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Abstract :

This paper explores the implications of associating the components of the wavefunction with a physical
dimension: force per unit mass — which is, of course, the dimension of acceleration (m/s?) and
gravitational fields. The classical electromagnetic field equations for energy densities, the Poynting
vector and spin angular momentum are then re-derived by substituting the electromagnetic N/C unit of
field strength (mass per unit charge) by the new N/kg = m/s* dimension.

The results are elegant and insightful. For example, the energy densities are proportional to the square
of the absolute value of the wavefunction and, hence, to the probabilities, which establishes a physical
normalization condition. Also, Schrédinger’s wave equation may then, effectively, be interpreted as a
diffusion equation for energy, and the wavefunction itself can be interpreted as a propagating
gravitational wave. Finally, as an added bonus, concepts such as the Compton scattering radius for a
particle, spin angular momentum, and the boson-fermion dichotomy, can also be explained more
intuitively.

While the approach offers a physical interpretation of the wavefunction, the author argues that the core
of the Copenhagen interpretation revolves around the complementarity principle, which remains
unchallenged because the interpretation of amplitude waves as traveling fields does not explain the
particle nature of matter.
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Introduction

This paper offers a physical interpretation of wave mechanics. We do not challenge the
complementarity principle: the interpretation of the wavefunction that is offered here explains the
wave nature of matter only. It explains diffraction and interference of amplitudes but it does not explain
why a particle will hit the detector as a particle (not as a wave). Hence, the Copenhagen interpretation
of the wavefunction remains relevant: we just push its boundaries.

The basic ideas in this paper stem from a simple observation: the geometric similarity between the
guantum-mechanical wavefunctions and electromagnetic waves is remarkably similar. The components
of both waves are orthogonal to the direction of propagation and to each other. Only the relative phase
differs : the electric and magnetic field vectors (E and B) have the same phase. In contrast, the phase of
the real and imaginary part of the (elementary) wavefunction (§ = a-e™® = a-cos8 — a-sin8) differ by 90
degrees (r/2).' Pursuing the analogy, we explore the following question: if the oscillating electric and
magnetic field vectors of an electromagnetic wave carry the energy that one associates with the wave,
can we analyze the real and imaginary part of the wavefunction in a similar way?

We show the answer is positive and remarkably straightforward. If the physical dimension of the

electromagnetic field is expressed in newton per coulomb (force per unit charge), then the physical

dimension of the components of the wavefunction may be associated with force per unit mass (newton
2

per kg).

Of course, force over some distance is energy. The question then becomes: what is the energy concept
here? Kinetic? Potential? Both?

The similarity between the energy of a (one-dimensional) linear oscillator (E = m-a*w?/2) and Einstein’s
relativistic energy equation E = m-c* inspires us to interpret the energy as a two-dimensional oscillation
of mass. To assist the reader, we construct a two-piston engine metaphor.’> We then adapt the formula
for the electromagnetic energy density to calculate the energy densities for the wave function. The
results are elegant and intuitive: the energy densities are proportional to the square of the absolute
value of the wavefunction and, hence, to the probabilities. Schrédinger’s wave equation may then,
effectively, be interpreted as a diffusion equation for energy itself.

As an added bonus, concepts such as the Compton scattering radius for a particle and spin angular, as
well as the boson-fermion dichotomy can be explained in a fully intuitive way.* Finally, we show the
formulas for the energy densities may lead to an explanation for the geometric shape of matter-

. 5
particles.

Of course, such interpretation is also an interpretation of the wavefunction itself, and the immediate
reaction of the reader is predictable: the electric and magnetic field vectors are, somehow, to be looked

! Of course, an actual particle is localized in space and can, therefore, not be represented by the elementary
wavefunction § = g-e”® = q-e P/ a-(cosB — i-a-sinB). We must build a wave packet for that: a sum of
wavefunctions, each with its own amplitude a, and its own argument 8, = (E,-t — p,-X)/h. This is dealt with in this
paper as part of the discussion on the mathematical and physical interpretation of the normalization condition.
> The N/kg dimension immediately, and naturally, reduces to the dimension of acceleration (m/sz), thereby
facilitating a direct interpretation in terms of Newton’s force law.

In physics, a two-spring metaphor is more common. Hence, the pistons in the author’s perpetuum mobile may be
replaced by springs.

* The author re-derives the equation for the Compton scattering radius in section VII of the paper, and discusses
the boson-fermion dichotomy in section VIII.

> This is done in an annex (Note 3) to the paper.



at as real vectors. In contrast, the real and imaginary components of the wavefunction are not.
However, this objection needs to be phrased more carefully. First, it may be noted that, in a classical
analysis, the magnetic force is a pseudovector itself.® Second, a suitable choice of coordinates may make
quantum-mechanical rotation matrices irrelevant.’”

Therefore, we are of the opinion that this little paper may provide some fresh perspective on the
question, thereby further exploring Einstein’s basic sentiment in regard to quantum mechanics, which
may be summarized as follows: there must be some physical explanation for the calculated
probabilities.?

We will, therefore, start with Einstein’s relativistic energy equation (E = mc®) and wonder what it could
possibly tell us.
I. Energy as a two-dimensional oscillation of mass

The structural similarity between the relativistic energy formula, the formula for the total energy of an
oscillator, and the kinetic energy of a moving body, is striking:

1. E=mc’
2. E=mw?/2
3. E=mv¥/2

In these formulas, w, v and c all describe some veIocity.9 Of course, there is the 1/2 factor in the E =
mw?/2 formula’®, but that is exactly the point we are going to explore here: can we think of an
oscillation in two dimensions, so it stores an amount of energy that is equal to E = 2:m-w?®/2 = m-w??

®The magnetic force can be analyzed as a relativistic effect (see Feynman 11-13-6). The dichotomy between the
electric force as a polar vector and the magnetic force as an axial vector disappears in the relativistic four-vector
representation of electromagnetism.

" For example, when using Schrodinger’s equation in a central field (think of the electron around a proton), the use
of polar coordinates is recommended, as it ensures the symmetry of the Hamiltonian under all rotations (see
Feynman I11-19-3)

® This sentiment is usually summed up in the apocryphal quote: “God does not play dice.”The actual quote comes
out of one of Einstein’s private letters to Cornelius Lanczos, another scientist who had also emigrated to the US.
The full quote is as follows: "You are the only person | know who has the same attitude towards physics as | have:
belief in the comprehension of reality through something basically simple and unified... It seems hard to sneak a
look at God's cards. But that He plays dice and uses 'telepathic' methods... is something that | cannot believe for a
single moment." (Helen Dukas and Banesh Hoffman, Albert Einstein, the Human Side: New Glimpses from His
Archives, 1979)

°of course, both are different velocities: w is an angular velocity, while v is a linear velocity: w is measured in
radians per second, while v is measured in meter per second. However, the definition of a radian implies radians
are measured in distance units. Hence, the physical dimensions are, effectively, the same. As for the formula for
the total energy of an oscillator, we should actually write: E = m-a*-w’/2. The additional factor (a) is the (maximum)
amplitude of the oscillator.

%\we also have a 1/2 factor in the E = mv2/2 formula. Two remarks may be made here. First, it may be noted this is
a non-relativistic formula and, more importantly, incorporates kinetic energy only. Using the Lorentz factor (y), we
can write the relativistically correct formula for the kinetic energy as K.E. =E - Ey = m‘,c2 - moc2 = mo\/c2 -

moc2 = mocz(y - 1). As for the exclusion of the potential energy, we may note that we may choose our reference
point for the potential energy such that the kinetic and potential energy mirror each other. The energy concept
that then emerges is the one that is used in the context of the Principle of Least Action: it equals E = mv’. Note 1
provides some comments on that.



