)/2 + a)]
is equal to 21.

Then for all n ≥ 2, one of (c− a) and (c + a) is always a product of 21 and
the other a product of 22 or greater.

Similarly, just as (c+a) = ((c−a) + 2a), (c2 +a2) = ((c2−a2) + 2a2), and with
a odd and 2 also common to (c2 − a2), then

(c2 + a2) = ((c2 − a2) + 2a2) = [2 · ((c− a)(c + a)/2 + a2)],

and with (c− a) and (c + a) even, (c− a)(c + a)/2 remains a product of 2 and
((c − a)(c + a)/2 + a2) is odd, and [2 · ((c − a)(c + a)/2 + a2)] is a product of
the unique factor, 21. Likewise:

(c4 + a4) = ((c4 − a4) + 2a4) = [(c− a)(c + a)(c2 + a2) + 2a4]

= [2 · ((c− a)(c + a)(c2 + a2)/2 + a4)],

and with ((c − a)(c + a)(c2 + a2)/2) even, [((c − a)(c + a)(c2 + a2)/2) + a4] is
odd, and [2 · ((c− a)(c + a)(c2 + a2)/2 + a4)] is a product of 21. Continuing:

(c8 + a8) = ((c8 − a8) + 2a8) = [(c− a)(c + a)(c2 + a2)(c4 + a4) + 2a8]

= [2 · ((c− a)(c + a)(c2 + a2)(c4 + a4)/2 + a8)],

and with ((c− a)(c+ a)(c2 + a2)(c4 + a4)/2) remaining even, then [((c− a)(c+
a)(c2+a2)(c4+a4)/2)+a8] is odd, and [2·((c−a)(c+a)(c2+a2)(c4+a4)/2+a8)]
is a product of the unique factor, 21.

And our result repeats for all n equal to a power of 2, ad infinitum; with each
doubling of n resulting in only an increase of one in the count of the sums-of-
powers terms of c and a, with a corresponding increase by one in the exponent
of 2 in (cn − an).

Let the notation, [∧2], be read as ”the power of 2 ”. Let (a, b, c) = (3, 4, 5).

Demonstration

[∧2]∈ b2 = [(22)2 = 24]

(c2 − a2) = (52 − 32) = [(25− 9) = 16] = 24

= (c− a)(c + a) = (2 · 8) = [(21 · 23) = 2(1+3)] = 24

[∧2]∈ b4 = (22)4 = 28

(c4 − a4) = (54 − 34) = [(625− 81) = 544] = (25 · 17)

= (c2 − a2)(c2 + a2) = (c− a)(c + a)(c2 + a2)

= (2 · 8 · 34) = [(21 · 23) · (21 · 17)] = (2(4+1) · 17) = (25 · 17)
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[∧2]∈ b8 = (22)8 = 216

(c8 − a8) = (58 − 38) = (390625− 6561) = [384064 = (26 · 6001)]

= (c− a)(c + a)(c2 + a2)(c4 + a4)

= (2 · 8 · 34 · 706) = [(21 · 23) · (21 · 17) · (21 · 353)]

= [(2(4+1+1) · 17 · 353) = (26 · 6001)

[∧2]∈ b16 = (22)16 = 232

(c16 − a16) = (516 − 316) = (152587890625− 43046721)

= [152544843904 = (27 · 1191756593)]

= (c− a)(c + a)(c2 + a2)(c4 + a4)(c8 + a8)

= (2 · 8 · 34 · 706) = [(21 · 23) · (21 · 17) · (21 · 353) · (21 · 198593)]

= [(2(4+1+1+1) · 17 · 353 · 198593) = (27 · 1191756593)

. . .

