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Abstract : The geometry of the elementary quantum-mechanical wavefunction (a·cosθ − i∙a·sinθ) and a 

linearly polarized electromagnetic wave (E + B) consist of two plane waves that are perpendicular to the 

direction of propagation: their components only differ in magnitude and – more importantly – in their 

relative phase (0 and 90° respectively). The physical dimension of the electric field vector is force per 

unit charge (N/C). It is, therefore, tempting to associate the real and imaginary component of the 

wavefunction with a similar physical dimension: force per unit mass (N/kg). This is, of course, the 

dimension of the gravitational field, which reduces to the dimension of acceleration (1 N/kg = 1 m/s
2
). 

The results and implications are remarkably elegant and intuitive:  

 Schrödinger’s wave equation, for example, can now be interpreted as an energy diffusion 

equation, and the wavefunction itself can be interpreted as a propagating gravitational wave. 

 The energy conservation principle then gives us a physical normalization condition, as 

probabilities (P = |ψ|
2
) are then, effectively, proportional to energy densities (u).  

 We also get a more intuitive explanation of spin angular momentum, the boson-fermion 

dichotomy, and the Compton scattering radius for a particle.  

 Finally, this physical interpretation of the wavefunction may also give us some clues in regard to 

the mechanism of relativistic length contraction. 

The interpretation does not challenge the Copenhagen interpretation of quantum mechanics: 

interpreting probability amplitudes as traveling field disturbances does not explain why a particle hits a 

detector as a particle (not as a wave). As such, this interpretation respects the complementarity 

principle. 
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Introduction 

This paper offers a physical interpretation of wave mechanics. We do not challenge the 

complementarity principle: the interpretation of the wavefunction that is offered here explains the 

wave nature of matter only. Hence, it will explain diffraction and interference of amplitudes but it does 

not explain why a particle will hit the detector as a particle – i.e. as a blob of energy, instead of some 

spread-out wave front. Hence, the Copenhagen interpretation of the wavefunction remains relevant: we 

just push its boundaries.  

The basic ideas in this paper stem from a simple observation: the geometry of the elementary quantum-

mechanical wavefunction and a plane electromagnetic wave is remarkably similar. The components of 

both waves are orthogonal to the direction of propagation and to each other. Only the relative phase 

differs : the electric and magnetic field vectors (E and B) have the same phase. In contrast, the phase of 

the real and imaginary part of the (elementary) wavefunction (ψ = a·e
−i∙θ

 = a∙cosθ − a∙sinθ) differ by 90 

degrees (π/2).
2
 Pursuing the analogy, we explore the following question: if the oscillating electric and 

magnetic field vectors of an electromagnetic wave carry the energy that one associates with the wave, 

can we analyze the real and imaginary part of the wavefunction in a similar way?  

This paper suggests the answer to this question may be positive. The analysis is straightforward and 

intuitive: if the physical dimension of the electromagnetic field is expressed in newton per coulomb 

(force per unit charge), then the physical dimension of the components of the wavefunction may be 

associated with force per unit mass (newton per kg).
3
  

Of course, force over some distance is energy. The question then becomes: what is the energy concept 

here? Kinetic? Potential? Both?  

This classical distinction is, perhaps, not very relevant in this context. The similarity between the energy 

of a (one-dimensional) linear oscillator (E = m∙a
2
∙ω

2
/2) and Einstein’s relativistic energy equation E = 

m∙c
2
 inspires us to interpret the energy as a two-dimensional oscillation of mass. To assist the reader, we 

construct a two-piston engine metaphor.
4
 We then adapt the formula for the electromagnetic energy 

density to calculate the energy densities for the wave function.  

The results are elegant and intuitive: the energy densities are proportional to the square of the absolute 

value of the wavefunction and, hence, to the probabilities. Schrödinger’s wave equation may then, 

effectively, be interpreted as a diffusion equation for energy itself. As an added bonus, concepts such as 

the Compton scattering radius for a particle and spin angular, as well as the boson-fermion dichotomy 

can be explained in a fully intuitive way.
5
 Finally, we show the interpretation may lead to a natural 

explanation of relativistic length contraction.  

Of course, such interpretation is also an interpretation of the wavefunction itself, and the immediate 

reaction of the reader is predictable: the electric and magnetic field vectors are, somehow, to be looked 

                                                           
2
 Of course, an actual particle is localized in space and can, therefore, not be represented by the elementary 

wavefunction ψ = a·e
−i∙θ

 = a·e
−i[E∙t − p∙x]/ħ

 = a∙(cosθ − i∙a∙sinθ). We must build a wave packet for that: a sum of 

wavefunctions, each with its own amplitude ak and its own argument θk = (Ek∙t − pk∙x)/ħ. This is dealt with in this 

paper as part of the discussion on the mathematical and physical interpretation of the normalization condition. 
3
 The N/kg dimension immediately, and naturally, reduces to the dimension of acceleration (m/s

2
), thereby 

facilitating a direct interpretation in terms of Newton’s force law. 
4
 In physics, a two-spring metaphor is more common. Hence, the pistons in the author’s perpetuum mobile may be 

replaced by springs. 
5
 The author re-derives the equation for the Compton scattering radius in section VIII of the paper, and discusses 

the boson-fermion dichotomy in section IX. 
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at as real vectors. In contrast, the real and imaginary components of the wavefunction are not. 

However, this objection needs to be phrased much more carefully. First, we should not forget that the 

magnetic force is a pseudovector itself.
6
 Second, a suitable choice of coordinates may make quantum-

mechanical rotation matrices irrelevant.
7
  

Therefore, we are of the opinion that this paper may provide some fresh perspective on the question, 

thereby further exploring Einstein’s basic sentiment in regard to quantum mechanics, which may be 

summarized as follows: there must be some physical explanation for the calculated probabilities.
8
  

We will, therefore, start with Einstein’s relativistic energy equation (E = mc
2
) and wonder what it could 

possibly tell us. 

 

  

                                                           
6
 The magnetic force can be analyzed as a relativistic effect (see Feynman II-13-6), and is definitely a pseudovector: 

F = q∙(v×B). However, we may note that the dichotomy between the electric force as a polar vector and the 

magnetic force as an axial vector disappears in the relativistic four-vector representation of electromagnetism. This 

observation makes the objection even less relevant. 
7
 For example, when using Schrödinger’s equation in a central field (think of the electron around a proton), the use 

of polar coordinates is recommended, as it ensures the symmetry of the Hamiltonian under all rotations (see 

Feynman III-19-3). 
8
 This sentiment is usually summed up in the apocryphal quote: “God does not play dice.”The actual quote comes 

out of one of Einstein’s private letters to Cornelius Lanczos, another scientist who had also emigrated to the US. 

The full quote is as follows: "You are the only person I know who has the same attitude towards physics as I have: 

belief in the comprehension of reality through something basically simple and unified... It seems hard to sneak a 

look at God's cards. But that He plays dice and uses 'telepathic' methods... is something that I cannot believe for a 

single moment." (Helen Dukas and Banesh Hoffman, Albert Einstein, the Human Side: New Glimpses from His 

Archives, 1979) 
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I. Energy as a two-dimensional oscillation of mass 

The mathematical similarity between the relativistic energy formula, the formula for the total energy of 

an oscillator, and the kinetic energy of a moving body, is striking, and suggest a more fundamental 

underlying unity for a geometric or physical interpretation of the formulas: 

1. E = mc
2
 

2. E = mω
2
/2 

3. E = mv
2
/2  

In these formulas, ω, v and c all describe some velocity.
9
 Of course, there is the 1/2 factor in the E = 

mω
2
/2 formula

10
, but that is exactly the point we are going to explore here: can we think of an 

oscillation in two dimensions, so it stores an amount of energy that is equal to E = 2∙m∙ω
2
/2 = m∙ω

2
?  

That is easy enough. Think, for example, of a V-2 engine with the pistons at a 90-degree angle, as 

illustrated below. The 90° angle makes it possible to perfectly balance the counterweight and the 

pistons, thereby ensuring smooth travel at all times. With permanently closed valves, the air inside the 

cylinder compresses and decompresses as the pistons move up and down. It provides, therefore, a 

restoring force. As such, it will store potential energy, just like a spring. In fact, the motion of the pistons 

will also reflect that of a mass on a spring: it is described by a sinusoidal function, with the zero point at 

the center of each cylinder. We can, therefore, think of the moving pistons as harmonic oscillators, just 

like mechanical springs.
 11

  

Figure 1: Oscillations in two dimensions 

 

If we assume there is no friction, we have a perpetuum mobile here. The compressed air and the 

rotating counterweight (which, combined with the crankshaft, acts as a flywheel) store the potential 

energy. The moving masses of the pistons store the kinetic energy of the system.
12

  

                                                           
9
 Of course, both are different velocities: ω is an angular velocity, while v is a linear velocity: ω is measured in 

radians per second, while v is measured in meter per second. However, the definition of a radian implies radians 

are measured in distance units. Hence, the physical dimensions are, effectively, the same. As for the formula for 

the total energy of an oscillator, we should actually write: E = m∙a
2
∙ω

2
/2. The additional factor (a) is the (maximum) 

amplitude of the oscillator. This factor remains relevant in the analysis. We will further elaborate in the next 

sections of this paper. 
10

 We also have a 1/2 factor in the E = mv
2
/2 formula. Two remarks may be made here. First, it may be noted this is 

a non-relativistic formula and, more importantly, incorporates kinetic energy only. Using the Lorentz factor (γ), we 

can write the relativistically correct formula for the kinetic energy as K.E. = E − E0 = mvc
2
 − m0c

2
 = m0γc

2
 − 

m0c
2
 = m0c

2
(γ − 1). As for the exclusion of the potential energy, we may note that we may choose our reference 

point for the potential energy such that the kinetic and potential energy mirror each other. The energy concept 

that then emerges is the one that is used in the context of the Principle of Least Action: it equals E = mv
2
. This is 

further explained in Section VII of this paper. 
11

 Instead of two cylinders with pistons, one may also think of connecting two springs with a crankshaft. 
12

 It is interesting to note that we may look at the energy in the rotating flywheel as potential energy because it is 

energy that is associated with motion, albeit circular motion. In physics, one will usually associate a rotating object 

with kinetic energy using the rotational equivalent of mass and linear velocity, i.e. rotational inertia (I) and angular 

velocity ω. The kinetic energy of a rotating object is then given by K.E. = (1/2)∙I∙ω
2
.  
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At this point, it is probably good to briefly review the relevant math. If the magnitude of the oscillation is 

equal to a, then the motion of the piston (or the mass on a spring) will be described by x = a∙cos(ω∙t + 

Δ).
13

 Needless to say, Δ is just a phase factor which defines our t = 0 point, and ω is the natural angular 

frequency of our oscillator. Because of the 90° angle between the two cylinders, Δ would be 0 for one 

oscillator, and –π/2 for the other. Hence, the motion of one piston is given by x = a∙cos(ω∙t), while the 

motion of the other is given by x = a∙cos(ω∙t–π/2) = a∙sin(ω∙t).    

The kinetic and potential energy of one oscillator – think of one piston or one spring only – can then be 

calculated as: 

1. K.E. = T = m∙v
2
/2 = (1/2)∙m∙ω

2
∙a

2
∙sin

2
(ω∙t + Δ) 

2. P.E. = U = k∙x
2
/2 = (1/2)∙k∙a

2
∙cos

2
(ω∙t + Δ)   

The coefficient k in the potential energy formula characterizes the restoring force: F = −k∙x. From the 

dynamics involved, it is obvious that k must be equal to m∙ω
2
. Hence, the total energy is equal to: 

E = T + U = (1/2)∙ m∙ω
2
∙a

2
∙[sin

2
(ω∙t + Δ) + cos

2
(ω∙t + Δ)] = m∙a

2
∙ω

2
/2 

Hence, adding the energy of the two oscillators, we have a perpetuum mobile storing an energy that is 

equal to twice this amount: E = m∙a
2
∙ω

2
. 

We have a great metaphor here. Somehow, in this beautiful interplay between linear and circular 

motion, energy is borrowed from one place and then returns to the other, cycle after cycle. However, 

we still have to prove this engine is, effectively, a perpetuum mobile. Let’s do that now.  