That is easy enough. Think, for example, of a V-2 engine with the pistons at a 90-degree angle, as
illustrated below. The 90° angle makes it possible to perfectly balance the counterweight and the
pistons, thereby ensuring smooth travel at all times. With permanently closed valves, the air inside the
cylinder compresses and decompresses as the pistons move up and down and provides, therefore, a
restoring force. As such, it will store potential energy, just like a spring, and the motion of the pistons
will also reflect that of a mass on a spring. Hence, we can describe it by a sinusoidal function, with the
zero point at the center of each cylinder. We can, therefore, think of the moving pistons as harmonic
oscillators, just like mechanical springs.

Figure 1: Oscillations in two dimensions

If we assume there is no friction, we have a perpetuum mobile here. The compressed air and the
rotating counterweight (which, combined with the crankshaft, acts as a flywheel*!) store the potential
energy. The moving masses of the pistons store the kinetic energy of the system.™

At this point, it is probably good to quickly review the relevant math. If the magnitude of the oscillation
is equal to a, then the motion of the piston (or the mass on a spring) will be described by x = a-cos(w-t +
A)." Needless to say, A is just a phase factor which defines our t = 0 point, and w is the natural angular
frequency of our oscillator. Because of the 90° angle between the two cylinders, A would be 0 for one
oscillator, and —mt/2 for the other. Hence, the motion of one piston is given by x = a-cos(w-t), while the
motion of the other is given by x = a-cos(w-t-1/2) = a-sin(w-t).

The kinetic and potential energy of one oscillator (think of one piston or one spring only) can then be
calculated as:

1. K.E.=T=mv*/2=(1/2)m-w’a*sin*(w-t + A)
2. P.E.=U=kx/2=(1/2)k-a*cos’(w-t + A)

The coefficient k in the potential energy formula characterizes the restoring force: F = -k-x. From the
dynamics involved, it is obvious that k must be equal to m-w?. Hence, the total energy is equal to:

E=T+U=(1/2) mw”a*[sin’(w-t + A) + cos’(w-t + A)] = m-a*w?/2

To facilitate the calculations, we will briefly assume k = m-w® and a are equal to 1. The motion of our
first oscillator is given by the cos(w-t) = cosB function (8 = w-t), and its kinetic energy will be equal
to sin’0. Hence, the (instantaneous) change in kinetic energy at any point in time will be equal to:

d(sin®0)/de = 2-sinB-d(sinB)/dO = 2-sinB-cosd

" Instead of two cylinders with pistons, one may also think of connecting two springs with a crankshaft.

2itis interesting to note that we may look at the energy in the rotating flywheel as potential energy because it is
energy that is associated with motion, albeit circular motion. In physics, one may associate a rotating object with
kinetic energy using the rotational equivalent of mass and linear velocity, i.e. rotational inertia (I) and angular
velocity w. The kinetic energy of a rotating object is then given by K.E. = (1/2)-I-w2.

 Because of the sideways motion of the connecting rods, the sinusoidal function will describe the linear motion
only approximately, but you can easily imagine the idealized limit situation.



Let us look at the second oscillator now. Just think of the second piston going up and down in the V-2
engine. lts motion is given by the sinB function, which is equal to cos(6-m /2). Hence, its kinetic energy is
equal to sin’(6-mt /2), and how it changes — as a function of 8 — will be equal to:

2-sin(6-1t /2)-cos(B-1 /2) = = -2-c0sO-sinB = —2-sinB-cosO

We have our perpetuum mobile! While transferring kinetic energy from one piston to the other, the
crankshaft will rotate with a constant angular velocity: linear motion becomes circular motion, and vice
versa, and the total energy that is stored in the system is T + U = ma’w’.

We have a great metaphor here. Somehow, in this beautiful interplay between linear and circular
motion, energy is borrowed from one place and then returns to the other, cycle after cycle. We know
the wavefunction consist of a sine and a cosine: the cosine is the real component, and the sine is the
imaginary component. Could they be equally real? Could each represent half of the total energy of our
particle? Should we think of the c in our E = mc® formula as an angular velocity?

These are sensible questions. Let us explore them.

Il. The wavefunction as a two-dimensional oscillation
The elementary wavefunction is written as:
P = g-e PN 2 e BRI - g eos(px/h — E-t/h) + i-a-sin(p-x/h — E-t/h)
When considering a particle at rest (p = 0) this reduces to:
P = a-e" " = g-cos(—E-t/h) + i-a-sin(—E-t/h) = a-cos(E-t/h) — i-a-sin(E-t/h)

Let us remind ourselves of the geometry involved, which is illustrated below. Note that the argument of
the wavefunction rotates clockwise with time, while the mathematical convention for measuring the
phase angle () is counter-clockwise.

Figure 2: Euler’s formula
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If we assume the momentum p is all in the x-direction, then the p and x vectors will have the same
direction, and p-x/h reduces to p-x/h. Most illustrations — such as the one below — will either freeze x or,
else, t. Alternatively, one can google web animations varying both. The point is: we also have a two-
dimensional oscillation here. These two dimensions are perpendicular to the direction of propagation of
the wavefunction. For example, if the wavefunction propagates in the x-direction, then the oscillations
are along the y- and z-axis, which we may refer to as the real and imaginary axis. Note how the phase
difference between the cosine and the sine — the real and imaginary part of our wavefunction — appear
to give some spin to the whole. | will come back to this.



Figure 3: Geometric representation of the wavefunction

Hence, if we would say these oscillations carry half of the total energy of the particle, then we may refer
to the real and imaginary energy of the particle respectively, and the interplay between the real and the
imaginary part of the wavefunction may then describe how energy propagates through space over time.

Let us consider, once again, a particle at rest. Hence, p = 0 and the (elementary) wavefunction reduces
toy = a-e EVh, Hence, the angular velocity of both oscillations, at some point x, is given by w = —E/h.
Now, the energy of our particle includes all of the energy — kinetic, potential and rest energy —and is,
therefore, equal to E = mc’.

Can we, somehow, relate this to the m-a*w? energy formula for our V-2 perpetuum mobile? Our
wavefunction has an amplitude too. Now, if the oscillations of the real and imaginary wavefunction
store the energy of our particle, then their amplitude will surely matter. In fact, the energy of an
oscillation is, in general, proportional to the square of the amplitude: E o< a*. We may, therefore, think
that the a® factor in the E = m-a*w? energy will surely be relevant as well.

However, here is a complication: an actual particle is localized in space and can, therefore, not be
represented by the elementary wavefunction. We must build a wave packet for that: a sum of
wavefunctions, each with their own amplitude a,, and their own w; = —E;/h. Each of these wavefunctions
will contribute some energy to the total energy of the wave packet. To calculate the contribution of each
wave to the total, both a;as well as E; will matter.

What is E;? E; varies around some average E, which we can associate with some average mass m: m =
E/c’. The Uncertainty Principle kicks in here. The analysis becomes more complicated, but a formula
such as the one below might make sense:

E; E;*
E= Zmi-aiz-wiz=zc—;-ai2-h%

a?
c?h? = Z <=>c2'h E= z

What is the meaning of this equation? We may look at it as some sort of physical normalization
condition when building up the Fourier sum. Of course, we should relate this to the mathematical
normalization condition for the wavefunction. Our intuition tells us that the probabilities must be
related to the energy densities, but how exactly? We will come back to this question in a moment. Let us
first think some more about the enigma: what is mass?

We can re-write this as:




Before we do so, let us quickly calculate the value of ¢*h”: it is about 1x10™°" N*>m”. Let us also do a
dimensional analysis: the physical dimensions of the E = m-a*-w” equation make sense if we express m in
kg, ain m, and w in rad/s. We then get: [E] = kg:m?/s” = (N-s*/m)-m?/s* = N-m = J. The dimensions of the
left- and right-hand side of the physical normalization condition is N*m”.

