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he nature of electron spin has presented an 

enigma right from the beginning of quantum 

mechanics.   We  suggest  that  a  simple  realistic 

picture of a real coherently rotating vector field can 

account for both the Schrödinger equation and 

electron spin in a consistent manner. Such a rotating 

field carries distributed angular momentum and 

energy in the same way as a circularly polarized 

electromagnetic wave.  We derive the Schrödinger 

equation from the relativistic Klein-Gordon Equation, 

where the complex wave function maps onto a fixed-

axis real rotating vector.  Such a realistic picture can 

also explain the Stern-Gerlach experiment which first 

identified electron spin.  Remarkably, the predictions 

of a two-stage Stern-Gerlach experiment within this 

realistic picture differ from those of the orthodox 

quantum superposition approach.  This two-stage 

experiment has not actually been done, and could 

provide insights into the limits of realistic models.  This 

realistic picture also avoids quantum paradoxes and 

enables realistic explanations for a variety of quantum 

phenomena. 
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1 Introduction 
 

Quantum theory originated in the first decade of the 20
th

 

century [1], with the photon having a quantized energy E = 

h =  (following Planck in 1900 and Einstein in 1905), 

and the quantized electron energy of the Bohr atom in 

1913.  However, the foundational concepts of the more 

complete quantum theory were not developed until the 

1920s.  These key concepts were the matter waves [2] of 

de Broglie (1923), and the intrinsic electron spin [3], going 

back to the experiment of Stern and Gerlach in 1922 [4, 5], 

which was later explained following the 1925 concept of 

spin by Goudsmit and Uhlenbeck. 

De Broglie derived matter waves from special relativity, 

by assuming that an electron in its rest frame is subject to 

both E = mc
2
 and E = .  Transforming to a moving 

reference frame, one has the usual energy-momentum 

relation for a massive particle, 

 E
2
 = (pc)

2
 + (mc

2
)

2
, (1) 

and the equivalent dispersion relation for the associated 

wave, 

 
2
 = (kc)

2
 + 0

2
, (2) 

where 0 = mc
2
/ is the characteristic angular frequency of 

the wave associated with the particle. Thus, a quantum 

wave has wavelength  = 2/k = h/p in a moving reference 

frame. It is not always appreciated that quantum waves are 

intrinsically relativistic and have no classical limit. 

    Taking Eq. (2) together with a plane wave exp[(k·r -

t)]  leads directly to a differential equation known as the 

Klein-Gordon Equation (1926) [6].   

 
2
/t

2
 = c

2


2
 – 0

2
 (3)

http://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Matter_wave
https://en.wikipedia.org/wiki/Spin_(physics)
https://en.wikipedia.org/wiki/Stern%E2%80%93Gerlach_experiment
https://en.wikipedia.org/wiki/Klein%E2%80%93Gordon_equation
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This is generally identified as a complex scalar wave, 

though as we show later, it makes more sense as a real 

vector wave.  However, a much more influential equation 

was developed by Schrödinger (1927) [7], who derived it 

from the non-relativistic energy relation E = p
2
/2m + V(r), 

together with E =  and p = k. 

 /t = -(2
/2m)

2
+ V(r)  (4) 

This is still based on relativistic quantum waves, but in the 

limit where both p
2
/2m and V(r) are much less than mc

2
, 

which is generally the case for atomic physics.  Its 

relativistic origin is hidden by the absence of c. 

Note that Eq. (4) is a complex equation with complex 

solutions.  In the steady-state case (constant total energy 

E), the solution is  

 (r,t) = (r) exp(-t/), (5) 

where E = , and (r) is the solution to the time-

independent Schrödinger equation.    

 E (r) = -(2
/2m)

2
(r)+ V(r)(r) (6) 

Consider a solution (r)  exp[(r)].  A gradient in the 

phase  corresponds to a current, and in steady state, all 

currents must form closed loops.  Since the phase factor 

exp[(r)] is periodic in 2 radians, the phase change 

around such a closed loop must be 2n, where n is an 

integer, corresponding to n wavelengths around the loop.  