To facilitate the calculations that follow, we will briefly assume k and a are equal to 1.
14

 The 

motion of our first oscillator is given by the cos(ω∙t) = cosθ function (θ = ω∙t), and its kinetic energy will 

be equal to sin
2
θ. Hence, the (instantaneous) change in kinetic energy at any point in time will be equal 

to: 

d(sin
2
θ)/dθ = 2∙sinθ∙d(sinθ)/dθ = 2∙sinθ∙cosθ 

Let us look at the second oscillator now. Just think of the second piston going up and down in the V-2 

engine. Its motion is given by the sinθ function, which is equal to cos(θ−π /2). Hence, its kinetic energy is 

equal to sin
2
(θ−π /2), and how it changes – as a function of θ – will be equal to: 

2∙sin(θ−π /2)∙cos(θ−π /2) = = −2∙cosθ∙sinθ = −2∙sinθ∙cosθ 

We have our perpetuum mobile! While transferring kinetic energy from one piston to the other, the 

crankshaft will rotate with a constant angular velocity: linear motion becomes circular motion, and vice 

versa, and the total energy that is stored in the system is T + U = m∙a
2
∙ω

2
.  As mentioned, we have a 

great metaphor here. Somehow, in this beautiful interplay between linear and circular motion, energy 

is borrowed from one place and then returns to the other, cycle after cycle.  

We know the wavefunction consist of a sine and a cosine: the cosine is the real component, and the sine 

is the imaginary component. Could they be equally real? Could each represent half of the total energy of 

our particle? Should we think of the c in our E = mc
2
 formula as an angular velocity? 

These are sensible questions. Let us explore them. 
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 Because of the sideways motion of the connecting rods, the sinusoidal function will describe the linear motion 

only approximately, but the reader can easily imagine the idealized limit situation. 
14

 Both are independent and, hence, this assumption does not introduce any additional constraint. It is, therefore, 

not problematic. 



 

II. The wavefunction as a two

The elementary wavefunction is written as

ψ = a·e
−i[E∙t − p

When considering a particle at rest (

ψ = a·e
−i∙E∙t/ħ

 = a∙cos(

Let us remind ourselves of the geometry 

the wavefunction rotates clockwise

phase angle (ϕ) is counter-clockwise.

has a built-in preference for any of our 

this rather subtle point.
15

 

If we assume the momentum p is all in the 

direction, and p∙x/ħ reduces to p∙x/ħ.

else, t.
16

 Alternatively, one can google

dimensional oscillation here. These two dimensions are perpen

the wavefunction. For example, if the wavefunction propagates in the 

are along the y- and z-axis, which we may refer to as the real and imaginary axis.

difference between the cosine and the sine  

to give some spin to the whole. We

Figure 3: 
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 We leave this to a later section of this paper as we first want to familiarize the reader with the essential 

geometric characteristics of the wavefunction. The more sophisticated approach will follow later.
16

 The illustration freezes x and, therefore, shows us how the real and ima

Time has one direction only. In contrast, in space, the wave might be left

The wavefunction as a two-dimensional oscillation 

The elementary wavefunction is written as: 

p∙x]/ħ
 = a∙cos(p∙x/ħ − E∙t/ħ) + i∙a∙sin(p∙x/ħ − E∙t/ħ) 

a particle at rest (p = 0) this reduces to: 

∙cos(−E∙t/ħ) + i∙a∙sin(−E∙t/ħ) = a∙cos(E∙t/ħ) − i∙a∙sin(E∙t/ħ)

remind ourselves of the geometry involved, which is illustrated below. Note that the argument of 

clockwise with time, while the mathematical convention for measuring the 

clockwise. Of course, we should be suspicious of any suggestion tha

in preference for any of our mathematical conventions and we will, therefore, come back to 

Figure 2: Euler’s formula  

 

is all in the x-direction, then the p and x vectors will have the same 

∙x/ħ. Most illustrations – such as the one below – will 

google web animations varying both. The point is: we also

dimensional oscillation here. These two dimensions are perpendicular to the direction of propagation of 

the wavefunction. For example, if the wavefunction propagates in the x-direction, then the oscillations 

axis, which we may refer to as the real and imaginary axis. Note how the phase 

nce between the cosine and the sine  – the real and imaginary part of our wavefunction 

We will come back to this.   

: Geometric representation of the wavefunction 

 
                   

section of this paper as we first want to familiarize the reader with the essential 

geometric characteristics of the wavefunction. The more sophisticated approach will follow later.

and, therefore, shows us how the real and imaginary components of ψ vary 

Time has one direction only. In contrast, in space, the wave might be left- or right-handed. 

5 

∙t/ħ)   

Note that the argument of 

with time, while the mathematical convention for measuring the 

Of course, we should be suspicious of any suggestion that Nature 

conventions and we will, therefore, come back to 

vectors will have the same 

 either freeze x or, 

The point is: we also have a two-

dicular to the direction of propagation of 

direction, then the oscillations 

Note how the phase 

the real and imaginary part of our wavefunction – appear 

section of this paper as we first want to familiarize the reader with the essential 

geometric characteristics of the wavefunction. The more sophisticated approach will follow later. 

ginary components of ψ vary in time. 
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Hence, if we would say these oscillations carry half of the total energy of the particle, then we may refer 

to the real and imaginary energy of the particle respectively, and the interplay between the real and the 

imaginary part of the wavefunction may then describe how energy propagates through space over time.  

Let us consider, once again, a particle at rest. Hence, p = 0 and the (elementary) wavefunction reduces 

to ψ = a·e
−i∙E∙t/ħ

. Hence, the angular velocity of both oscillations, at some point x, is given by ω = −E/ħ. 

Now, the energy of our particle includes all of the energy – kinetic, potential and rest energy – and is, 

therefore, equal to E = mc
2
.  

Can we, somehow, relate this to the m∙a
2
∙ω

2
 energy formula for our V-2 perpetuum mobile? Our 

wavefunction has an amplitude too. Now, if the oscillations of the real and imaginary wavefunction 

store the energy of our particle, then their amplitude will surely matter. In fact, the energy of an 

oscillation is, in general, proportional to the square of the amplitude: E ∝ a
2
. We may, therefore, think 

that the a
2
 factor in the E = m∙a

2
∙ω

2
 energy will surely be relevant as well. 

Importantly, we have an added complication here: an actual particle is localized in space and, therefore, 

cannot be represented by the elementary wavefunction. We must build a wave packet for that: a sum of 

wavefunctions, each with their own amplitude ai, and their own ωi = −Ei/ħ. Each of these wavefunctions 

will contribute some energy to the total energy of the wave packet. To calculate the contribution of each 

wave to the total, both ai as well as Ei will matter.  

What is Ei? Ei varies around some average E, which we can associate with some average mass m = E/c
2
. 

The Uncertainty Principle kicks in here. The analysis becomes more complicated, but a formula such as 

the one below might make sense:  

E =  � m� ∙ ��	 · ω�	 = � E��	 ∙ ��	 · E�	
ħ	  

We can re-write this as:  

�	ħ	 = ∑ ��	 ∙ E�
E ⟺ �	ħ	E = � ��	 ∙ E�
 

What is the meaning of this equation? We may look at it as some sort of physical normalization 

condition when building up the Fourier sum.
17

 Of course, we should relate this to the mathematical 

normalization condition for the wavefunction. Our intuition tells us that the probabilities must be 

related to the energy densities, but how exactly? We will come back to this question in a moment. Let us 

first think some more about one of the central enigmas in physics: what is mass? 
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 The value of c
2
ħ

2
 is about 1×10

−51
 N

2
∙m

4
. Let us also do a dimensional analysis: the physical dimensions of the E = 

m∙a
2
∙ω

2
 equation only make sense if we express m in kg, a in m, and ω in rad/s. We then get: [E] = kg∙m

2
/s

2
 = 

(N∙s
2
/m)∙m

2
/s

2
 = N∙m = J. The dimensions of the left- and right-hand side of this physical normalization condition 

are equal to N
3
∙m

5
. 
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III. Mass as a scalar field 

We came up, playfully, with a possibly meaningful interpretation for energy: a two-dimensional 

oscillation of mass. But what is mass? A new aether theory is not an option
18

, but then what is it that is 

oscillating? To understand the physics behind equations, it is always good to do an analysis of the 

physical dimensions in the equation. Let us start with Einstein’s energy equation once again. If we want 

to look at mass, we should re-write it as m = E/c
2
: 

[m] = [E/c
2
] = J/(m/s)

2
 = N∙m∙s

2
/m

2
 = N∙s

2
/m = kg 

This is not very helpful. It only reminds us of Newton’s definition of a mass: mass is that what gets 

accelerated by a force. At this point, we may want to think of the physical significance of the absolute 

nature of the speed of light. Einstein’s E = mc
2
 equation implies we can write the ratio between the 

energy and the mass of any particle is always the same, so we can write, for example: ������������������ = �������������� = �������������� = ���� ������������ �������� = �	 

This reminds us of the ω
2
= C

−1
/L or ω

2
 = k/m of harmonic oscillators once again.

19
 The key difference is 

that the ω
2
= C

−1
/L and ω

2
 = k/m formulas introduce two or more degrees of freedom.

20
 In contrast, c

2
= 

E/m for any particle, always. However, that is exactly the point: we can modulate the resistance, 

inductance and capacitance of electric circuits, and the stiffness of springs and the masses we put on 

them, but we live in one physical space only: our spacetime. Hence, the speed of light c emerges here as 

the defining property of spacetime – the resonant frequency, so to speak. We have no further degrees 

of freedom here. 

The Planck-Einstein relation (for photons) and the de Broglie equation (for matter-particles) have an 

interesting feature: both imply that the energy of the oscillation is proportional to the frequency, with 

Planck’s constant as the constant of proportionality. Now, for one-dimensional oscillations – think of a 
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 Einstein’s view on aether theories probably still holds true: “We may say that according to the general theory of 

relativity space is endowed with physical qualities; in this sense, therefore, there exists an aether. According to the 

general theory of relativity, space without aether is unthinkable – for in such space there not only would be no 

propagation of light, but also no possibility of existence for standards of space and time (measuring-rods and 

clocks), nor therefore any space-time intervals in the physical sense. But this aether may not be thought of as 

endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked through 

time. The idea of motion may not be applied to it.” The quote is taken from the Wikipedia article on aether 

theories (https://en.wikipedia.org/wiki/Aether_theories, accessed on 22 October 2017). The same article also 

quotes Robert Laughlin, the 1998 Nobel Laureate in Physics, which said this about aether contemporary theoretical 

physics: “It is ironic that Einstein's most creative work, the general theory of relativity, should boil down to 

conceptualizing space as a medium when his original premise [in special relativity] was that no such medium 

existed. […] The word 'aether' has extremely negative connotations in theoretical physics because of its past 

association with opposition to relativity. This is unfortunate because, stripped of these connotations, it rather 

nicely captures the way most physicists actually think about the vacuum. […]The modern concept of the vacuum of 

space, confirmed every day by experiment, is a relativistic aether. But we do not call it this because it is taboo.”  
19

 The ω
2
= 1/LC formula gives us the natural or resonant frequency for a electric circuit consisting of a resistor (R), 

an inductor (L), and a capacitor (C). Writing the formula as ω
2
= C

−1
/L introduces the concept of elastance, which is 

the equivalent of the mechanical stiffness (k) of a spring. 
20

 The resistance in an electric circuit introduces a damping factor. When analyzing a mechanical spring, one may 

also want to introduce a drag coefficient. Both are usually defined as a fraction of the inertia, which is the mass for 

a spring and the inductance for an electric circuit. Hence, we would write the resistance for a spring as γm and as R 

= γL respectively.  
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guitar string, for example – we know the energy will be proportional to the square of the frequency.
21

 It 

is a remarkable observation: the two-dimensional matter-wave, or the electromagnetic wave, gives 

us two waves for the price of one, so to speak, each carrying half of the total energy of the oscillation 

but, as a result, we get an E ∝ f instead of an E ∝ f
2
 proportionality.  

However, such reflections do not answer the fundamental question we started out with: what is mass? 

At this point, it is hard to go beyond the circular definition that is implied by Einstein’s formula: energy is 

a two-dimensional oscillation of mass, and mass packs energy, and c emerges us as the property of 

spacetime that defines how exactly.  

When everything is said and done, this does not go beyond stating that mass is some scalar field. Now, a 

scalar field is, quite simply, some real number that we associate with a position in spacetime. The Higgs 

field is a scalar field but, of course, the theory behind it goes much beyond stating that we should think 

of mass as some scalar field. The fundamental question is: why and how does energy, or matter, 

condense into elementary particles? That is what the Higgs mechanism is about but, as this paper is 

exploratory only, we cannot even start explaining the basics of it. 