I1l. What is mass?

We came up, playfully, with a meaningful interpretation for energy: it is a two-dimensional oscillation of
mass. But what is mass? A new aether theory is, of course, not an option, but then what is it that is
oscillating? To understand the physics behind equations, it is always good to do an analysis of the
physical dimensions in the equation. Let us start with Einstein’s energy equation once again. If we want
to look at mass, we should re-write it as m = E/c:

[m] = [E/c*] =J/(m/s)’ = N-m-s’/m* = N-s’/m = kg

This is not very helpful. It only reminds us of Newton’s definition of a mass: mass is that what gets
accelerated by a force. At this point, we may want to think of the physical significance of the absolute
nature of the speed of light. Einstein’s E = mc? equation implies we can write the ratio between the
energy and the mass of any particle is always the same, so we can write, for example:

Eelectron _ Eproton _ Ephoton _ Eany particle Cz

Mejectron mproton mphoton many particle

This reminds us of the w’= C*/L or w? = k/m of harmonic oscillators once again.14 The key difference is
that the w’= C*/L and w?® = k/m formulas introduce two or more degrees of freedom.™ In contrast, ¢’=
E/m for any particle, always. However, that is exactly the point: we can modulate the resistance,
inductance and capacitance of electric circuits, and the stiffness of springs and the masses we put on
them, but we live in one physical space only: our spacetime. Hence, the speed of light c emerges here as
the defining property of spacetime — the resonant frequency, so to speak. We have no further degrees
of freedom here.

The Planck-Einstein relation (for photons) and the de Broglie equation (for matter-particles) have an
interesting feature: both imply that the energy of the oscillation is proportional to the frequency, with
Planck’s constant as the constant of proportionality. Now, for one-dimensional oscillations — think of a
guitar string, for example — we know the energy will be proportional to the square of the frequency.'® It
is a remarkable observation: the two-dimensional matter-wave, or the electromagnetic wave, gives

us two waves for the price of one, so to speak, each carrying half of the total energy of the oscillation
but, as a result, we get an E o finstead of an E o f* proportionality.

However, such reflections do not answer the fundamental question we started out with: what is mass?
At this point, it is hard to go beyond the circular definition that is implied by Einstein’s formula: energy is

" The w’= 1/LC formula gives us the natural or resonant frequency for a electric circuit consisting of a resistor (R),
an inductor (L), and a capacitor (C). Writing the formula as w’= C"/L introduces the concept of elastance, which is
the equivalent of the mechanical stiffness (k) of a spring.

> The resistance in an electric circuit introduces a damping factor. When analyzing a mechanical spring, one may
also want to introduce a drag coefficient. Both are usually defined as a fraction of the inertia, which is the mass for
a spring and the inductance for an electric circuit. Hence, we would write the resistance for a spring as ym and as R
=yL respectively.

'® This is a general result and is reflected in the K.E. = T = (1/2)-m-w”a”sin’(w-t + A) and the P.E. = U = k-x*/2 =
(1/2) m-wz-az-cosz(w-t + A) formulas for the linear oscillator.



a two-dimensional oscillation of mass, and mass packs energy, and c emerges us as the property of
spacetime that defines how exactly.

When everything is said and done, this does not go beyond stating that mass is some scalar field. Now, a
scalar field is, quite simply, some real number that we associate with a position in spacetime. The Higgs
field is a scalar field but, of course, the theory behind it goes much beyond stating that we should think
of mass as some scalar field. The fundamental question is: why and how does energy, or matter,
condense into elementary particles? That is what the Higgs mechanism is about but, as this paper is
exploratory only, we cannot even start explaining the basics of it.

What we can do, however, is look at the wave equation again (Schrédinger’s equation), as we can now
analyze it as an energy diffusion equation.

IV. Schrodinger’s equation as an energy diffusion equation

The interpretation of Schrodinger’s equation as a diffusion equation is straightforward. Feynman
(Lectures, IlI-16-1) briefly summarizes it as follows:

“We can think of Schrédinger’s equation as describing the diffusion of the probability amplitude
from one point to the next. [...] But the imaginary coefficient in front of the derivative makes the
behavior completely different from the ordinary diffusion such as you would have for a gas
spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions,
whereas the solutions of Schrédinger’s equation are complex waves.”"’

Let us review the basic math. For a particle moving in free space — with no external force fields acting on
it —there is no potential (U = 0) and, therefore, the U term disappears. Therefore, Schrodinger’s
equation reduces to:

AP(x, t)/0t = i-(1/2)-(h/meg)- V> h(x, 1)
The ubiquitous diffusion equation in physics is:
d(x, t)/0t = D-V*(x, 1)

The structural similarity is obvious. The key difference between both equations is that the wave
equation gives us two equations for the price of one. Indeed, because U is a complex-valued function,
with a real and an imaginary part, we get the following equations®:

1. Re(dW/at) = —(1/2)-(h/mex)-Im (V)
2. Im(3W/dt) = (1/2)-(h/m.x)-Re(V2Y)

These equations make us think of the equations for an electromagnetic wave in free space (no
stationary charges or currents):

v Feynman further formalizes this in his Lecture on Superconductivity (Feynman, 111-21-2), in which he refers to
Schrdédinger’s equation as the “equation for continuity of probabilities”. The analysis is centered on the local
conservation of energy, which confirms the interpretation of Schrédinger’s equation as an energy diffusion
equation.

¥ The meg is the effective mass of the particle, which depends on the medium. For example, an electron traveling
in a solid (a transistor, for example) will have a different effective mass than in an atom. In free space, we can drop
the subscript and just write m¢s = m. Note 2 provides some additional comments on the concept. As for the
equations, they are easily derived from noting that two complex numbers a +i-b and c + j-d are equal if, and only if,
their real and imaginary parts are the same. Now, the 0{/dt = i-(h/meff)-VzllJ equation amounts to writing
sognething like this: a + i-b = i-(c + i-d). Now, remembering that i’ = -1, you can easily figure out that i-(c + i-d) = i-c
+i-d=-d+i-c.



1. OB/t =-VxE
2. OE/dt=c’VxB

The above equations effectively describe a propagation mechanism in spacetime, as illustrated below.

Figure 4: Propagation mechanisms

" R
Re(dy/ot) = —(1/2)-(h/m.¢)-Im(V>yp)

Im(dy/8t) = (1/2)-(h/m.p)-Re(V2y)
i et

AR
9B/dt= —V<E

OE/0t=c*V=<B
K
The Laplacian operator (V?), when operating on a scalar quantity, gives us a flux density, i.e. something
expressed per square meter (1/m?). In this case, it is operating on (x, t), so what is the dimension of
our wavefunction (x, t)? To answer that question, we should analyze the diffusion constant in
Schrodinger’s equation, i.e. the (1/2)-(h/m.«) factor:

1. As a mathematical constant of proportionality, it will guantify the relationship between both
derivatives (i.e. the time derivative and the Laplacian);

2. Asa physical constant, it will ensure the physical dimensions on both sides of the equation are
compatible.

Now, the h/me factor is expressed in (N-m-s)/(N- s>/m) = m?/s. Hence, it does ensure the dimensions on
both sides of the equation are, effectively, the same: d/0t is a time derivative and, therefore, its
dimension is s* while, as mentioned above, the dimension of VZLIJ is m~2. However, this does not solve
our basic question: what is the dimension of the real and imaginary part of our wavefunction?

At this point, mainstream physicists will say: it does not have a physical dimension, and there is no
geometric interpretation of Schrodinger’s equation. One may argue, effectively, that its argument, (p-x —
E-t)/h, is just a number and, therefore, that the real and imaginary part of s is also just some number.