For a circular loop of circumference 2r, =2r/n.  Then 

the angular momentum around the loop is L = r x p = r 

(h/) = n.  This is true more generally for any closed 

loop; the “orbital angular momentum” around a loop is 

quantized in units of .  For an electron, this constitutes a 

circulating electrical current, which produces a magnetic 

moment. 

In addition to orbital angular momentum L = n, an 

electron always has a spin angular momentum S = ±/2 

(known as “spin one-half”).  This also corresponds to a 

magnetic moment, but there is no circulating current from 

the Schrödinger equation.  The electron’s spin can be 

“flipped”, but cannot be increased or decreased.  In the 

Stern-Gerlach experiment (Figure 1) a magnetic field 

gradient was applied to a beam of univalent atoms. Each 

atom in that experiment had a single unpaired electron, but 

no orbital angular momentum.  The beam separated into 

two sub-beams, corresponding to the two discrete values 

of electron spin. The results of the Stern-Gerlach 

experiment proved the existence of quantized spin, but did 

not explain the physical basis or origin of spin.   

 

 

Figure 1: Conceptual diagram of Stern-Gerlach experiment, 
where a beam of univalent atoms is separated into two beams 
in a magnetic field gradient (from [5]). 

 

The Dirac equation (1928) [8] incorporated spin into a 

fully relativistic wave equation, but with a complex 

mathematical formalism allowing for little physical 

intuition. 

The physical interpretations of the de Broglie wave and 

the spin were never combined in a clear, unified manner. 

Part of the difficulty was based on “wave-particle duality”, 

whereby it was believed that an electron is both a point 

particle and a distributed wave.  A point particle cannot 

rotate to carry angular momentum, and, the spin angular 

momentum was found to be incompatible with any kind of 

solid-body rotation.   In the end, spin was treated as a 

property completely separate from the de Broglie wave, 

with only the complex mathematical formalism to guide 

the physics. 

We take the opposite viewpoint:  that a simple realistic 

unified physical picture must guide the foundations of 

quantum mechanics.  Remarkably, we have identified such 

a simple picture, which was apparently never proposed 

during the early years of quantum mechanics.  The key is 

the recognition that a real rotating vector field can carry 

angular momentum, and can also be described 

mathematically by the complex, scalar Schrödinger 

equation. Fig. 2 represents a single electron, with a real 

distributed coherent wave packet having total quantized 

spin, rather than a probability distribution of point 

particles.  Implications of this picture lead to a novel, 

realistic approach to quantum measurement, which is 

amenable to experimental testing.  Parts of this analysis 

have appeared earlier [9-13], but this approach is 

considered heretical, and has not been permitted in any 

standard physics journal.  We believe that the present 

paper presents a strong case that the foundations of 

quantum mechanics can be updated to conform to a 

consistent, realistic picture of nature. 

In Section 2, we review the mathematics of classical 

rotating vectors, and show that quantized angular 

momentum follows naturally from the properties of 

polarized electromagnetic waves. 

https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Dirac_equation
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In 

Figure 2:  An alternative physical picture of an electron 

quantum wave, comprising a rotating vector field carrying 

spin, distributed over a volume. (a)  Electron in rest state, 

with all regions rotating in phase.  (b) A moving electron, 

with a phase gradient in accordance with the Lorentz 

transformation. 

 
In Section 3 we show how a real vector Klein-Gordon 

equation is the proper equation to describe de Broglie 

waves of electrons, and how solving this for steady 

rotation leads to the usual complex scalar Schrödinger 

equation.   

In Section 4 we show how the Stern-Gerlach 

experiment demonstrating electron spin may be 

understood with and without quantum superposition. 

Furthermore, we show how these two approaches can be 

applied to a two-stage Stern-Gerlach experiment.  

Remarkably, the predicted results for the two-stage 

experiment without superposition are strikingly different 

from those predicted by orthodox quantum mechanics.  