What we can do, however, is look at the wave equation again (Schrödinger’s equation), as we can now 

analyze it as an energy diffusion equation. 
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 This is a general result and is reflected in the K.E. = T = (1/2)∙m∙ω
2
∙a

2
∙sin

2
(ω∙t + Δ) and the P.E. = U = k∙x

2
/2 = 

(1/2)∙ m∙ω
2
∙a

2
∙cos

2
(ω∙t + Δ) formulas for the linear oscillator.    
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IV. Schrödinger’s equation as an energy diffusion equation 

The interpretation of Schrödinger’s equation as a diffusion equation is straightforward. Feynman 

(Lectures, III-16-1) briefly summarizes it as follows:  

“We can think of Schrödinger’s equation as describing the diffusion of the probability amplitude 

from one point to the next. […] But the imaginary coefficient in front of the derivative makes the 

behavior completely different from the ordinary diffusion such as you would have for a gas 

spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions, 

whereas the solutions of Schrödinger’s equation are complex waves.”
22

   

Let us review the basic math. For a particle moving in free space – with no external force fields acting on 

it – there is no potential (U = 0) and, therefore, the Uψ term disappears. Therefore, Schrödinger’s 

equation reduces to: 

∂ψ(x, t)/∂t = i∙(1/2)∙(ħ/meff)∙∇2
ψ(x, t) 

The ubiquitous diffusion equation in physics is: 

∂φ(x, t)/∂t = D·∇2
φ(x, t) 

The structural similarity is obvious. The key difference between both equations is that the wave 

equation gives us two equations for the price of one. Indeed, because ψ is a complex-valued function, 

with a real and an imaginary part, we get the following equations
23

:  

1. Re(∂ψ/∂t) = −(1/2)∙(ħ/meff)∙Im(∇2
ψ) 

2. Im(∂ψ/∂t) = (1/2)∙(ħ/meff)∙Re(∇2
ψ) 

These equations make us think of the equations for an electromagnetic wave in free space (no 

stationary charges or currents): 

1. ∂B/∂t = –∇×E 

2. ∂E/∂t = c
2∇×B 

The above equations effectively describe a propagation mechanism in spacetime, as illustrated below.  

Figure 4: Propagation mechanisms 

 

                                                           
22

 Feynman further formalizes this in his Lecture on Superconductivity (Feynman, III-21-2), in which he refers to 

Schrödinger’s equation as the “equation for continuity of probabilities”. The analysis is centered on the local 

conservation of energy, which confirms the interpretation of Schrödinger’s equation as an energy diffusion 

equation. 
23

 The meff is the effective mass of the particle, which depends on the medium. For example, an electron traveling 

in a solid (a transistor, for example) will have a different effective mass than in an atom. In free space, we can drop 

the subscript and just write meff = m. As for the equations, they are easily derived from noting that two complex 

numbers a + i∙b and c + i∙d are equal if, and only if, their real and imaginary parts are the same. Now, the ∂ψ/∂t 

= i∙(ħ/meff)∙∇2
ψ equation amounts to writing something like this: a + i∙b = i∙(c + i∙d). Now, remembering that i

2
 = −1, 

you can easily figure out that i∙(c + i∙d) = i∙c + i
2
∙d = − d + i∙c. 



10 

 

The Laplacian operator (∇2
), when operating on a scalar quantity, gives us a flux density, i.e. something 

expressed per square meter (1/m
2
). In this case, it is operating on ψ(x, t), so what is the dimension of 

our wavefunction ψ(x, t)? To answer that question, we should analyze the diffusion constant in 

Schrödinger’s equation, i.e. the (1/2)∙(ħ/meff) factor: 

1. As a mathematical constant of proportionality, it will quantify the relationship between both 

derivatives (i.e. the time derivative and the Laplacian); 

2. As a physical constant, it will ensure the physical dimensions on both sides of the equation are 

compatible. 

Now, the ħ/meff factor is expressed in (N∙m∙s)/(N∙ s
2
/m) = m

2
/s. Hence, it does ensure the dimensions on 

both sides of the equation are, effectively, the same: ∂ψ/∂t is a time derivative and, therefore, its 

dimension is s
−1

 while, as mentioned above, the dimension of ∇2
ψ is m

−2
. However, this does not solve 

our basic question: what is the dimension of the real and imaginary part of our wavefunction? 

At this point, mainstream physicists will say: it does not have a physical dimension, and there is no 

geometric interpretation of Schrödinger’s equation. One may argue, effectively, that its argument, (p∙x − 

E∙t)/ħ, is just a number and, therefore, that the real and imaginary part of ψ is also just some number. 

To this, we may object that ħ may be looked as a mathematical scaling constant only. If we do that, the 

argument of ψ will, effectively, be expressed in action units, i.e. in N∙m∙s. It then does make sense to 

also associate a physical dimension with the real and imaginary part of ψ. What could it be?  

We may have a closer look at Maxwell’s equations for inspiration here. The electric field vector is 

expressed in newton (the unit of force) per unit of charge (coulomb). Now, there is something 

interesting here. The physical dimension of the magnetic field is N/C divided by m/s.
24

 We may write B 

as the following vector cross-product: B = (1/c)∙ex×E, with ex the unit vector pointing in the x-direction 

(i.e. the direction of propagation of the wave). Hence, we may associate the (1/c)∙ex× operator, which 

amounts to a rotation by 90 degrees, with the s/m dimension. Now, multiplication by i also amounts to a 

rotation by 90° degrees. Hence, we may boldly write: B = (1/c)∙ex×E = (1/c)∙i∙E. This allows us to also 

geometrically interpret Schrödinger’s equation in the way we interpreted it above (see Figure 3).
25

 

Still, we have not answered the question as to what the physical dimension of the real and imaginary 

part of our wavefunction should be. At this point, we may be inspired by the structural similarity 

between Newton’s and Coulomb’s force laws: 

� = �� � ∙ �	!	  

� = " � ∙ �	!	  

Hence, if the electric field vector E is expressed in force per unit charge (N/C), then we may want to 

think of associating the real part of our wavefunction with a force per unit mass (N/kg). We can, of 

                                                           
24

 The dimension of B is usually written as N/(m∙A), using the SI unit for current, i.e. the ampere (A). However, 1 C = 

1 A∙s and, hence, 1 N/(m∙A) = 1 (N/C)/(m/s).      
25

 Of course, multiplication with i amounts to a counterclockwise rotation. Hence, multiplication by −i also amounts 

to a rotation by 90 degrees, but clockwise. Now, to uniquely identify the clockwise and counterclockwise 

directions, we need to establish the equivalent of the right-hand rule for a proper geometric interpretation of 

Schrödinger’s equation in three-dimensional space: if we look at a clock from the back, then its hand will be 

moving counterclockwise. When writing B = (1/c)∙i∙E, we assume we are looking in the negative x-direction. If we 

are looking in the positive x-direction, we should write: B = −(1/c)∙i∙E. Of course, Nature does not care about our 

conventions. Hence, both should give the same results in calculations. We will show in a moment they do. 
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course, do a substitution here, because the mass unit (1 kg) is equivalent to 1 N∙s
2
/m. Hence, our N/kg 

dimension becomes: 

N/kg = N/(N∙s
2
/m)= m/s

2
 

What is this: m/s
2
? Is that the dimension of the a∙cosθ term in the a∙e

−iθ 
= a∙cosθ − i∙a∙sinθ 

wavefunction? Our answer is: why not? Think of it: m/s
2
 is the physical dimension of acceleration: the 

increase or decrease in velocity (m/s) per second. It ensures the wavefunction for any particle – matter-

particles or particles with zero rest mass (photons) – and the associated wave equation (which has to be 

the same for all, as the spacetime we live in is one) are mutually consistent. 

In this regard, we should think of how we would model a gravitational wave. The physical dimension 

would surely be the same: force per mass unit. It all makes sense: wavefunctions may, perhaps, be 

interpreted as traveling distortions of spacetime, i.e. as tiny gravitational waves. 

 

  



12 

 

V. Energy densities and flows 

Pursuing the geometric equivalence between the equations for an electromagnetic wave and 

Schrödinger’s equation, we can now, perhaps, see if there is an equivalent for the energy density. For an 

electromagnetic wave, we know that the energy density is given by the following formula: 

# = $%2 ' ∙ ' + $% ∙ �	
2 ) ∙ ) 

E and B are the electric and magnetic field vector respectively. The Poynting vector will give us the 

directional energy flux, i.e. the energy flow per unit area per unit time. We write: *#*+ = −∇ ∙ - 

Needless to say, the ∇∇∇∇∙ operator is the divergence and, therefore, gives us the magnitude of a (vector) 

field’s source or sink at a given point. To be precise, the divergence gives us the volume density of the 

outward flux of a vector field from an infinitesimal volume around a given point. In this case, it gives us 

the volume density of the flux of S.  

We can analyze the dimensions of the equation for the energy density as follows: 

1. E is measured in newton per coulomb, so [E∙E] = [E
2
] = N

2
/C

2
. 

2. B is measured in (N/C)/(m/s), so we get [B∙B] = [B
2
] = (N

2
/C

2
)∙(s

2
/m

2
). However, the dimension of 

our c
2
 factor is (m

2
/s

2
) and so we are also left with N

2
/C

2
. 

3. The ϵ0 is the electric constant, aka as the vacuum permittivity. As a physical constant, it should 

ensure the dimensions on both sides of the equation work out, and they do: [ε0] = C
2
/(N∙m

2
) 

and, therefore, if we multiply that with N
2
/C

2
, we find that u is expressed in J/m

3
.
26

 

Replacing the newton per coulomb unit (N/C) by the newton per kg unit (N/kg) in the formulas above 

should give us the equivalent of the energy density for the wavefunction. We just need to substitute ϵ0 

for an equivalent constant. We may give it a try. If the energy densities can be calculated – which are 

also mass densities, obviously – then the probabilities should be proportional to them.  

Let us first see what we get for a photon, assuming the electromagnetic wave represents its 

wavefunction. Substituting B for (1/c)∙i∙E or for −(1/c)∙i∙E gives us the following result: 

# = $%2 ' ∙ ' + $% ∙ �	
2 ) ∙ ) = $%2 ' ∙ ' + $% ∙ �	

2 . ∙ '� . ∙ '� = $%2 ' ∙ ' − $%2 ' ∙ ' = 0 

Zero. An unexpected result? Perhaps not. We have no stationary charges and no currents: only an 

electromagnetic wave in free space. Hence, the local energy conservation principle needs to be 

respected at all points in space and in time. The geometry makes sense of the result: for an 

electromagnetic wave, the magnitudes of E and B reach their maximum, minimum and zero point 

simultaneously, as shown below.
27

 This is because their phase is the same. 

                                                           
26

 In fact, when multiplying C
2
/(N∙m

2
) with N

2
/C

2
, we get N/m

2
, but we can multiply this with 1 = m/m to get the 

desired result. It is significant that an energy density (joule per unit volume) can also be measured in newton (force 

per unit area.  
27

 The illustration shows a linearly polarized wave, but the obtained result is general. 



 

Figure 

Should we expect a similar result for the energy densities that we would associate with the real and 

imaginary part of the matter-wave? 

and a∙sinθ, which gives a different picture of the 

geometry of the suggestion suggests some inherent spin, which is 

Let us first guess those densities. Making abstraction 

# = �	0�12θ3
We get what we hoped to get: the a

This is very deep. A photon has no rest mass, so it borrows and returns energy from empty space as it 

travels through it. In contrast, a matter

therefore associated with an energy density, and this energy density gives us the probabilities. Of 

course, we need to fine-tune the analysis to account for the fact that we have a wave packet rather th

a single wave, but that should be feasible

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 

and a sine function) appear to give some spin to our particle. We do not have this particularity for a 

photon. Of course, photons are bosons, i.e. spin

fermions with spin-1/2. Hence, our geometric interpretation of the wavefunction suggests that, after all, 

there may be some more intuitive explanation of the 

fermions, which puzzled even Feynman: 

“Why is it that particles with half

integral spin are Bose particles? We apologize for the fact that we cannot give yo

elementary explanation. An explanation has been worked out by Pauli from complicated 

arguments of quantum field theory and relativity. He has shown that the two must necessarily 

go together, but we have not been able to find a way of reproducing his a

elementary level. It appears to be one of the few places in physics where there is a rule which 

can be stated very simply, but for which no one has found a simple and easy explanation. The 

explanation is deep down in relativistic quantum mec

not have a complete understanding of the fundamental principle involved.” (Feynman, 

III-4-1) 

The physical interpretation of the wavefunction

understanding of ‘the fundamental principle involved

very different. That is all: it is force per unit charge for photons, and force per unit mass for matter

particles. We will examine the question of spin 

examine the matter-wave some more.