To this, we may object that h may be looked as a mathematical scaling constant only. If we do that, the
argument of { will, effectively, be expressed in action units, i.e. in N-m-s. It then does make sense to
also associate a physical dimension with the real and imaginary part of Y. What could it be?

We may have a closer look at Maxwell’s equations for inspiration here. The electric field vector is
expressed in newton (the unit of force) per unit of charge (coulomb). Now, there is something
interesting here. The physical dimension of the magnetic field is N/C divided by m/s.* We may write B
as the following vector cross-product: B = (1/c)-e,xE, with e, the unit vector pointing in the x-direction
(i.e. the direction of propagation of the wave). Hence, we may associate the (1/c)-e,x operator, which
amounts to a rotation by 90 degrees, with the s/m dimension. Now, multiplication by i also amounts to a
rotation by 90° degrees. Hence, we may boldly write: B = (1/c)-e,xE = (1/c)-i-E. This allows us to also
geometrically interpret Schrodinger’s equation in the way we interpreted it above (see Figure 3).%

* The dimension of B is usually written as N/(m-A), using the Sl unit for current, i.e. the ampere (A). However, 1 C =
1 A-sand, hence, 1 N/(m-A) =1 (N/C)/(m/s).
2 of course, multiplication with i amounts to a counterclockwise rotation. Hence, multiplication by —i also amounts

8



Still, we have not answered the question as to what the physical dimension of the real and imaginary
part of our wavefunction should be. At this point, we may be inspired by the structural similarity
between Newton’s and Coulomb’s force laws:

q1 92
F=k, 3

m;'m

F:g%
r

Hence, if the electric field vector E is expressed in force per unit charge (N/C), then we may want to
think of associating the real part of our wavefunction with a force per unit mass (N/kg). We can, of
course, do a substitution here, because the mass unit (1 kg) is equivalent to 1 N-s?>/m. Hence, our N/kg
dimension becomes:

N/kg = N/(N-s’>/m)= m/s’

What is this: m/s?? Is that the dimension of the a-cos6 term in the a-e™ = a-cos® - i-a-sin®
wavefunction?

My answer is: why not? Think of it: m/s? is the physical dimension of acceleration: the increase or
decrease in velocity (m/s) per second. It ensures the wavefunction for any particle — matter-particles or
particles with zero rest mass (photons) — and the associated wave equation (which has to be the same
for all, as the spacetime we live in is one) are mutually consistent.

In this regard, we should think of how we would model a gravitational wave. The physical dimension
would surely be the same: force per mass unit. It all makes sense: wavefunctions may, perhaps, be
interpreted as traveling distortions of spacetime, i.e. as tiny gravitational waves.

V. Energy densities and flows

Pursuing the geometric equivalence between the equations for an electromagnetic wave and
Schrdédinger’s equation, we can now, perhaps, see if there is an equivalent for the energy density. For an
electromagnetic wave, we know that the energy density is given by the following formula:

€o € C2

u=—E-E+
2
E and B are the electric and magnetic field vector respectively. The Poynting vector will give us the

directional energy flux, i.e. the energy flow per unit area per unit time. We write:
du
i

Needless to say, the V- operator is the divergence and, therefore, gives us the magnitude of a (vector)

field’s source or sink at a given point. To be precise, the divergence gives us the volume density of the

outward flux of a vector field from an infinitesimal volume around a given point. In this case, it gives us
the volume density of the flux of §.

B-B

-v-s

to a rotation by 90 degrees, but clockwise. Now, to uniquely identify the clockwise and counterclockwise
directions, we need to establish the equivalent of the right-hand rule for a proper geometric interpretation of
Schrdédinger’s equation in three-dimensional space: if we look at a clock from the back, then its hand will be
moving counterclockwise. When writing B = (1/c)-i-E, we assume we are looking in the negative x-direction. If we
are looking in the positive x-direction, we should write: B = —(1/c)-i-E. Of course, Nature does not care about our
conventions. Hence, both should give the same results in calculations. We will show in a moment they do.



We can analyze the dimensions of the equation for the energy density as follows:

1. Eis measured in newton per coulomb, so [E-E] = [E¥] = N¥/C%.

2. Bis measured in (N/C)/(m/s), so we get [B-B] = [B?] = (N*/C?)-(s>/m?). However, the dimension of
our ¢’ factor is (m?/s?) and so we are also left with N?/C2.

3. The g is the electric constant, aka as the vacuum permittivity. As a physical constant, it should
ensure the dimensions on both sides of the equation work out, and they do: [go] = C*/(N-m?)

and, therefore, if we multiply that with N?/C?, we find that u is expressed in Jm3A

Replacing the newton per coulomb unit (N/C) by the newton per kg unit (N/kg) in the formulas above
should give us the equivalent of the energy density for the wavefunction. We just need to substitute €,
for an equivalent constant. We may to give it a try. If the energy densities can be calculated — which are
also mass densities, obviously — then the probabilities should be proportional to them.

Let us first see what we get for a photon, assuming the electromagnetic wave represents its
wavefunction. Substituting B for (1/c)-i-E or for —(1/c)-i-E gives us the following result:
€o 2 €o €0 c?i-Ei-E

=~ g4 B-B=—E-E+ — g g_SYE.E=0
=5 2 =72 2 ¢ ¢ 2 2 =

Zero. An unexpected result? Perhaps not. We have no stationary charges and no currents: only an
electromagnetic wave in free space. Hence, the local energy conservation principle needs to be
respected at all points in space and in time. The geometry makes sense of the result: for an
electromagnetic wave, the magnitudes of E and B reach their maximum, minimum and zero point
simultaneously, as shown below.?” This is because their phase is the same.

Figure 5: Electromagnetic wave: E and B

Magnebic]  Direction

Field

Should we expect a similar result for the energy densities that we would associate with the real and
imaginary part of the matter-wave? For the matter-wave, we have a phase difference between a:cos6
and a-sinB, which gives a different picture of the propagation of the wave (see Figure 3).2 In fact, the
geometry of the suggestion suggests some inherent spin, which is interesting. | will come back to this.
Let us first guess those densities. Making abstraction of any scaling constants, we may write:

u = a?(cosB)? + a?(—i- sinB)? = a? (cos?0 + sin?6) = a?

! |n fact, when multiplying C>/(N-m?) with N*/C?, we get N/m?, but we can multiply this with 1 = m/m to get the
desired result. It is significant that an energy density (joule per unit volume) can also be measured in newton (force
per unit area.

*? The illustration shows a linearly polarized wave, but the obtained result is general.

? The sine and cosine are essentially the same functions, except for the difference in the phase: sin = cos(6-m /2).
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We get what we hoped to get: the absolute square of our amplitude is, effectively, an energy density !
|Ll)|2 — |a.e—i-E-t/ﬁ|2= aZ= u

This is very deep. A photon has no rest mass, so it borrows and returns energy from empty space as it
travels through it. In contrast, a matter-wave carries energy and, therefore, has some (rest) mass. It is
therefore associated with an energy density, and this energy density gives us the probabilities. Of
course, we need to fine-tune the analysis to account for the fact that we have a wave packet rather than
a single wave, but that should be feasible.

As mentioned, the phase difference between the real and imaginary part of our wavefunction (a cosine
and a sine function) appear to give some spin to our particle. We do not have this particularity for a
photon. Of course, photons are bosons, i.e. spin-zero particles, while elementary matter-particles are
fermions with spin-1/2. Hence, our geometric interpretation of the wavefunction suggests that, after all,
there may be some more intuitive explanation of the fundamental dichotomy between bosons and
fermions, which puzzled even Feynman:

“Why is it that particles with half-integral spin are Fermi particles, whereas particles with
integral spin are Bose particles? We apologize for the fact that we cannot give you an
elementary explanation. An explanation has been worked out by Pauli from complicated
arguments of quantum field theory and relativity. He has shown that the two must necessarily
go together, but we have not been able to find a way of reproducing his arguments on an
elementary level. It appears to be one of the few places in physics where there is a rule which
can be stated very simply, but for which no one has found a simple and easy explanation. The
explanation is deep down in relativistic quantum mechanics. This probably means that we do
not have a complete understanding of the fundamental principle involved.” (Feynman, Lectures,
I-4-1)

The physical interpretation of the wavefunction, as presented here, may provide some better
understanding of ‘the fundamental principle involved’: the physical dimension of the oscillation is just
very different. That is all: it is force per unit charge for photons, and force per unit mass for matter-
particles. We will examine the question of spin somewhat more carefully in section VII. Let us first
examine the matter-wave some more.