Then for all n > 2 equal to a power of 2, with the power of 2 in bn equal to
the power of 2 in b raised to the nth power; while the power of 2 in (cn − an) is
equal to the power of 2 in (c2− a2) = b2, plus 1 for each sum of powers of c and
a of exponents 2 to n/2; then the power of 2 in (cn − an) can never attain the
value of the power of 2 in bn; (cn−an) can never equal bn, and c = n

√
(an + bn)

can never be an integer. �

Proposition 3.4 Where n > 2 is equal to a power of 2 and (cn − bn) is odd,
(cn − bn) can never equal an and c = n

√
(an + bn) can never be an integer

Proof Let (cn − bn) be the odd quantity of (cn − an) and (cn − bn). With the
reduction of (cn− bn) proceeding in the exact same manner as that of (cn−an),

(c16 − b16) = [(c8)2 − (b8)2] = [(c8 − b8)(c8 + b8)]

= [((c4)2 − (b4)2) · (c8 + b8)] = [(c4 − b4)(c4 + b4)(c8 + b8)]

= [((c2)2 − (b2)2) · (c4 + b4)(c8 + b8)]

= [(c2 − b2)(c2 + b2)(c4 + b4)(c8 + b8)]

= [(c− b)(c + b) · (c2 + b2)(c4 + b4)(c8 + b8)],

then with (c2 − b2) = (c− b)(c + b), and (c + b) = ((c− b) + 2b);
and with the sum and difference of powers of c and b odd, and 2 and b both

coprime to (c− b), then (c+ b) = ((c− b) + 2b) can contain no prime of (c− b).
Similarly, (c2+b2) = ((c2−b2)+2b2), and with 2 and b2 coprime to (c2−b2),

then (c2 + b2) can contain no prime of (c2 − b2) = (c− b)(c + b).
Likewise, (c4 + b4) = ((c4− b4) + 2b4). . . and (c4 + b4) can contain no prime

of (c4 − b4) = (c− b)(c + b)(c2 + b2).
Continuing, (c8 + b8) = ((c8 − b8) + 2b8). . . and (c8 + b8) can contain no

prime of (c8 − b8) = (c− b)(c + b)(c2 + b2)(c4 + b4). . .
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And for each successive increase in the power of 2 in n, (cn/2 + bn/2) = [(cn/2−
bn/2)+2bn/2], and (cn/2+bn/2) can contain no prime of the reduced predecessor
terms comprising (cn/2−bn/2); and for all n > 2 equal to a power of 2, the prime
composition of each term of the sums and differences of powers of c and b in
(cn − bn) is coprime to all others.

Then where (cn − bn) is odd and n > 2 is equal to a power of 2; with no prime
of (c2−b2) in n or in (c2 +b2)(c4 +b4)(c8 +b8) · . . . ·(cn/2 +bn/2), then no power
of any distinct prime in (c2 − b2) within (cn − bn) can ever be elevated beyond
it’s power at n = 2. Utilizing the Pythagorean triple, (a, b, c) = (33, 56, 65) as
an example:

Demonstration

(c2 − b2) = 1089

= (c− b)(c + b)

= (65− 56)(65 + 56) = (9 · 121) = (32 · 112)

⇒
(c4 − b4) = 8016129

= (c2 − b2)(c2 + b2)

= (1089 · 7361)

= [(32 · 112) · (17 · 433)]

(c8 − b8) = 221927501316609

= [(c2 − b2)(c2 + b2)(c4 + b4)]

= (1089 · 7361 · 27685121)

= [(32 · 112) · (17 · 433) · 27685121]

(c16 − b16) = 92180278423996126856766522369

= [(c2 − b2)(c2 + b2)(c4 + b4)(c8 + b8)]

= (1089 · 7361 · 27685121 · 415362124464641)

= [(32 · 112) · (17 · 433) · 27685121 · 415362124464641].

And for all n > 2 equal to a power of 2, with (cn − bn) always a product of
the distinct and unique primes in (c2 − b2) = a2, and no power of any distinct
prime in (c2 − b2) greater than the square of its power in a; while the power of
each distinct prime in an is equal to its power in a raised to the nth power, then
(cn − bn) can never equal an and c = n

√
(an + bn) can never be an integer. �
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