                                                          
28

 The sine and cosine are essentially the same functions, except for the difference in the phase: sinθ = cos(θ

Figure 5: Electromagnetic wave: E and B 

 

Should we expect a similar result for the energy densities that we would associate with the real and 

wave? For the matter-wave, we have a phase difference between 

θ, which gives a different picture of the propagation of the wave (see Figure 3

geometry of the suggestion suggests some inherent spin, which is interesting. We will come back to this. 

Making abstraction of any scaling constants, we may 

3	 + �	0−. ∙ 2.4θ3	 � �	 0�12	θ( 2.4	θ3 � �	 

the absolute square of our amplitude is, effectively, an energy density !

|ψ|
2 

 = |a·e
−i∙E∙t/ħ

|
2 

= a
2 

= u 

deep. A photon has no rest mass, so it borrows and returns energy from empty space as it 

travels through it. In contrast, a matter-wave carries energy and, therefore, has some (

therefore associated with an energy density, and this energy density gives us the probabilities. Of 

tune the analysis to account for the fact that we have a wave packet rather th

feasible. 

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 

and a sine function) appear to give some spin to our particle. We do not have this particularity for a 

n. Of course, photons are bosons, i.e. spin-zero particles, while elementary matter

1/2. Hence, our geometric interpretation of the wavefunction suggests that, after all, 

there may be some more intuitive explanation of the fundamental dichotomy between bosons and 

fermions, which puzzled even Feynman:  

“Why is it that particles with half-integral spin are Fermi particles, whereas particles with 

integral spin are Bose particles? We apologize for the fact that we cannot give yo

elementary explanation. An explanation has been worked out by Pauli from complicated 

arguments of quantum field theory and relativity. He has shown that the two must necessarily 

go together, but we have not been able to find a way of reproducing his arguments on an 

elementary level. It appears to be one of the few places in physics where there is a rule which 

can be stated very simply, but for which no one has found a simple and easy explanation. The 

explanation is deep down in relativistic quantum mechanics. This probably means that we do 

not have a complete understanding of the fundamental principle involved.” (Feynman, 

wavefunction, as presented here, may provide some better 

fundamental principle involved’: the physical dimension of the oscillation is 

t is force per unit charge for photons, and force per unit mass for matter

We will examine the question of spin somewhat more carefully in section VII.

wave some more. 

                   

The sine and cosine are essentially the same functions, except for the difference in the phase: sinθ = cos(θ

13 

Should we expect a similar result for the energy densities that we would associate with the real and 

wave, we have a phase difference between a∙cosθ 

3).
28

 In fact, the 

will come back to this. 

 write: 

bsolute square of our amplitude is, effectively, an energy density !  

deep. A photon has no rest mass, so it borrows and returns energy from empty space as it 

(rest) mass. It is 

therefore associated with an energy density, and this energy density gives us the probabilities. Of 

tune the analysis to account for the fact that we have a wave packet rather than 

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine 

and a sine function) appear to give some spin to our particle. We do not have this particularity for a 

matter-particles are 

1/2. Hence, our geometric interpretation of the wavefunction suggests that, after all, 

fundamental dichotomy between bosons and 

, whereas particles with 

integral spin are Bose particles? We apologize for the fact that we cannot give you an 

elementary explanation. An explanation has been worked out by Pauli from complicated 

arguments of quantum field theory and relativity. He has shown that the two must necessarily 

rguments on an 

elementary level. It appears to be one of the few places in physics where there is a rule which 

can be stated very simply, but for which no one has found a simple and easy explanation. The 

hanics. This probably means that we do 

not have a complete understanding of the fundamental principle involved.” (Feynman, Lectures, 

provide some better 

the physical dimension of the oscillation is just 

t is force per unit charge for photons, and force per unit mass for matter-

. Let us first 

The sine and cosine are essentially the same functions, except for the difference in the phase: sinθ = cos(θ−π /2). 
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VI. The de Broglie wavelength and relativistic length contraction 

The matter-wave effectively travels through space and time, but what is traveling, exactly? It is the pulse 

– or the signal – only: the phase velocity of the wave is just a mathematical concept. In fact, because the 

wave packet consists of elementary waves, even the group velocity – which corresponds to the classical 

velocity of our particle
29

 – is, first and foremost, a mathematical concept only: nothing actually moves 

with our particle.  

Indeed, we do not attempt to answer the question as to what is oscillating up and down and/or 

sideways: we only associated a physical dimension with the components of the wavefunction – newton 

per kg (force per unit mass), to be precise. We were inspired to do so because of the physical dimension 

of the electric and magnetic field vectors (newton per coulomb, i.e. force per unit charge) we associate 

with electromagnetic waves which, for all practical purposes, we currently treat as the wavefunction for 

a photon. This made it possible to calculate the associated energy densities and a Poynting vector for 

energy dissipation. In addition, we showed that Schrödinger's equation itself then becomes a diffusion 

equation for energy. Let us, now, examine the geometry of the elementary wavefunction in more detail. 

We will want to focus in particular on the asymmetry which is introduced by the phase difference 

between the real and the imaginary part of the wavefunction.  

Let us, once again, carefully look at the mathematical shape of the elementary wavefunction: 

ψ = a·e
−i[E∙t − p∙x]/ħ

 = a·e
−i[E∙t − p∙x]/ħ

 = a·cos(p∙x/ħ − E∙t/ħ) + i·a·sin(p∙x/ħ − E∙t/ħ) 

The direction of travel – i.e. the direction of propagation of the wavefunction – is perpendicular to the 

real and imaginary components of the wavefunction. The minus sign in the argument of our sine and 

cosine function defines the direction of travel: an F(x−v∙t) wavefunction will always describe some wave 

that is traveling in the positive x-direction (with c the wave velocity), while an F(x+v∙t) wavefunction will 

travel in the negative x-direction.  

Of course, for a geometric interpretation of the wavefunction in three dimensions, we need to agree on 

how to define i or, what amounts to the same, a convention on how to define clockwise and 

counterclockwise directions: if we look at a clock from the back, then its hand will be moving 

counterclockwise. So we need to establish the equivalent of the right-hand rule. However, let us not 

worry about that now. Let us focus on the interpretation. To ease the analysis, we will assume we are 

looking at a particle at rest. Hence, p = 0, and the wavefunction reduces to: 

ψ = a·e
−i∙E∙t/ħ

 = a·cos(−E∙t/ħ) + i·a·sin(−E0∙t/ħ) = a·cos(E0∙t/ħ) − i·a·sin(E0∙t/ħ) 

E0 is, of course, the rest mass of our particle and, now that we are here, we should probably 

wonder what time t we are talking about: is it our time, or is the proper time of our particle? It is 

obvious that, when the particle is at rest, t is, effectively, the proper time. Hence, we should write it as 

t’.
30

 However, because this may confuse the reader, we will write t’ just as t for the time being.  

                                                           
29

 When thinking about the wave nature of elementary particles, the term wavicle comes to mind. Sir Arthur 

Eddington used this term in his famous book, The Nature of the Physical World, which was written in 1929 – one 

year after Heisenberg, Born and Schrödinger published the key quantum-mechanical papers, and five years after 

de Broglie published his thesis on the de Broglie equations. However, academics and physicists have not embraced 

the term. 
30

 It is very easy to show how the argument of the wavefunction transforms relativistically. The E and p in the 

argument of the wavefunction (θ = ω∙t – k∙x = (E/ħ)∙t – (p/ħ)∙x = (E∙t – p∙x)/ħ) is, of course, the energy and 

momentum are the energy and momentum as measured in our frame of reference. Hence, we will want to write 
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The point to note is that E0/ħ pops up as the natural frequency of our matter-particle: (E0/ħ)∙t = ω∙t. 

Remembering the ω = 2π∙f = 2π/T and T = 1/f formulas (and noting that ħ = h/2π), we can write the 

following: 

T = 2π∙(ħ/E0) = h/E0 ⇔ f = E0/h = m0c
2
/h 

This is interesting, because we can look at the period as a natural unit of time for our particle.  

What about the wavelength? Textbooks will usually distinguish between the group and phase velocity of 

the wave here. The group velocity (vg) corresponds to the classical velocity of our particle and, hence, 

should be equal to zero here, because we assume our particle does not move. What about the phase 

velocity? The phase velocity is given by vp = λ∙f = (2π/k)∙(ω/2π) = ω/k. We get a weird result here, 

because the wavenumber k = p/ħ is zero (if the particle is at rest, p = 0 and, therefore, k must be zero). 

Hence, we have a division by zero here, which is rather strange. Now, ω = E0/ħ = m0c
2
/ħ is not zero and, 

therefore, should we conclude that the phase velocity is infinite here?  

What do we get assuming the particle is not at rest? Let us recall the basic wave equations: E/ħ = ω gives 

the frequency in time (expressed in radians per second), while p/ħ = k gives us the wavenumber, or the 

frequency in space (expressed in radians per meter). Of course, we may write: f = ω/2π  and λ = 2π/k, 

which gives us the two de Broglie relations: 

1. E = ħ∙ω = h∙f 

2. p = ħ∙k = h/λ  

The frequency in time is easy to interpret. The wavefunction of a particle with more energy, or more 

mass, will have a higher density in time than a particle with less energy. Of course, relativity comes into 

play: it will have a higher density in our time: its natural frequency f0 = E0/h = m0c
2
/h remains the same. 

But let us look at the second de Broglie relation. First, we should note it is relevant only in our frame of 

reference, because the measured momentum is relative to our frame of reference. Having noted this, let 

us now try to interpret λ geometrically.  

According to the p = h/ λ relation, the wavelength is inversely proportional to the momentum: λ = h/p. 

For example, the velocity of a photon (which has zero rest mass: m0 = 0), is c and, therefore, we find that 

p = mv∙v = mc∙c = m∙c (all of the energy is kinetic). Hence, we can write: p∙c = m∙c
2
 = E, which we may also 

write as: E/p = c. Hence, for a particle with zero rest mass, the wavelength can be written as: 

λ = h/p = hc/E = h/mc  

However, this is a limiting situation – applicable to photons only.
31

 Real-life matter-particles should have 

some mass
32

 and, therefore, their velocity will never be c.
33

 

                                                                                                                                                                                    

these quantities as E = Ev and p = pv = pv∙v. If we then use natural units (hence, the numerical value of c and ħ is 

equal to 1), we can relate the energy and momentum of a moving object to its energy and momentum when at 

rest using the following relativistic formulas: 

Ev = E0/√(1−v
2
) = m0/√(1−v

2
) and pv = mv∙v = m0∙v/√(1−v

2
) = E0∙v/√(1−v

2
)  

Needless to say, v is the (relative) velocity here and, therefore, has a value between 0 and 1. The argument of the 

wavefunction can then be re-written as:   

θ = [E0/√(1−v
2
)]∙t – [E0∙v/√(1−v

2
)]∙x = E0∙(t − v∙x)/√(1−v

2
) ⇔ θ = E0·t’ with t’ = (t − v·x)/√(1−v

2
) 

31
 It is interesting to note that, using the f0 = E0/h = m0c

2
/h for the natural frequency of a wavicle, we find that the 

natural frequency of a photon should be equal to zero. Does this make sense? We logically conclude a photon – 

and any theoretical matter-particle with zero rest mass – is never at rest: its velocity should always be equal to c.    
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Hence, if p goes to zero, then the wavelength becomes infinitely long: if p → 0 then λ → ∞. How should 

we interpret this inverse proportionality between λ and p? To answer this question, let us first see what 

this wavelength λ actually represents.  

If we look at the ψ = a·cos(p·x/ħ − E·t/ħ) − i·a·sin(p·x/ħ − E·t/ħ) once more, and if we write p·x/ħ as Δ, 

then we can look at p·x/ħ as a phase factor, and so we will be interested to know for what x this phase 

factor Δ = p·x/ħ will be equal to 2π. So we write: 

Δ =p·x/ħ = 2π ⇔ x = 2π·ħ/p = h/p = λ    

So now we get a meaningful interpretation for that wavelength. It is the distance between the crests (or 

the troughs) of the wave, so to speak, as illustrated below.
34

  

Figure 6: The de Broglie wavelength 

 

Now we know what λ actually represent for our one-dimensional elementary wavefunction. Now, the 

time that is needed for one cycle is equal to T = 1/f = 2π·(ħ/E). Hence, we can now calculate the wave 

velocity:  

v = λ/T = (h/p)/[2π·(ħ/E)] = E/p 

Unsurprisingly, we get the phase velocity we get when applying the classical wave equation:  

v = vp = ω/k = E/p 

If v = λ/T = ω/k = E/p is the phase velocity, can we relate it to the group velocity? Of course, the concept 

of the group velocity only makes sense in the context of a wave packet. To put it simply, if there is no 

wave group, then there is no group velocity. Hence, we should, preferably, build a wave packet: a sum of 

wavefunctions, each with their own amplitude ai, and their own ωi = −Ei/ħ. Indeed, in section II, we 

showed that each of these wavefunctions will contribute some energy to the total energy of the wave 

packet and that, to calculate the contribution of each wave to the total, both ai as well as Ei matter.  