VI. Group and phase velocity of the matter-wave

The geometric representation of the matter-wave (see Figure 3) suggests a traveling wave and, yes, of
course: the matter-wave effectively travels through space and time. But what is traveling, exactly? It is
the pulse — or the signal — only: the phase velocity of the wave is just a mathematical concept and, even
in our physical interpretation of the wavefunction, the same is true for the group velocity of our wave
packet. The oscillation is two-dimensional, but perpendicular to the direction of travel of the wave.
Hence, nothing actually moves with our particle.

Here, we should also reiterate that we did not answer the question as to what is oscillating up and down
and/or sideways: we only associated a physical dimension with the components of the wavefunction —
newton per kg (force per unit mass), to be precise. We were inspired to do so because of the physical
dimension of the electric and magnetic field vectors (newton per coulomb, i.e. force per unit charge) we
associate with electromagnetic waves which, for all practical purposes, we currently treat as the
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wavefunction for a photon. This made it possible to calculate the associated energy densities and

a Poynting vector for energy dissipation. In addition, we showed that Schrédinger's equation itself then
becomes a diffusion equation for energy. However, let us now focus some more on the asymmetry
which is introduced by the phase difference between the real and the imaginary part of the
wavefunction. Look at the mathematical shape of the elementary wavefunction once again:

P = g-e PN 2 e BRI - g cos(pex/h - E-t/h) + i-a-sin(p-x/h - E-t/h)

The minus sign in the argument of our sine and cosine function defines the direction of travel: an
F(x-v-t) wavefunction will always describe some wave that is traveling in the positive x-direction (with

c the wave velocity), while an F(x+v-t) wavefunction will travel in the negative x-direction. For a
geometric interpretation of the wavefunction in three dimensions, we need to agree on how to define

i or, what amounts to the same, a convention on how to define clockwise and counterclockwise
directions: if we look at a clock from the back, then its hand will be moving counterclockwise. So we
need to establish the equivalent of the right-hand rule. However, let us not worry about that now. Let us
focus on the interpretation. To ease the analysis, we will assume we are looking at a particle at rest.
Hence, p = 0, and the wavefunction reduces to:

U = a-e" " = g-cos(-E-t/h) + i-a-sin(-Ey-t/h) = a-cos(Eqt/h) - i-a-sin(Eyt/h)

Eq is, of course, the rest mass of our particle and, now that we are here, we should probably

wonder whose time t we are talking about: is it our time, or is the proper time of our particle? Well... In
this situation, we are both at rest so it does not matter: t is, effectively, the proper time so perhaps we
should write it as t,. It does not matter. You can see what we expect to see: Eqo/h pops up as the
natural frequency of our matter-particle: (Eo/h)-t = w-t. Remembering the w = 2r-f=2n/Tand T =

1/f formulas, we can associate a period and a frequency with this wave, using the w = 2r-f = 2r/T.
Noting that h = h/2m, we find the following:

T = 2n(h/Eo) = h/Eo & f = Eo/h = mec’/h

This is interesting, because we can look at the period as a natural unit of time for our particle. What
about the wavelength? That is tricky because we need to distinguish between group and phase velocity
here. The group velocity (v,) should be zero here, because we assume our particle does not move. In
contrast, the phase velocity is given by v, = A-f = (2n/k)-(w/2m) = w/k. In fact, we've got something funny
here: the wavenumber k = p/h is zero, because we assume the particle is at rest, so p = 0. So we have a
division by zero here, which is rather strange. What do we get assuming the particle is not at rest? We
write:

v, = w/k = (E/h)/(p/h) = E/p = E/(m-vg) = (m-c*)/(m-vg) = ¢/ v,
This is interesting: it establishes a reciprocal relation between the phase and the group velocity, with
c as a simple scaling constant. Indeed, the graph below shows the shape of the function does not change

with the value of ¢, and we may also re-write the relation above as:

Vp/C:Bp:C/Vp:]-/Bgzl/(C/vp)
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Figure 6: Reciprocal relation between phase and group velocity

=a*lv, v, =cy,

VQ
We can also write the mentioned relationship as v,+v, = ¢, which reminds us of the relationship between
the electric and magnetic constant (1/go)-(1/Ho) = ¢ This is interesting in light of the fact we can re-write
this as (c'gp):(c* o) = 1, which shows electricity and magnetism are just two sides of the same coin, so to
24
speak.

Interesting, but how do we interpret the math? What about the implications of the zero value for
wavenumber k = p/h? We would probably like to think it implies the elementary wavefunction should
always be associated with some momentum, because the concept of zero momentum clearly leads to
weird math: something times zero cannot be equal to c?! Such interpretation is also consistent with the
Uncertainty Principle: if Ax-Ap 2 h, then neither Ax nor Ap can be zero. In other words, the Uncertainty
Principle tells us that the idea of a pointlike particle actually being at some specific point in time and in
space does not make sense: it has to move. It tells us that our concept of dimensionless points in time
and space are mathematical notions only. Actual particles - including photons - are always a bit spread
out, so to speak, and - importantly - they have to move.

For a photon, this is self-evident. It has no rest mass, no rest energy, and, therefore, it is going to move
at the speed of light itself. We write: p = m-c = m-c?/c = E/c. Using the relationship above, we get:

v, = w/k = (E/M)/(p/h)=E/p=c=> v, = cz/vp =c’/c=c

This is good: we started out with some reflections on the matter-wave, but here we get an
interpretation of the electromagnetic wave as a wavefunction for the photon. But let us get back to our
matter-wave. In regard to our interpretation of a particle having to move, we should remind ourselves,
once again, of the fact that an actual particle is always localized in space and that it can, therefore, not
be represented by the elementary wavefunction § = - P or, for a particle at rest, the ¢ =
a-e"F" function. We must build a wave packet for that: a sum of wavefunctions, each with their own
amplitude g;, and their own w; = —-E;/h. Indeed, in section I, we showed that each of these wavefunctions
will contribute some energy to the total energy of the wave packet and that, to calculate the

*| must thank a physics blogger for re-writing the 1/(gy'Hg) = ¢ equation like this. See:
http://reciprocal.systems/phpBB3/viewtopic.php?t=236 (retrieved on 29 September 2017).
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contribution of each wave to the total, both a; as well as E; matter. This may or may not resolve the
apparent paradox. Let us look at the group velocity.

To calculate a meaningful group velocity, we must assume the v = 0w;/9k; = 0(E;/h)/d(p;/h) = O(E;)/3(p;)
exists. So we must have some dispersion relation. How do we calculate it? We need to calculate w; as a
function of k;here, or E; as a function of p;. How do we do that? Well... There are a few ways to go about
it but one interesting way of doing it is to re-write Schrédinger's equation as we did, i.e. by
distinguishing the real and imaginary parts of the dy/dt =i-[h/(2m)]-V*{ wave equation and, hence, re-
write it as the following pair of two equations:

1. Re(dY/dt) = —[h/(2mex)]-Im(V*P) & w-cos(kx — wt) = k*[h/(2meg)]-cos(kx — wt)
2. Im(AW/at) = [h/(2mex)]-Re(V2Y) & w-sin(kx — wt) = k*[h/(2meg)]-sin(kx — wt)

Both equations imply the following dispersion relation:
W= h’kz/(zmeff)

Of course, we need to think about the subscripts now: we have w;, k;, but... What about mg or, dropping
the subscript, m? Do we write it as m;? If so, what is it? Well... It is the equivalent mass of E; obviously,
and so we get it from the mass-energy equivalence relation: m; = E;/c% It is a fine point, but one most
people forget about: they usually just write m. However, if there is uncertainty in the energy, then
Einstein's mass-energy relation tells us we must have some uncertainty in the (equivalent) mass too.
Here, | should refer back to Section IlI: E; varies around some average energy E and, therefore, the
Uncertainty Principle kicks in.