                                                                                                                                                                                    
32

 Even neutrinos have some (rest) mass. This was first confirmed by the US-Japan Super-Kamiokande collaboration 

in 1998. Neutrinos oscillate between three so-called flavors: electron neutrinos, muon neutrinos and tau 

neutrinos. Recent data suggests that the sum of their masses is less than a millionth of the rest mass of an 

electron. Hence, they propagate at speeds that are very near to the speed of light. 
33

 Using the Lorentz factor (γ), we can write the relativistically correct formula for the kinetic energy as KE = 

E − E0 = mvc
2
 − m0c

2
 = m0γc

2
 − m0c

2
 = m0c

2
(γ − 1). As v approaches c, γ approaches infinity and, therefore, the kinetic 

energy would become infinite as well. 
34

 Of course, this two-dimensional wave has no real crests or troughs: we measure crests and troughs against the 

y-axis here. Hence, our definition of crests and troughs also depend on the frame of reference. 
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We can then calculate the group velocity assuming some meaningful dispersion relation. We can write 

this relation as ωi = ω = ω(ki). The group velocity will then be calculated as vg = ∂ωi/∂ki = ∂(Ei/ħ)/∂(pi/ħ) = 

∂(Ei)/∂(pi). It is relatively easy to show that Schrödinger’s equation yields the following dispersion 

relation: 

ω = ħ·k
2
/(2meff) 

However, we will analyze this relation separately – in the next section – because the derivation is 

actually not so straightforward as it appears to be. Let us first see where we get when doing some more 

substitutions. The p = m·v = mv·v relation is relativistically correct. We may, therefore, re-write the v = vp 

= ω/k = E/p as:  

vp = E/p = m·c
2
/m·vg  = c

2
/vg = c/β 

β = vg/c is, of course, the relative (classical) velocity of our particle β. Now, this relation tells us that the 

phase velocities will effectively be superluminal (β < 1 and, therefore, 1/β > 1). It also establishes a 

reciprocal relation between the relative phase and group velocity, which we will write as βp = vp/c and βg 

= vg/c respectively: 

βp = 1/βg 

We may also re-write this as: 

vp·vg = c
2
 

This reminds us of the relationship between the electric and magnetic constant (1/ε0)·(1/μ0) = c
2
. This is 

interesting in light of the fact we can re-write this as (c·ε0)·(c·μ0) = 1, which shows electricity and 

magnetism are just two sides of the same coin, so to speak.
35

 Likewise, the (c· vp)·(c· vg) = 1 identity also 

points at an underlying unity which we may not immediately understand – intuitively, that is. Indeed, 

the question is: how do we interpret the math? 

The vp·vg = c
2
 relation gives a new and interesting perspective to the question of what happens to the 

phase velocity when p goes to zero – or, what amounts to the same – if the group velocity goes to zero. 

Something times zero (vg = 0), or something times infinity ((vp = ∞), cannot be equal to some finite value 

(c
2
). As such, this relation tells us a particle is actually never really at rest. 

Such interpretation is consistent with the Uncertainty Principle: if Δx∙Δp ≥ ħ, then neither Δx nor Δp can 

be zero. In other words, the Uncertainty Principle tells us that the idea of some particle being at some 

specific point in time and in space is nonsensical: it has to move. Hence, it tells us that our concept of 

dimensionless points in time and space are mathematical notions only. Actual particles – including 

photons – are always a bit spread out, so to speak, and – more importantly – they have to move.
36

 

The title of this section is: the de Broglie wavelength and relativistic length contraction. We surely spent 

enough time on the geometric interpretation of the de Broglie wavelength now, but how could we 

possibly relate it to relativistic length contraction? Our intuition here is sketchy, but we hope the reader 

of this paper may find it interesting enough to further develop it. The idea is the following.  

                                                           
35

 I must thank a physics blogger for re-writing the 1/(ε0∙μ0) = c
2
 equation like this. See: 

http://reciprocal.systems/phpBB3/viewtopic.php?t=236 (retrieved on 29 September 2017).  
36

 Again, for a photon, this is self-evident. It has no rest mass, no rest energy, and, therefore, it is going to move at 

the speed of light itself. We write: p = m∙c = m∙c
2
/c = E/c. Using the relationship above, we get: vp = ω/k = 

(E/ħ)/(p/ħ) = E/p = c ⇒ vg = c
2
/vp = c

2
/c = c. For a matter-particle, the interpretation is less self-evident. 
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If the oscillations of the wavefunction pack energy, then the wave train which represents our particle 

cannot be infinitely long. Why? Because the energy of our particle is finite, and we can, therefore, not 

have an infinitely long wave train. Hence, if the wave train consists of a more or less precise number of 

oscillations, then the string of oscillations will be shorter as λ decreases. Now, λ decreases as the 

momentum – and, therefore, its classical velocity – increases. Hence, if the velocity of our wavicle 

increases, it will still pack the same number of oscillations, but each of these oscillations will occupy a 

smaller space. The wave train will, therefore, be shorter. Hence, the physical interpretation of the 

wavefunction that is offered in this paper may explain relativistic length contraction. 
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VII. Schrödinger’s equation, the dispersion relation and the 1/2 factor 

Let us re-visit the group velocity. We already mentioned that, if we would want to calculate the group 

velocity, we must assume that some meaningful vg = ∂ωi/∂ki = ∂(Ei/ħ)/∂(pi/ħ) = ∂(Ei)/∂(pi) relation exists. 

We mentioned such relation could be derived from Schrödinger’s equation. However, the derivation is 

somewhat less straightforward than casual writers on the topic suggest.  

For starters, we must also think about the phase velocities of the component waves: these must, 

obviously, be the same, as the component waves should all travel at the same phase velocity vp = ωi/ki. 

This is an interesting constraint, which reinforces the idea of associating the component waves with 

component magnitudes (ai), component energies (Ei) and, finally, component momenta (pi). We will 

come back to this. Let us first derive the mentioned ω = ħ∙k
2
/(2meff) relation. 

There is, of course, more than one way to go about it, but one way of doing it is to re-write 

Schrödinger's equation as we did, i.e. by distinguishing the real and imaginary parts of the ∂ψ/∂t 

=i∙[ħ/(2meff)]∙∇2
ψ wave equation and, hence, re-write it as the following pair of two equations: 

1. Re(∂ψ/∂t) = −[ħ/(2meff)]∙Im(∇2
ψ) ⇔ ω∙cos(kx − ωt) = k

2
∙[ħ/(2meff)]∙cos(kx − ωt) 

2. Im(∂ψ/∂t) = [ħ/(2meff)]∙Re(∇2
ψ) ⇔ ω∙sin(kx − ωt) = k

2
∙[ħ/(2meff)]∙sin(kx − ωt) 

Both equations imply the following dispersion relation: 

ω = ħ∙k
2
/(2meff) 

Of course, we need to think about the subscripts now: we have ωi, ki, but... What about meff or, dropping 

the subscript, m? Do we write it as mi? If so, what is it? Well... It is the equivalent mass of Ei obviously, 

and so we get it from the mass-energy equivalence relation: mi = Ei/c
2
. It is a fine point, but one most 

people forget about: they usually just write m. However, if there is uncertainty in the energy, then 

Einstein's mass-energy relation tells us we must have some uncertainty in the (equivalent) mass too. 

Here, we should refer back to Section II: Ei varies around some average energy E and, therefore, the 

Uncertainty Principle kicks in. 

The analysis is further complicated by the concept of the effective mass. It is a rather  enigmatic 

concept: it, obviously, depends on the particle itself but, crucially, it also depends on the medium. For 

example, an electron traveling in a solid (a transistor, for example) will have a different effective mass 

than in an atom. It is only in free space that we can drop the subscript and simply write: meff = m. Let us 

think about these things. 

Let us analyze Schrödinger’s equation as a diffusion equation once more. Including potential (V), you will 

usually see it written as: 

.ħ ∂ψ∂t =  − ħ	
2m9:: ∇	ψ + Vψ 

The structural similarity with a physical diffusion equation which, including the flux from some sink or 

source (S), we would generally write as: ∂φ∂t =  <∇	φ + S 
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At this point, it may be good to remind ourselves of the basics by using the example of the heat diffusion 

equation which, without a source or sink term, we can write as
37

:  

� ∂T∂t =  κ∇	T 

The constant on the left-hand side (k) is just the (volume) heat capacity of the substance, which is 

expressed in J/(m
3
∙K). Hence, the dimension of k∙(∂T/∂t) is J/(m

3
∙s). On the right-hand side we have the 

Laplacian again, whose dimension is K/m
2
 multiplied by the thermal conductivity (κ), whose dimension is 

W/(m∙K) = J/(m∙s∙K).
38

 Hence, the dimension of the product is the same as the left-hand side: J/(m
3
∙s). 

The structural similarities between the wave equations and the (heat) diffusion equation can also be 

illustrated by writing them in differential form.
39

 Indeed, Let me first remind you that the k∙(∂T/∂t) = 

∂q/∂t = κ∙∇2
T equation can also be written as: ∂q∂t = −∇ ∙ @ 

This, of course, is entirely similar to the equation for the Poynting vector, which we had introduced in 

section V.
40

 *#*+ = −∇ ∙ - 

The h in the differential heat diffusion equation above is, obviously, not Planck’s constant, but the heat 

flow vector, i.e. the heat that flows through a unit area in a unit time, and h is, obviously, equal to h = 

−κ∇T.
41

 Both equations – regardless in what form we write them (with a −∇∙h term of with the ∇2
T term) 

– both embody the energy conservation principle.  

This paper argues that the similarity between Schrödinger’s equation and the heat diffusion equation is 

not only structural. There is more to it: both equations model an energy flow in space and in time. This 

point is easily made for the heat diffusion equation, because the temperature T is expressed in Kelvin 

(K), which – as we all know – is a measure of the (average) kinetic energy of the atoms or molecules of 

the substance involved. 

Let us do a similar dimensional analysis of Schrödinger’s equation. To do so, we will re-write it as 

follows: ∂ψ∂t + . V
ħ

ψ =  . ħ2m9:: ∇	ψ 

This looks unfamiliar, but all we did was to divided both sides of the equation by i∙ħ coefficient to the 

other side (noting that 1/i = −i), and then we moved the – (i/ħ)∙V∙ψ to the left-hand side of the equation. 

The physical dimension of the left-hand side of the equation can now be analyzed as follows:  

• The ∂ψ/∂t term gives us a flow in nme: something expressed per second. 

                                                           
37

 This expression assumes the heat per unit volume (q) is proportional to the temperature (T), which is the case 

when expressing T in degrees Kelvin (K), so we can write q as q = k·T. 
38

 Needless to say, the J, K, W units stands for joule, Kelvin, and watt respectively. 
39

 These equations are expressions of Gauss’ flux theorem, which can be expressed both in differential as well as in 

integral form. 
40

 The Poynting vector S is, obviously, not to be confused with the sink (or source) term S we mentioned previously. 
41

 The dot in the ∇∙ operator is essential. One should review vector calculus here, if necessary: ∇∙ is 

the divergence operator. 
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• The dimension of V/ħ is (N·m)/(N·m·s) = 1/s.
42

 Hence, this term also gives us the same 1/s 

dimension. Both terms combined us effectively gives us a flow: something per second. 

On the right-hand side of the equation, we get the following: 

• The ħ/2meff factor gives us (N·m·s)/(N·s
2
/m) = m

2
/s. 

• The Laplacian (∇
2
) will always gives us some quantity per m

2
. Both factors combined give us 

what we wanted to get: something per second on both sides of the equation. 

Now, when thinking about Schrödinger’s equation as a diffusion equation, we may want to remind 

ourselves that a potential is always given in terms of some unit: a unit charge when discussing 

electromagnetic phenomena and – in our interpretation of the wavefunction – probably something per 

unit mass. It is, therefore, tempting to bring the 1/meff to the other side as well. We may also want to re-

write meff as Eeff/c
2
. In free space (no potential), Schrödinger’s equation then becomes: 

E9:: ∂ψ∂t  =  . 12 ħ�	∇	ψ 

This formulation represents our intuitive interpretation of Schrödinger’s equation as an energy diffusion 

equation best. Indeed, the product of Planck’s constant (ħ) and the squared velocity of light (c
2
) appears 

as a physical proportionality constant: besides ensuring the numbers come out alright, it also ensures 

the physical dimension of the left- and right-hand side of our equation are the same.  

What about the ½ factor? We may want to think ħ/2 is – somehow – more fundamental than ħ, but that 

is not very satisfactory as an interpretation. To see this, we should just substitute the a·e
−i·[E·t − p∙x]/ħ

 for ψ 

in the equation and do the calculations
43

: 

• ∂ψ/∂t = −i∙a∙(E/ħ)∙e
−i·[(E/ħ)∙t – (p/ħ)∙x]

 

• ∇2
ψ = ∂

2
[a·e

−i·[(E/ħ)·t – (p/ħ)∙x]
]/∂x

2 
=  ∂[i∙a∙( (p/ħ)∙e

−i·[(E/ħ)∙t – (p/ħ)∙x]
]/∂x = −a∙(p

2
/ħ

2
)∙e

−i·[(E/ħ)∙t – (p/ħ)∙x]
 

Hence, in free space (Eeff = E = meff∙c
2
), we get the following condition:  

−i∙a(E
2
/ħ)∙e

−i·[(E/ħ)∙t – (p/ħ)∙x]
 = −i∙a∙(1/2)∙(ħc

2
)∙(p

2
/ħ

2
)∙e

−i·[(E/ħ)∙t – (p/ħ)∙x] 

The exponentials and the −i∙a/ħ coefficients cancel, so this condition becomes:  

E	 = 12 p	�	 ⟺ E = C12 p� 

The ½ factor in Schrödinger’s equation gives us a nonsensical relation between energy and momentum. 

Remember: the energy-momentum relation for a photon – and, we presume, for any particle with zero 

rest mass – is equal to E = pc, or – for particles with a non-zero rest mass
44

: 

p·c = E·v/c 

We can only solve the problem by re-defining a new effective mass, which should be equal to two times 

the old effective mass. Hence, we write: meff
NEW

 = 2·meff
OLD

. 

We also get a weird energy formula when analyzing the dispersion relation ωi = ħ·ki
2
/(2mi): 

                                                           
42

 Potential energy is energy. We may, therefore, associate it with its N·m dimension. 
43

 ψ = ψ(x, y, z, t) = ψ(x, t) simplifies to ψ = ψ(x, t) in our one-dimensional analysis. Hence, ∇
2
ψ reduces to ∂

2
ψ/∂x

2
. 

Note we use the i
2
= −1 idennty in the derivanon of ∇2

ψ.    
44

 When substituting E for mc
2
 and p for p = mv, one can easily see this reduces to the definition of momentum: pc

2
 

= mc
2
v ⇔ p = mv. Hence, this formula is proven easily. For more detail, see, for example, Feynman, I-16-1. 
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ω�  = 12 ħ ∙ k�	m�  ⟺ E�
ħ

= 12
ħ ∙ pE	

ħ	m� ⟺ E� = 12 mE	F�	m� ⟺ E� = 12 m�F�	 ⟺ �	 = 12 F�	 

The energy formula, and its implication (c
2
 = vi

2
/2), does not make much sense – if any at all – and is also 

inconsistent with the requirement of all component waves having one single phase velocity vp = ωi/ki = 

Ei/pi. 

We get the same paradoxes when doing some substitutions using the de Broglie relations. Indeed, if we 

combine both, we also get another another nonsensical formula: 

1. E = h·f and p = h/λ. Therefore, f = E/h and λ = p/h. 

2. v = f·λ = (E/h)∙(p/h) = E/p 

3. p = m∙v. Therefore, E = v∙p = m∙v
2
 

E = m∙v
2
? This resembles the E = mc

2
 equation and, therefore, one may be enthused by the discovery, 

especially because the m∙v
2
 also pops up when working with the Least Action Principle in classical 

mechanics, which states that the path that is followed by a particle will minimize the following integral: 

G =  H 0KE − PE3K+�L
�M

 

Now, we can choose any reference point for the potential energy but, to reflect the energy conservation 

law, we can select a reference point that ensures the sum of the kinetic and the potential energy is zero 

throughout the time interval. If the force field is uniform, then the integrand will, effectively, be equal to 

KE − PE = m·v
2
.
45

 

However, that is classical mechanics and, therefore, not so relevant in the context of the de Broglie 

equations. The apparent paradox is, obviously, to be solved by distinguishing between the group and the 

phase velocity of the matter wave. However, the analysis is less straightforward than one might expect, 

as evidenced by the following remarks.  

The p = m∙v is the relativistically correct formula for the momentum of an object if v = vg, i.e. the group 

velocity (vg) of the wave packet, which corresponds to the classical velocity of our particle. Hence, we 

can write: 

p = m∙vg = (E/c
2
)∙vg ⇔ vg = p/m =  p∙c

2
/E 

This gives us the relativistic energy-momentum formula we mentioned above: p∙c = E∙v/c ⇔ p∙c
2
/E = v. It 

is also just another way of writing the formula we have already derived in our paper: vg = (p/E)∙c
2
 

= c
2
/vp or vp = c

2
/vg. Let us substitute this in the formula for the de Broglie wavelength: 

λ = vp/f = vp∙T = vp⋅(h/E) = (c
2
/vg)·(h/E) = h/(m·vg) = h/p  

This gives us the second de Broglie relation: λ = h/p. It is interesting to think about it. The f = E/h relation 

is intuitive: higher energy, higher frequency. In contrast, the λ = h/p relation tells us we get an infinitely 

long wavelength for a stationary particle. As the E = m∙v
2
 is only correct if v = c, the λ = h/p relation may 

describe a photon, or a theoretical massless fermion only. For particles with a non-zero rest mass, the 

relation may only convey an idea or, at the very least, requires a better definition of the velocity 

variable.   

                                                           
45

 We detailed the mathematical framework and detailed calculations in the following online article: 

https://readingfeynman.org/2017/09/15/the-principle-of-least-action-re-visited. 
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As we mentioned above, these paradoxes may be solved if we would define a new effective mass, which 

would be twice the old concept: meff
NEW

 = 2∙meff
OLD

. Such re-definition would, possibly, be justified by our 

interpretation of energy as a two-dimensional oscillation of mass but, of course, raises new questions. 

For starters, we know Schrödinger’s equation – with the ½ factor – gives us the correct energy levels for 

the electron orbitals. Hence, we will obviously need a much more thorough justification for our 

proposed re-definition of the effective mass. 

Let us put this rather complicated discussion on group versus phase velocities, and the mysterious ½ 

factor, aside to focus on something more obvious. Let us look at the geometry of the situation once 

more. If you look at the illustrations above, you see we can sort of distinguish (1) a linear velocity – the 

speed with which those wave crests (or troughs) move – and (2) some kind of circular or tangential 

velocity – the velocity along the red contour line above. We’ll need the formula for a tangential velocity: 

vt = a∙ω. 

Figure 7: Linear versus circular velocity 

 

Now, if λ is zero, then vt = a∙ω = a∙E/ħ is just all there is. We may double-check this as follows: the 

distance traveled in one period will be equal to 2πa, and the period of the oscillation is T = 2π∙(ħ/E). 

Therefore, vt will, effectively, be equal to vt = 2πa/(2πħ/E) = a∙E/ħ.  

However, if λ is non-zero, then the distance traveled in one period will be equal to 2πa + λ. The period 

remains the same: T = 2π∙(ħ/E). Hence, we can write: 

FO = ∆Q∆� = 	π� R λ	πħ/T = 	π�	πħ/T + U/�	πħ/T = � ∙ T
ħ

+ TV = FV + � ∙ T
ħ
   

Now, in the next section, we will be calculating a formula for a. In fact, we will find a is just the (reduced) 

Compton radius (if we are considering an electron, at least). We will equate an angular momentum 

formula (for an electron) with the actual +ħ/2 or −ħ/2 values of its spin and, remarkably, we do get the 

Compton radius, which is the scattering radius for an electron. Let us write it out: 

�	 ∙ E	
2 ∙ ℏ ∙ �	 = ℏ2 ⟺ �	 = ℏ	 ∙ �	

E	 = ℏ	
m	 ∙ �	 ⟺ � = ℏm ∙ � 

Substituting the various constants with their numerical values, we find that a is equal 3.8616×10
−13

 m. 

Here, however, we will just want to substitute the formula itself: 

FO = FV + � ∙ T
ħ

= FV + ℏX∙� ∙ T
ħ

= FV + X∙�L
X∙� = � + FV   

This is an interesting result. For example, if we substitute vp for vp = c
2
/vg 
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Then our formula becomes vt = c + vp = c + c
2
/vg =. When expressing velocities as relative velocities, this 

formula simplifies to: 

βt = 1 + vp/c = 1 + βp = 1 + 1/βg 

Of course, if vp is equal to c, then we find this tangential velocity is equal to: 

vt = 2c 

Hence, the tangential velocity is twice the linear velocity. Of course, the question is: what is 

the physical significance of this? Further exploration might yield other fascinating insights. Some of our 

initial thoughts on this are further elaborated in the next two sections. But what about the paradoxes? 

What about that ½ factor? 

It requires further analysis of how we should build up the Fourier sum. The physical normalization 

condition we suggested in section II of this paper comes into play. We wrote it as:  

�	ħ	E = � ��	 ∙ E�
 

This equation makes it clear that the energy values Ei are not the only values that matter. The 

amplitudes ai – we which we may refer to as the relative contributions to the wave packet – are 

important too. Hence, further analysis is needed to explain the paradoxes we highlighted and – in the 

process – that ½ factor we are struggling to understand.
46

 

 

  

                                                           
46

 This is the primary area of future research for the author of this paper. 



 

VIII. Explaining spin 

The elementary wavefunction vector

rotates around the x-axis, which gives us the direction of propagation of the wave (see 

magnitude remains constant. In contrast, the m

vector sum of the electric and magnetic field vectors

Figure 5). 

We already mentioned that the rotation 

particle. Of course, a circularly polarized wave would also appear to have spin (think of the 

vectors rotating around the direction of propagation 

sideways only). In fact, a circularly polarized light does

of its energy may be thought of as rotating as well. But so here we are

The basic idea is the following: if we 

oscillation of mass, to be precise – then

propagation with some torque. The

Figure 

A torque on some mass about a fixed axis gives it

cross-product L = r×p or, perhaps easier for our purposes here as the 

and rotational inertia (I), aka as the

Note we can write L and ω in boldface

magnitudes only, we write L = I·ω (no boldface).

angular velocity. In our previous posts, we showed that the

2π·(ħ/E0). Hence, the angular velocity must be equal to:

We also know the distance r, so that is

so that is the magnitude of ψ = a·e
−

in this case, the tangential velocity 

quantities, then the (tangential) velocity is given by 

should use for m or, if we want to work with the 

need to make some assumption about the mass (or energy) 

to assume the energy in the oscillation 

we may use the formula for the angular mass of a solid cylinder:

relativistic, then m = m0. Of course, 

what we get: 

vector – i.e. the vector sum of the real and imaginary component 

axis, which gives us the direction of propagation of the wave (see 

In contrast, the magnitude of the electromagnetic vector

sum of the electric and magnetic field vectors – oscillates between zero and some maximum

rotation of the wavefunction vector appears to give some 

polarized wave would also appear to have spin (think of the 

the direction of propagation - as opposed to oscillating up and down or 

circularly polarized light does carry angular momentum, as the 

of its energy may be thought of as rotating as well. But so here we are looking at a matter

we look at ψ = a·e
−i·E·t/ħ

 as some real vector – as a two

then we may associate its rotation around the direction of 

. The illustration below reminds of the math here. 