VII. Explaining spin

The elementary wavefunction vector —i.e. the vector sum of the real and imaginary component —
rotates around the x-axis, which gives us the direction of propagation of the wave (see Figure 3). Its
magnitude remains constant. In contrast, the magnitude of the electromagnetic vector — defined as the
vector sum of the electric and magnetic field vectors — oscillates between zero and some maximum (see
Figure 5).

We already mentioned that the rotation of the wavefunction vector appears to give some spin to the
particle. Of course, a circularly polarized wave would also appear to have spin (think of the E and B
vectors rotating around the direction of propagation - as opposed to oscillating up and down or
sideways only). In fact, a circularly polarized light does carry angular momentum, as the equivalent mass
of its energy may be thought of as rotating as well. But so here we are looking at a matter-wave.

The basic idea is the following: if we look at § = a-e" " as some real vector — as a two-dimensional

oscillation of mass, to be precise — then we may associate its rotation around the direction of
propagation with some torque. The illustration below reminds of the math here.
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Figure 7: Torque and angular momentum vectors

=r=F -
:rxp

A torque on some mass about a fixed axis gives it angular momentum, which we can write as the vector
cross-product L = rxp or, perhaps easier for our purposes here as the product of an angular velocity (w)
and rotational inertia (I), aka as the moment of inertia or the angular mass. We write:

L=Ilw

Note we can write L and w in boldface here because they are (axial) vectors. If we consider their
magnitudes only, we write L = I-w (no boldface). We can now do some calculations. Let us start with the
angular velocity. In our previous posts, we showed that the period of the matter-wave is equalto T =
2m-(h/Eo). Hence, the angular velocity must be equal to:

w = 21/[2m-(h/Eo)] = Eo/h

We also know the distance r, so that is the magnitude of r in the L = rxp vector cross-product: it is just a,
so that is the magnitude of § = a-e™*". Now, the momentum (p) is the product of a linear velocity (v) -
in this case, the tangential velocity - and some mass (m): p = m-v. If we switch to scalar instead of vector
quantities, then the (tangential) velocity is given by v = r-w. So now we only need to think about what we
should use for m or, if we want to work with the angular velocity (w), the angular mass (I). Here we
need to make some assumption about the mass (or energy) distribution. Now, it may or may not sense
to assume the energy in the oscillation — and, therefore, the mass —is distributed uniformly. In that case,
we may use the formula for the angular mass of a solid cylinder: | = m-r*/2. If we keep the analysis non-
relativistic, then m = my. Of course, the energy-mass equivalence tells us that mg = Eo/c%. Hence, this is
what we get:

L = l-w = (mor*/2)-(Eo/R) = (1/2)-a*(Eo/?)-(Eo/D) = a*Eo’/(2-R-C7)

Does it make sense? Maybe. Maybe not. Let us do a dimensional analysis: that won’t check our logic, but
it makes sure we made no mistakes when mapping mathematical and physical spaces. We have m?-J)> =
m?-N*m?in the numerator and N-m-s-m?/s” in the denominator. Hence, the dimensions work out: we
get N-m-s as the dimension for L, which is, effectively, the physical dimension of angular momentum. It
is also the action dimension, of course, and that cannot be a coincidence. Also note that the E =

mc? equation allows us to re-write it as:

L= a”Ex%/(2-h-c?)

Of course, in quantum mechanics, we associate spin with the magnetic moment of a charged particle,
not with its mass as such. Is there way to link the formula above to the one we have for the quantum-
mechanical angular momentum, which is also measured in N-m-s units, and which can only take on one
of two possible values: J = +h/2 and -h/2? It looks like a long shot, right? How do we go from
(1/2)-a°>mo’/h to * (1/2)-h? Let us do a numerical example. The energy of an electron is typically 0.510
MeV = 8.1871x107** N-m, and a... What value should we take for a?
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We have an obvious trio of candidates here: the Bohr radius, the classical electron radius (aka the
Thompon scattering length), and the Compton scattering radius.

Let us start with the Bohr radius, so that is about 0.x107° N-m. We get L = a*-E*/(2-h-c?) = 9.9x10™**
N-m-s. Now that is about 1.88x10* times h/2. That is a huge factor. It cannot be right.

Let us try the classical electron radius, which is about 2.818x10™"> m. We get an L that is equal to about
2.81x107* N-m-s, so now it is a tiny fraction of h/2! This, too, does not work.

Let us use the Compton scattering length, so that is about 2.42631x10** m. This gives us an L of
2.08x107" N-m-s, which is only 20 times h. This is not so bad, but it is good enough?

Let us calculate it the other way around: what value should we take for a so as to ensure L =
a’-Eo’/(2-h-c?) = h/2? Let us write it out:

a? B> h ., h%*-c? h? h
—_— - = = L =
2h-cz 2 ¢ Eo2 my2 - c? 4 mg- ¢

In fact, this is the formula for the so-called reduced Compton wavelength. This is perfect. We found what
we wanted to find. Substituting this value for a (you can calculate it: it is about 3.8616x10™** m), we get
what we should find:

B a? - EOZ
T 2-h-c?
This is a rather spectacular result, and one that would — a priori — support the interpretation of the
wavefunction that is being suggested in this paper.

h
L =] =5= 5.272859 x 1073°*N-m - s

Of course, if we can calculate some radius, then we should, perhaps, also try to calculate other
dimensions. Note 3 to this paper explores this possibility.>

VIII. The boson-fermion dichotomy

Let us do some more thinking on the boson-fermion dichotomy. Again, we should remind ourselves that
an actual particle is localized in space and that it can, therefore, not be represented by the elementary
wavefunction § = g-e 1Et- P/ or, for a particle at rest, the { = a-e"E" function. We must build a

wave packet for that: a sum of wavefunctions, each with their own amplitude a;, and their own w; =
—E;/h. Each of these wavefunctions will contribute some energy to the total energy of the wave packet.
Now, we can have another wild but logical theory about this.

Think of the apparent right-handedness of the elementary wavefunction: surely, Nature can't be
bothered about our convention of measuring phase angles clockwise or counterclockwise. Also, the
angular momentum can be positive or negative: J = +h/2 or —h/2. Hence, we would probably like to think
that an actual particle - think of an electron, or whatever other particle you'd think of - may consist of
right-handed as well as left-handed elementary waves. To be precise, we may think they either consist
of (elementary) right-handed waves or, else, of (elementary) left-handed waves. An elementary right-
handed wave would be written as:

$(6)) = ar(cos6; + i-sinB))

In contrast, an elementary left-handed wave would be written as:

* The analysis is rather primitive because the author limits it to one-dimensional space only. However, the results
are interesting.
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U(6)) = a;(cosB; — i-sinB))

Both are illustrated below.

Figure 8: Left- and right-handed matter-wave

How does that work out with the E,-t argument of our wavefunction? Position is position, and direction
is direction, but time? Time has only one direction, but Nature surely does not care how we count time:
counting like 1, 2, 3, etcetera or like -1, -2, -3, etcetera is just the same. If we count like 1, 2, 3,
etcetera, then we write our wavefunction like:

= a-cos(Eq-t/h) - i-a-sin(Eqt/h)
If we count time like -1, -2, -3, etcetera then we write it as:
U = a-cos(-Eq-t/h) — i-a-sin(-Ey't/h)= a-cos(Ey-t/h) + i-a-sin(Ey-t/h)

Hence, it is just like the left- or right-handed circular polarization of an electromagnetic wave: we can
have both for the matter-wave too! This, then, should explain why we can have

either positive or negative quantum-mechanical spin (+h/2 or -h/2). It is the usual thing: we have

two mathematical possibilities here, and so we must have two physical situations that correspond to it.

It is only natural. If we have left- and right-handed photons - or, generalizing, left- and right-handed
bosons - then we should also have left- and right-handed fermions (electrons, protons, etcetera). Back
to the dichotomy. The textbook analysis of the dichotomy between bosons and fermions may be
epitomized by Richard Feynman’s Lecture on it (Feynman, IlI-4), which is confusing and — | would dare to
say — even inconsistent: how are photons or electrons supposed to know that they need to interfere
with a positive or a negative sign? They are not supposed to know anything: knowledge is part of

our interpretation of whatever it is that is going on there.

Hence, it is probably best to keep it simple, and think of the dichotomy in terms of the different physical
dimensions of the oscillation: newton per kg versus newton per coulomb. And then, of course, we
should also note that matter-particles have a rest mass and, therefore, actually carry charge. Photons do
not. But both are two-dimensional oscillations, and the point is: the so-called vacuum - and the

rest mass of our particle (which is zero for the photon and non-zero for everything else) - give us the
natural frequency for both oscillations, which is beautifully summed up in that remarkable equation for
the group and phase velocity of the wavefunction, which applies to photons as well as matter-particles:

2
(Vphuse'c)'(vgroup'c) =le Vp'Vg=¢C
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The final question then is: why are photons spin-zero particles? Well... We should first remind ourselves
of the fact that they do have spin when circularly polarized.?® Here we may think of the rotation of the
equivalent mass of their energy. However, if they are linearly polarized, then there is no spin. Even for
circularly polarized waves, the spin angular momentum of photons is a weird concept. If photons have
no (rest) mass, then they cannot carry any charge. They should, therefore, not have any magnetic
moment. Indeed, what | wrote above shows an explanation of quantum-mechanical spin requires both
mass as well as charge.”’

IX. Concluding remarks

There are, of course, other ways to look at the matter — literally. For example, we can imagine two-
dimensional oscillations as circular rather than linear oscillations. Think of a tiny ball, whose center of
mass stays where it is, as depicted below. Any rotation — around any axis — will be some combination of
a rotation around the two other axes. Hence, we may want to think of a two-dimensional oscillation as
an oscillation of a polar and azimuthal angle.

Figure 9: Two-dimensional circular movement

The point of this paper is not to make any definite statements. That would be foolish. Its objective is just
to challenge the simplistic mainstream viewpoint on the reality of the wavefunction. Stating that it is a
mathematical construct only without physical significance amounts to saying it has no meaning at all.
That is, clearly, a non-sustainable proposition.

The interpretation that is offered here looks at amplitude waves as traveling fields. Their physical
dimension may be expressed in force per mass unit, as opposed to electromagnetic waves, whose
amplitudes are expressed in force per (electric) charge unit. Also, the amplitudes of matter-waves
incorporate a phase factor, but this may actually explain the rather enigmatic dichotomy between
fermions and bosons and is, therefore, an added bonus.

The interpretation that is offered here has some advantages over other explanations, as it explains the
how of diffraction and interference. However, while it offers a great explanation of the wave nature of
matter, it does not explain its particle nature: while we think of the energy as being spread out, we will
still observe electrons and photons as pointlike particles once they hit the detector. Why is it that a
detector can sort of ‘hook’ the whole blob of energy, so to speak?

® A circularly polarized electromagnetic wave may be analyzed as consisting of two perpendicular electromagnetic
plane waves of equal amplitude and 90° difference in phase.

77 of course, the reader will now wonder: what about neutrons? How to explain neutron spin? Neutrons are
neutral. That is correct, but neutrons are not elementary: they consist of (charged) quarks. Hence, neutron spin
can (or should) be explained by the spin of the underlying quarks.
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The interpretation of the wavefunction that is offered here does not explain this. Hence, the
complementarity principle of the Copenhagen interpretation of the wavefunction surely remains
relevant.

Note 1: The de Broglie relations and energy

The 1/2 factor in Schrodinger’s equation is related to the concept of the effective mass (m.g). It is easy to
make the wrong calculations. For example, when playing with the famous de Broglie relations — aka as
the matter-wave equations — one may be tempted to derive the following energy concept:

1. E=h-fand p =h/A. Therefore, f=E/hand A = p/h.
2. v=fA=(E/h)-(p/h)=E/p
3. p=m-v. Therefore, E = v-p = m-?

E = m-v*? This resembles the E = mc” equation and, therefore, one may be enthused by the discovery,
especially because the m-v* also pops up when working with the Least Action Principle in classical
mechanics, which states that the path that is followed by a particle will minimize the following integral:
tz
S = (KE — PE)dt
21
Now, we can choose any reference point for the potential energy but, to reflect the energy conservation
law, we can select a reference point that ensures the sum of the kinetic and the potential energy is zero
throughout the time interval. If the force field is uniform, then the integrand will, effectively, be equal to
KE - PE = mv*.%

However, that is classical mechanics and, therefore, not so relevant in the context of the de Broglie
equations. The apparent paradox is to be solved by distinguishing between the group and the phase
velocity of the matter wave, but the analysis is less straightforward than one might expect. Consider the
following.

The p = m-vis the relativistically correct formula for the momentum of an object if m = m,, so that is the
same mass concept as used in Einstein’s E = mc” mass-energy equivalence relation. Of course, v here is,
obviously, the group velocity (v), so that is the classical velocity of our particle. Hence, we can write:

p=mv= (E/cz)-vg S v,=p/m= p-c*/E

This is just another way of writing the formula we derived in our paper: v, = cz/vp orv,= cz/vg. Let us
substitute in the formula for the wavelength:

A = vp/f = vp'T = v (h/E) = (¢*/vg)-(h/E) = h/(m-v,) = h/p

This gives us the second de Broglie relation: A = h/p. It is interesting to think about it. The f = E/h relation
is intuitive: higher energy, higher frequency. In contrast, the A = h/p relation tells us we get an infinitely
long wavelength for a stationary particle. As the E = m-v? is only correct if v = ¢, the A = h/p relation may
describe a photon, or a theoretical massless fermion only. For particles with a non-zero rest mass, the
relation may only convey an idea or, at the very least, requires a better definition of the velocity
variable.

*® We detailed the mathematical framework and detailed calculations in the following online article:
https://readingfeynman.org/2017/09/15/the-principle-of-least-action-re-visited.
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Note 2: The concept of the effective mass

The effective mass — as used in Schrodinger’s equation — is a rather enigmatic concept. To make sure we
are making the right analysis here, we should start by noting you will usually see Schrédinger’s equation
written as:

G h?

hor = —— V2 +U
' ot Zmeff b+ Ud

This formulation includes a term with the potential energy (U). In free space (no potential), this term
disappears, and the equation can be re-written as:

AW(x, t)/dt = i-(1/2)-(h/meg)- VU (x, 1)

We just moved the i-h coefficient to the other side, noting that 1/i = —i. Now, in one-dimensional space,
and assuming  is just the elementary wavefunction (so we substitute g-e P ghy ), this implies
the following:

—a-i-(E/h)- i-E PN = i (h/2meg)-a-(p?/h2)- e M ET TP
& E = p*/(2mMe) © Mgt = m-(v/c)*/2 = m-B*/2

It is an ugly formula: it resembles the kinetic energy formula (K.E. = m-v?/2) but it is, in fact, something
completely different. The B?/2 factor ensures the effective mass is always a fraction of the mass itself. To
get rid of the ugly 1/2 factor, we may re-define my as two times the old my (hence, Mett T = 2:Meg° )
as a result of which the formula will look somewhat better:

’

Mett = M-(v/c)’ = m-p*

We know f varies between 0 and 1 and, therefore, mq¢ will vary between 0 and m. Feynman drops the
subscript, and just writes mek as m in his textbook (see Feynman, 11I-19). On the other hand, the electron
mass as used is also the electron mass that is used to calculate the size of an atom (see Feynman, IlI-2-
4). As such, the two mass concepts are, effectively, mutually compatible. It is confusing because the
same mass is often defined as the mass of a stationary electron (see, for example, the article on it in the
online Wikipedia encyclopedia®).