Figure 8: Torque and angular momentum vectors 

 

A torque on some mass about a fixed axis gives it angular momentum, which we can write as the vector 

or, perhaps easier for our purposes here as the product of an angular

nal inertia (I), aka as the moment of inertia or the angular mass. We write: 

L = I·ω 

boldface here because they are (axial) vectors. If we consider their 

L = I·ω (no boldface). We can now do some calculations. Let us

angular velocity. In our previous posts, we showed that the period of the matter-wave is equal to T = 

). Hence, the angular velocity must be equal to: 

ω = 2π/[2π·(ħ/E0)] = E0/ħ 

that is the magnitude of r in the L = r×p vector cross-product: 
−i·E·t/ħ

. Now, the momentum (p) is the product of a linear

velocity - and some mass (m): p = m·v. If we switch to scalar

quantities, then the (tangential) velocity is given by v = r·ω. So now we only need to think about what we 

should use for m or, if we want to work with the angular velocity (ω), the angular mass (I). 

e assumption about the mass (or energy) distribution. Now, it may or may not sense 

the energy in the oscillation – and, therefore, the mass – is distributed uniformly. In that case, 

we may use the formula for the angular mass of a solid cylinder: I = m·r
2
/2. If we keep the analysis non

Of course, the energy-mass equivalence tells us that m0 = E0/c

25 

he real and imaginary component – 

axis, which gives us the direction of propagation of the wave (see Figure 3). Its 

vector – defined as the 

zero and some maximum (see 

efunction vector appears to give some spin to the 

polarized wave would also appear to have spin (think of the E and B 

as opposed to oscillating up and down or 

, as the equivalent mass 

matter-wave.  

two-dimensional 

associate its rotation around the direction of 

can write as the vector 

angular velocity (ω) 

 

. If we consider their 

Let us start with the 

wave is equal to T = 

product: it is just a, 

linear velocity (v) - 

scalar instead of vector 

·ω. So now we only need to think about what we 

mass (I). Here we 

Now, it may or may not sense 

distributed uniformly. In that case, 

/2. If we keep the analysis non-

c
2
. Hence, this is 
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L = I·ω = (m0·r
2
/2)·(E0/ħ) = (1/2)·a

2
·(E0/c

2
)·(E0/ħ) = a

2
·E0

2
/(2·ħ·c

2
)  

Does it make sense? Maybe. Maybe not. Let us do a dimensional analysis: that won’t check our logic, but 

it makes sure we made no mistakes when mapping mathematical and physical spaces. We have m
2
·J

2
 = 

m
2
·N

2
·m

2
 in the numerator and N·m·s·m

2
/s

2
 in the denominator. Hence, the dimensions work out: we 

get N·m·s as the dimension for L, which is, effectively, the physical dimension of angular momentum. It 

is also the action dimension, of course, and that cannot be a coincidence. Also note that the E = 

mc
2
 equation allows us to re-write it as: 

L = a
2
·E0

2
/(2·ħ·c

2
) 

Of course, in quantum mechanics, we associate spin with the magnetic moment of a charged particle, 

not with its mass as such. Is there way to link the formula above to the one we have for the quantum-

mechanical angular momentum, which is also measured in N·m·s units, and which can only take on one 

of two possible values: J = +ħ/2 and −ħ/2? It looks like a long shot, right? How do we go from 

(1/2)·a
2
·m0

2
/ħ to ± (1/2)·ħ? Let us do a numerical example. The energy of an electron is typically 0.510 

MeV ≈ 8.1871×10
−14

 N·m, and a… What value should we take for a? 

We have an obvious trio of candidates here: the Bohr radius, the classical electron radius (aka the 

Thompon scattering length), and the Compton scattering radius. 

Let us start with the Bohr radius, so that is about 0.×10
−10

 N·m. We get L = a
2
·E0

2
/(2·ħ·c

2
) = 9.9×10

−31
 

N·m·s. Now that is about 1.88×10
4
 times ħ/2. That is a huge factor. It cannot be right.  

Let us try the classical electron radius, which is about 2.818×10
−15

 m. We get an L that is equal to about 

2.81×10
−39

 N·m·s, so now it is a tiny fraction of ħ/2! This, too, does not work.  

Let us use the Compton scattering length, so that is about 2.42631×10
−12

 m. This gives us an L of 

2.08×10
−13

 N·m·s, which is only 20 times ħ. This is not so bad, but it is good enough?  

Let us calculate it the other way around: what value should we take for a so as to ensure L = 

a
2
·E0

2
/(2·ħ·c

2
) = ħ/2? Let us write it out: 

�	 ∙ E%	
2 ∙ ℏ ∙ �	 = ℏ2 ⟺ �	 = ℏ	 ∙ �	

E%	 = ℏ	
m%	 ∙ �	 ⟺ � = ℏm% ∙ � 

In fact, this is the formula for the so-called reduced Compton wavelength. This is perfect. We found what 

we wanted to find. Substituting this value for a (you can calculate it: it is about 3.8616×10
−13

 m), we get 

what we should find: 

Z = �	 ∙ E%	
2 ∙ ℏ ∙ �	 = [ = ℏ2 = 5.272859 × 10b
cN ∙ m ∙ s 

This is a rather spectacular result, and one that would – a priori – support the interpretation of the 

wavefunction that is being suggested in this paper.  

Of course, if we can calculate some radius, then we should, perhaps, also try to calculate other 

dimensions. The appendix to this paper further explores this possibility.
47
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 The analysis is rather primitive because the author limits it to one-dimensional space only. The results, while 

interesting, are difficult to interpret. They basically present a picture of the elementary wavefunction as an 

astronomically but finitely long string. 



 

IX. The boson-fermion dichotomy

Let us do some more thinking on the 

an actual particle is localized in space and that it can, therefore,

wavefunction ψ = a·e
−i[E·t − p·x]/ħ

 or, for a particle at rest, the ψ =

wave packet for that: a sum of wavefunctions, each with their own amplitude

−Ei/ħ. Each of these wavefunctions will

Now, we can have another wild but logical theory about this. 

Think of the apparent right-handedness of the elementary wavefunction

bothered about our convention of measuring phase angles clock

angular momentum can be positive or negative: 

that an actual particle - think of an electron, or whatever other particle you'd think of 

right-handed as well as left-handed el

of (elementary) right-handed waves or,

handed wave would be written as: 

In contrast, an elementary left-handed wave would be written as:

Both are illustrated below. 

Figu

How does that work out with the E0

is direction, but time? Time has only one direction, but 

counting like 1, 2, 3, etcetera or like

etcetera, then we write our wavefunction like:

If we count time like −1, −2, −3, etcetera then 

 ψ = a·cos(−E0∙t/ħ)

Hence, it is just like the left- or right

have both for the matter-wave too! This, then, should explain

either positive or negative quantum

two mathematical possibilities here, and so we

It is only natural. If we have left- and right

bosons - then we should also have left

fermion dichotomy 

do some more thinking on the boson-fermion dichotomy. Again, we should remind ourselv

particle is localized in space and that it can, therefore, not be represented by the elementary 

or, for a particle at rest, the ψ = a·e
−i∙E∙t/ħ

 function. We must build a 

avefunctions, each with their own amplitude ai, and their own ω

ħ. Each of these wavefunctions will contribute some energy to the total energy of the wave packet. 

wild but logical theory about this.  

handedness of the elementary wavefunction: surely, Nature

bothered about our convention of measuring phase angles clockwise or counterclockwise.

angular momentum can be positive or negative: J = +ħ/2 or −ħ/2. Hence, we would probably

think of an electron, or whatever other particle you'd think of -

handed elementary waves. To be precise, we may think they

es or, else, of (elementary) left-handed waves. An elementary right

 

ψ(θi) = ai∙(cosθi + i·sinθi) 

handed wave would be written as: 

ψ(θi) = ai∙(cosθi − i·sinθi) 

Figure 9: Left- and right-handed matter-wave 

0·t argument of our wavefunction? Position is position, and direction 

irection, but time? Time has only one direction, but Nature surely does not care how we 

counting like 1, 2, 3, etcetera or like −1, −2, −3, etcetera is just the same. If we count like

etcetera, then we write our wavefunction like: 

ψ = a·cos(E0∙t/ħ) − i·a·sin(E0∙t/ħ) 

−3, etcetera then we write it as: 

∙t/ħ) − i·a·sin(−E0∙t/ħ)= a·cos(E0∙t/ħ) + i·a·sin(E0∙t/ħ) 

or right-handed circular polarization of an electromagnetic wave: we can 

wave too! This, then, should explain why we can have 

negative quantum-mechanical spin (+ħ/2 or −ħ/2). It is the usual thing: we have 

possibilities here, and so we must have two physical situations that correspond to it.

and right-handed photons - or, generalizing, left- and r

also have left- and right-handed fermions (electrons, protons, etcetera). Back 
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to the dichotomy. The textbook analysis of the dichotomy between bosons and fermions may be 

epitomized by Richard Feynman’s Lecture on it (Feynman, III-4), which is confusing and – we would dare 

to say – even inconsistent: how are photons or electrons supposed to know that they need to interfere 

with a positive or a negative sign? They are not supposed to know anything: knowledge is part of 

our interpretation of whatever it is that is going on there.  

Hence, it is probably best to keep it simple, and think of the dichotomy in terms of the different physical 

dimensions of the oscillation: newton per kg versus newton per coulomb. And then, of course, we 

should also note that matter-particles have a rest mass and, therefore, actually carry charge. Photons do 

not. But both are two-dimensional oscillations, and the point is: the so-called vacuum - and the 

rest mass of our particle (which is zero for the photon and non-zero for everything else) - give us the 

natural frequency for both oscillations, which is beautifully summed up in that remarkable equation for 

the group and phase velocity of the wavefunction, which applies to photons as well as matter-particles: 

(vphase∙c)∙(vgroup∙c) = 1 ⇔ vp·vg = c
2
 

The final question then is: why are photons spin-zero particles? Well... We should first remind ourselves 

of the fact that they do have spin when circularly polarized.
48

 Here we may think of the rotation of the 

equivalent mass of their energy. However, if they are linearly polarized, then there is no spin. Even for 

circularly polarized waves, the spin angular momentum of photons is a weird concept. If photons have 

no (rest) mass, then they cannot carry any charge. They should, therefore, not have any magnetic 

moment. Indeed, what we wrote above shows an explanation of quantum-mechanical spin requires 

both mass as well as charge.
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 A circularly polarized electromagnetic wave may be analyzed as consisting of two perpendicular electromagnetic 

plane waves of equal amplitude and 90° difference in phase. 
49

 Of course, the reader will now wonder: what about neutrons? How to explain neutron spin? Neutrons are 

neutral. That is correct, but neutrons are not elementary: they consist of (charged) quarks. Hence, neutron spin 

can (or should) be explained by the spin of the underlying quarks. 



 

X. Concluding remarks 

There are, of course, other ways to look at the matter

dimensional oscillations as circular 

mass stays where it is, as depicted below. Any 

a rotation around the two other axes. Hence, we may want to think of a two

an oscillation of a polar and azimuthal angle. 

Figure 

The point of this paper is not to make any definite statements. That would be foolish. Its objective is just 

to challenge the simplistic mainstream viewpoint on the 

mathematical construct only without 

That is, clearly, a non-sustainable proposition.

The interpretation that is offered here looks at amplitude waves as traveling fields. Their physical 

dimension may be expressed in force per mass unit, as opposed to electromagnetic waves, whose 

amplitudes are expressed in force per (electric) 

incorporate a phase factor, but this may actually explain the rather enigmatic dichot

fermions and bosons and is, therefore, an added bonus.

The interpretation that is offered here has some advantages over other explanations, as it explains the 

how of diffraction and interference. However, while it offers a great explanation of 

matter, it does not explain its particle nature: while we think of the energy as being spread out, we will 

still observe electrons and photons as pointlike particles once they hit the detector. 

detector can sort of ‘hook’ the whole blob of energy, so to speak? 

The interpretation of the wavefunction that is offered here does 

complementarity principle of the Copenhagen interpretation of the wavefunction surely remains 

relevant. 

 

There are, of course, other ways to look at the matter – literally. For example, we can imagine two

circular rather than linear oscillations. Think of a tiny ball, whose center of 

mass stays where it is, as depicted below. Any rotation – around any axis – will be some combination of 

a rotation around the two other axes. Hence, we may want to think of a two-dimensional

an oscillation of a polar and azimuthal angle.  

Figure 10: Two-dimensional circular movement 

 

The point of this paper is not to make any definite statements. That would be foolish. Its objective is just 

to challenge the simplistic mainstream viewpoint on the reality of the wavefunction. Stating that it is a 

ruct only without physical significance amounts to saying it has no meaning at all. 

sustainable proposition. 

The interpretation that is offered here looks at amplitude waves as traveling fields. Their physical 

ssed in force per mass unit, as opposed to electromagnetic waves, whose 

amplitudes are expressed in force per (electric) charge unit. Also, the amplitudes of matter

, but this may actually explain the rather enigmatic dichotomy between 

fermions and bosons and is, therefore, an added bonus. 

The interpretation that is offered here has some advantages over other explanations, as it explains the 

of diffraction and interference. However, while it offers a great explanation of the wave nature of 

explain its particle nature: while we think of the energy as being spread out, we will 

electrons and photons as pointlike particles once they hit the detector. Why is it that a 

’ the whole blob of energy, so to speak?  

The interpretation of the wavefunction that is offered here does not explain this. Hence, the 

of the Copenhagen interpretation of the wavefunction surely remains 
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Appendix: The elementary wavefunction as a finite string

If we can calculate some radius with this model, then we should also try to calculate other dimensions.

The preliminary analysis that is offered here is rather primitive because we limit ourselves to one

dimensional space only. However, the results are encouraging.

The equation for the elementary wavefunction

ψ = a·e
−i[E·t − p·x]/ħ

 = a·e

In one-dimensional space (think of a particle t

scalars, and so we simply write: 

ψ = a·e
−i[E·t − p∙x]/ħ

 = a·e

Let us assume our particle is an electron and, as mentioned, we reduced its

dimensional motion only: we are thinking of it as traveling along the 

and z-axes as mathematical axes only: they will show us how the magnitude and direction of the real 

and imaginary component of ψ. As menti

left-handed, as shown below.  

These wavefunctions come with constant

of which ψ = 0. This is obvious: oscillations pack energy, and

each particle - be it a photon or an electron 

occupy a finite amount of space. Mathematically, this corresponds to the normalization condition:

probabilities have to add up to one, as illustrated below.

Now, the oscillations of the elementary wavefunction have the same

[Terminology is a bit confusing here because we use the term amplitude to refer to two very different

things here: we may say a is the (maximum)

oscillations do we have? If this is a particle in a box, then w

In our one-dimensional model, this amounts to asking how we can

The question is interesting: we know the frequency 

elementary wavefunction as a finite string 

If we can calculate some radius with this model, then we should also try to calculate other dimensions.

The preliminary analysis that is offered here is rather primitive because we limit ourselves to one

al space only. However, the results are encouraging.  

wavefunction is the usual one: 

a·e
−i[E∙t − p∙x]/ħ

 = a·cos(p∙x/ħ − E∙t/ħ) + i·a·sin(p∙x/ħ − E∙t/ħ)

dimensional space (think of a particle traveling along some line), the vectors (p 

a·e
−i[E∙t − p∙x]/ħ

 = a·cos(p∙x/ħ − E∙t/ħ) + i·a·sin(p∙x/ħ − E∙t/ħ)

Let us assume our particle is an electron and, as mentioned, we reduced its motion to a

thinking of it as traveling along the x-axis. We can then use the 

axes only: they will show us how the magnitude and direction of the real 

As mentioned in the paper, the wavefunction can be right

constant probabilities |ψ|
2 

 = a
2
, so we need to define a spac

oscillations pack energy, and the energy of our particle is finite. Hence, 

be it a photon or an electron - will pack a finite number of oscillations. It will, therefore, 

occupy a finite amount of space. Mathematically, this corresponds to the normalization condition:

probabilities have to add up to one, as illustrated below. 

 

oscillations of the elementary wavefunction have the same (maximum) amplitude:

[Terminology is a bit confusing here because we use the term amplitude to refer to two very different

(maximum) amplitude of the (probability) amplitude ψ.

If this is a particle in a box, then what is the size of the box?  

dimensional model, this amounts to asking how we can calculate the length

The question is interesting: we know the frequency (whose order of magnitude is 10
15
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If we can calculate some radius with this model, then we should also try to calculate other dimensions. 

The preliminary analysis that is offered here is rather primitive because we limit ourselves to one-

− E∙t/ħ) 

and x) become 

∙x/ħ − E∙t/ħ) 

motion to a one-

axis. We can then use the y- 

axes only: they will show us how the magnitude and direction of the real 

oned in the paper, the wavefunction can be right-handed or 

 

, so we need to define a space outside 

the energy of our particle is finite. Hence, 

number of oscillations. It will, therefore, 

occupy a finite amount of space. Mathematically, this corresponds to the normalization condition: all 

amplitude: a. 

[Terminology is a bit confusing here because we use the term amplitude to refer to two very different 

ψ.] So how many 

length of an electron. 

 Hz and 10
20

 Hz for 
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the photon and the electron respectively) gives us the number of oscillations per second. But how many 

oscillations do we have in one photon, or in one electron? 

Let us first think about photons, because we have more clues here. Photons are emitted by atomic 

oscillators: atoms going from one state (energy level) to another. We know how to calculate to calculate 

the Q of these atomic oscillators (see, for example, Feynman I-32-3): it is of the order of 10
8
, which 

means the wave train will last about 10
–8 

seconds (to be precise, that is the time it takes for the radiation 

to die out by a factor 1/e). Now, the frequency of sodium light, for example, is 0.5×10
15

 oscillations per 

second, and the decay time is about 3.2×10
–8 

seconds, so that makes for (0.5×10
15

)∙(3.2×10
–8

) = 16 

million oscillations. Now, the wavelength is 600 nanometer (600×10
–9

) m), so that gives us a wave train 

with a length of (600×10
–9

)∙(16×10
6
) = 9.6 m. 

These oscillations may or may not have the same amplitude and, hence, each of these oscillations may 

pack a different amount of energies. However, if the total energy of our sodium light photon (i.e. about 

2 eV ≈ 3.3×10
–19

 J) is to be packed in those oscillations, then each oscillation would pack about 2×10
–26

 J, 

on average, that is. We may speculate on how we might imagine the actual wave pulse that atoms emit 

when going from one energy state to another, but we will not do that here. However, the following 

illustration of the decay of a transient signal may be useful. 

 

The calculation above is interesting, but gives us a paradox: if a photon is a pointlike particle, how can 

we say its length is like 10 meter or more? Fortunately, relativity theory saves us here. We need to 

distinguish the reference frame of the photon – riding along the wave as it is being emitted, so to speak 

– and our stationary reference frame, which is that of the emitting atom. Now, because the photon 

travels at the speed of light, relativistic length contraction will make it look like a pointlike particle. 

What about the electron? Can we use similar assumptions? For the photon, we can use the decay time 

to calculate the effective number of oscillations. What can we use for an electron? We will need to make 

some assumption about the phase velocity or, what amounts to the same, the group velocity of the 

particle. What formulas can we use?  

If our particle is at rest, then p = 0 and the p∙x/ħ term in our wavefunction vanishes, so the wavefunction 

reduces to: 

ψ = a·e
−i∙E∙t/ħ

 = a·cos(E∙t/ħ) − i·a·sin(E∙t/ħ) 

Hence, our wave does not travel. It has the same amplitude at every point in space at any point in time. 

Both the phase and group velocity become meaningless concepts. Of course, the amplitude varies – 

because of the sine and cosine – but the probability remains the same: |ψ|
2 

 = a
2
. How can we calculate 

the size of our box? We may think of the formula we wrote down in our paper (see section II): 

E =  � m� ∙ ��	 · ω�	 = � E��	 ∙ ��	 · E�	
ħ	  
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This is a physical normalization condition: the energy contributions of the waves that make up a wave 

packet need to add up to the total energy of our wave. Of course, for our elementary wavefunction 

here, the subscripts vanish and so the formula reduces to E = (E/c
2
)∙a

2
∙(E

2
/ħ

2
), out of which we get our 

formula for the Compton scattering radius: a = ħ/mc. Now how do we pack that energy in our 

cylinder? Assuming that energy is distributed uniformly, we are tempted to write something like E = a
2
∙l 

or, looking at the geometry of the situation, to think of the formula for the volume of a cylinder: 

E = π∙a
2
∙l ⇔ l = E/(π·a

2
) 

Using the value we got for the Compton scattering radius (a = 3.8616×10
−13

 m), we find an l that is equal 

to (8.19×10
−14

)/(π·14.9×10
−26

) =≈ 0.175×10
12

... Meter?  Yes. We get the following formula: 

f = m
 ∙ �g
π ∙ ħ	 = E


π ∙ ħ	 ∙ �	 

0.175×10
12

 m is 175 million kilometer. That is - literally - astronomic. It corresponds to 583 light-seconds, 

or 9.7 light-minutes. So that is about 1.17 times the (average) distance between the Sun and the Earth. 

Of course, that space is quite large to look for an electron. It just underlines the need to properly build a 

wave packet by making use of the Uncertainty Principle: paradoxically, the uncertainty in the energy 

will, effectively, reduce the uncertainty in position. 

We may wonder if we could possibly get less astronomic proportions without uncertainty. What if 

we impose that l should equal a? We get the following condition: 

f� = �
π ∙ �
 = m ∙ �	

π ∙ ħ
m
�

= mg ∙ �c ∙

π ∙ ħ
 = 1 ⟺ m = Cπ ∙ ħ

�c

h
 

We find that m would have to be equal to m ≈ 1.11×10
−36

 kg. That is tiny. In fact, it is equivalent to an 

energy of about 0.623 eV (623 meV. This corresponds to light with a wavelength of about 2 μm (micro-

meter). That is light in the infrared spectrum. Note the proportionality of the l/a ratio with m
4
. 

However, these manipulations do not tell us much. Should we make a guess at the equivalent of the 

electricity constant to see whether we get another, perhaps more meaningful, result? 

Let us think about the scaling constant: the probabilities will, obviously, not be identical to the energy 

densities, but proportional. Hence, we need to find the constant of proportionality, i.e. the equivalent of 

the electric constant ε0 for the energy density formula for the wavefunction. How should we go about 

this? For inspiration, we may look once again at the structural similarity between Newton’s and 

Coulomb’s force laws: 

� = �� � ∙ �	!	  

� = " � ∙ �	!	  

This is what inspired us to analyze the wavefunction as an energy propagation mechanism. Indeed, we 

associated the components of the wavefunction with a physical dimension (N/kg, i.e. force per unit 

mass) because we noted the electric and magnetic field vectors were associated with a similar physical 

dimension (N/C, i.e. force per unit charge). Of course, we duly noted that the mass unit (1 kg) is 

equivalent to 1 N·s
2
/m and, hence, that our N/kg dimension is actually the dimension of acceleration: 

N/kg = N/(N·s
2
/m)= m/s

2
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This, in turn, inspired us to analyze the wavefunction as a gravitational wave. Should we push the 

comparison further? Coulomb’s constant ke = 1/4πε0 serves two purposes as a constant of 

proportionality: 

1. As a mathematical constant of proportionality, they give us, effectively a constant of 

proportionality. 

2. As a physical constant, it will ensure the physical dimensions on both sides of the equation are 

compatible. 

The physical dimension of Coulomb’s constant is N·m
2
/C

2
. Likewise, the physical dimension of G is equal 

to N·m
2
/kg

2
. We also know that ke is equal to 1/4πε0. The 1/4π factor is, obviously, a geometric factor. 

Hence, If we denote the equivalent of ε0 as g0, we may, perhaps, write the following: 

i% ≈ 14π" =  14π ∙ 6.674 × 10b   

We may then guess the following for the energy density: 

# = i%2 �	0�12θ3	 + i%2 �	0−. ∙ 2.4θ3	 = i%2 �	 0�12	θ + 2.4	θ3 = i%2 �	 = �	
8π" 

We calculated a length using the energy density above, and we got a nonsensical result (about 

0.175×10
12

 m). However, that result could, perhaps, be explained because we did not do any thinking 

about the proportionality coefficient. Would we get a better result with the energy density formula 

above? Let us see.  

Assuming that energy is distributed uniformly, we may use, once again, the formula for the volume of a 

cylinder. However, this time we will not use the simple E = π∙a
2
∙l formula. We will multiply the π∙a

2
 area 

(or surface) with the energy density u. [This formula may or may not make sense, but the dimensions 

work out: m
2
·(N/m

2
)·m gives us N·m, so we do get the energy dimension out of it.] So let us do a revised 

calculation:  

E = me ∙ �2 = π ∙ �	 ∙ # ∙ f 

⇔ f = me ∙ �2
π · �2 ∙ # = me ∙ �2

π · �2 ∙ �	8π"
= 8 ∙ " ∙ me ∙ �2

0 ℏm9 ∙ �34 = 8 ∙ " ∙ mec ∙ �6
ℏg = 

The numerical result we get is even more astronomical: 

l ≈ 1.96581×10
27

 m.  

This value corresponds to 0.2 billion light years. Our interpretation of an elementary particle as some 

astronomically long – but finite – string obviously needs more analysis. This is, in fact, the primary area 

of future research for the author of this paper, as it is clearly related to the nitty-gritty of how a wave 

packet (or a wave train) is to be built from elementary ψ(θi) = ai·(cosθi ± i·sinθi) component waves. 

The author welcomes suggestions from more mathematically oriented readers in this regard. Such 

suggestions and remarks can be sent to his personal e-mail: jeanlouisvanbelle@yahoo.co.uk. If valuable, 

they will be incorporated and acknowledged in a follow-on article. 
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