In the context of the derivation of the electron orbitals, we do have the potential energy term — which is
the equivalent of a source term in a diffusion equation — and that may explain why the above-mentioned
Mesr = M+(v/c)* = m-B% formula does not apply.

Note 3: Energy densities and particle dimensions

If we can calculate some radius with this model, then we should also try to calculate other dimensions.
The preliminary analysis that is offered here is rather primitive because we limit ourselves to one-
dimensional space only. However, the results are encouraging.

The equation for the elementary wavefunction is the usual one:
P = g-e PN 2 e BRI - g cos(pex/h - E-t/h) + i-a-sin(p-x/h - E-t/h)

In one-dimensional space (think of a particle traveling along some line), the vectors (p and x) become
scalars, and so we simply write:

P = g-e P 2 G BRI - g eos(px/h - Et/h) + i-a-sin(p-x/h - E-t/h)

* https://en.wikipedia.org/wiki/Electron_rest_mass (retrieved on 29 September 2017).
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Let us assume our particle is an electron and, as mentioned, we reduced its motion to a one-
dimensional motion only: we are thinking of it as traveling along the x-axis. We can then use the y-
and z-axes as mathematical axes only: they will show us how the magnitude and direction of the real
and imaginary component of . As mentioned in the paper, the wavefunction can be right-handed or
left-handed, as shown below.

L

These wavefunctions come with constant probabilities |{|* = a°, so we need to define a space outside
of which { = 0. This is obvious: oscillations pack energy, and the energy of our particle is finite. Hence,
each particle - be it a photon or an electron - will pack a finite number of oscillations. It will, therefore,
occupy a finite amount of space. Mathematically, this corresponds to the normalization condition: all
probabilities have to add up to one, as illustrated below.

P(x)

I
|
I
I (=xy)a?=1
I
I
I

Xy X; X

Now, the oscillations of the elementary wavefunction have the same (maximum) amplitude: a.
[Terminology is a bit confusing here because we use the term amplitude to refer to two very different
things here: we may say a is the (maximum) amplitude of the (probability) amplitude {.] So how many
oscillations do we have? If this is a particle in a box, then what is the size of the box?

In our one-dimensional model, this amounts to asking how we can calculate the length of an electron.
The question is interesting: we know the frequency (whose order of magnitude is 10*° Hz and 10%° Hz for
the photon and the electron respectively) gives us the number of oscillations per second. But how many
oscillations do we have in one photon, or in one electron?

Let us first think about photons, because we have more clues here. Photons are emitted by atomic
oscillators: atoms going from one state (energy level) to another. We know how to calculate to calculate
the Q of these atomic oscillators (see, for example, Feynman [-32-3): it is of the order of 10%, which
means the wave train will last about 108 seconds (to be precise, that is the time it takes for the radiation
to die out by a factor 1/e). Now, the frequency of sodium light, for example, is 0.5x10" oscillations per
second, and the decay time is about 3.2x10 ®seconds, so that makes for (0.5x10%)-(3.2x107%) = 16
million oscillations. Now, the wavelength is 600 nanometer (600x10~°) m), so that gives us a wave train
with a length of (600x107°)-(16x10°) = 9.6 m.

These oscillations may or may not have the same amplitude and, hence, each of these oscillations may
pack a different amount of energies. However, if the total energy of our sodium light photon (i.e. about
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2 eV = 3.3x107° J) is to be packed in those oscillations, then each oscillation would pack about 2x107% J,

on average, that is. We may speculate on how we might imagine the actual wave pulse that atoms emit
when going from one energy state to another, but we will not do that here. However, the following
illustration of the decay of a transient signal may be useful.

signal T

g4 _envelope A(t) = A el

I | | 1=m.
Aep L T s

e L 2 decay time T

— = period T = i/f,

Oscillation with exponential decay in time.

T = how fong fo die fo 1/e, abour 37%
The calculation above is interesting, but gives us a paradox: if a photon is a pointlike particle, how can
we say its length is like 10 meter or more? Fortunately, relativity theory saves us here. We need to
distinguish the reference frame of the photon — riding along the wave as it is being emitted, so to speak
—and our stationary reference frame, which is that of the emitting atom. Now, because the photon
travels at the speed of light, relativistic length contraction will make it look like a pointlike particle.

What about the electron? Can we use similar assumptions? For the photon, we can use the decay time
to calculate the effective number of oscillations. What can we use for an electron? We will need to make
some assumption about the phase velocity or, what amounts to the same, the group velocity of the
particle. What formulas can we use?

If our particle is at rest, then p = 0 and the p-x/h term in our wavefunction vanishes, so the wavefunction
reduces to:

§ = a-e" ¥ = g-cos(E-t/h) - i-a-sin(E-t/h)

Hence, our wave does not travel. It has the same amplitude at every point in space at any point in time.
Both the phase and group velocity become meaningless concepts. Of course, the amplitude varies —
because of the sine and cosine — but the probability remains the same: |{|* = a°. How can we calculate
the size of our box. We may think of the formula we wrote down in our paper (see section Il):

E; E;?
R

This is a physical normalization condition: the energy contributions of the waves that make up a wave
packet need to add up to the total energy of our wave. Of course, for our elementary wavefunction
here, the subscripts vanish and so the formula reduces to E = (E/c?)-a*-(E*/h?), out of which we get our
formula for the Compton scattering radius: a = h/mc. Now how do we pack that energy in our

cylinder? Assuming that energy is distributed uniformly, we are tempted to write something like E = a*/
or, looking at the geometry of the situation, to think of the formula for the volume of a cylinder:

E=ma*l & [=E/(na?)

Using the value we got for the Compton scattering radius (a = 3.8616x10™"> m), we find an / that is equal

to (8.19x107*)/(m-14.9x107%°) == 0.175x10"... Meter? Yes. We get the following formula:
m3-c* E3

| = =
T[.hz T[.hZ.CZ
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0.175x10™ m is 175 million kilometer. That is - literally - astronomic. It corresponds to 583 light-seconds,
or 9.7 light-minutes. So that is about 1.17 times the (average) distance between the Sun and the Earth.
Of course, that space is quite large to look for an electron. It just underlines the need to properly build a
wave packet by making use of the Uncertainty Principle: paradoxically, the uncertainty in the energy
will, effectively, reduce the uncertainty in position.

We may wonder if we could possibly get less astronomic proportions without uncertainty. What if
we impose that [ should equal a? We get the following condition:

l E m - c? m*-c5- ) 4|1 k3

I — = = S m=

a m-ad k3 m-h3 cS
m3¢3

We find that m would have to be equal to m = 1.11x107° kg. That is tiny. In fact, it is equivalent to an
energy of about 0.623 eV (623 meV. This corresponds to light with a wavelength of about 2 um (micro-
meter). That is light in the infrared spectrum. Note the proportionality of the //a ratio with m®.
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