This experiment could have been done decades ago, and 

can now be easily done using modern technology.   

The further implications of this realistic picture for a 

variety of problems in quantum theory are discussed in 

Section 5. 

 
2 Mathematics of Classical Rotating 

Vector Fields 

Steady circular motion [14] is ubiquitous in classical 

physics.  It is present in circular orbits, solid-body rotation, 

and polarized electromagnetic waves.  In each of these 

cases, the mathematics of the rotating vectors permit 

significant simplification, by eliminating the time-

dependence from the problem.   

Consider, for example, a circular orbit of radius r0 

around a fixed point, with the rotation in the x-y plane, at 

an angular frequency  in the z-direction.   

 

The general solution takes the form  

r = r0 [x̂ cos(t+0) ± ŷ sin(t+0)],           (7) 

where the plus sign corresponds to counter-clockwise 

rotation (from the +z-axis) and the minus sign to 

clockwise rotation.  The particle velocity v = dr/dt obeys 

the following relation, taking  = ± ẑ: 

 dr/dt =  x r, (8) 

as can be demonstrated by direct substitution.  This 

relation is valid for any uniformly rotating vector around 

any axis.  One can also take a second derivative, which of 

course is the acceleration: 

 d
2
r/dt

2
 =  x( x r) =  (·r) - r (·) = -

2
r, (9) 

using a standard vector identity.  This reproduces the 

centripetal acceleration associated with circular motion. 

While we already know the solution to this real vector 

differential equation, one can treat this as a complex scalar 

differential equation, with solutions r ̃= r0 exp[±(t+0)].  

This describes vector rotation in the complex plane. To 

obtain the x- and y-components in real space (Eq. 7), just 

take the real and imaginary parts of this complex solution. 

Another classical example of a rotating vector field is 

the electric field in the case of circular polarization [15].  

The differential equation for an electromagnetic wave in 

free space, from Maxwell’s equations, takes the form 

   
2
E(r,t)/t

2
 = c

2
 

2
 E(r,t) (10) 

If we are looking for rotating steady-state solutions, we 

can apply the same transformation as in Eq. (9), to 

eliminate the time dependence and obtain 

 -
2
E(r) = c

2
 

2
 E(r). (11) 

If the wave is propagating in the z-direction, and is 

uniform in the x- and y-directions, Eq. (11) becomes  

 
2
E(z)/z

2
 = -k

2
 E(z), (12) 

where k = /c.  We can treat this real vector E as a 

complex scalar Ẽ to solve for  

  Ẽ = E0 exp(±kz);  

  Ex = Re(Ẽ) = E0 cos(kz);  

  Ey = Im(Ẽ) = ±E0 sin(kz). (13) 

We can also reincorporate the time dependence: 

 Ẽ(r,t) = E0 exp(t) exp(±kz);   

 Ex = Re(Ẽ) = E0 cos(t±kz);   

 Ey = Im(Ẽ) = E0 sin(t±kz). (14) 

https://en.wikipedia.org/wiki/Circular_motion
https://en.wikipedia.org/wiki/Circular_polarization
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Figure 3:  Snapshot of the rotating electric field vector in a 

circularly polarized electromagnetic wave.  This wave carries 

not only energy and momentum, but also angular momentum 

(from [15]). 

 
This corresponds to the two directions of circular 

polarization, with helical vectors propagating at the speed 

of light (see Figure 3).  The rotation axis is always in the 

same direction as the propagation direction.  

The reason that we are focusing on circularly polarized 

electromagnetic waves is that these provide a model for 

rotating vector fields in quantum theory.  A key difference, 

of course, is that EM waves always move at the speed of 

light, so that one cannot transform to a rest frame.  With de 

Broglie waves, on the other hand, one can transform to the 

rest frame, as indicated in Figure 2. 

It is well known that electromagnetic waves carry 

energy and momentum distributed across the wave, via the 

properties of the Poynting vector E x H.  For example, the 

energy density is E = |E x H|/c = 0E
2
.  It is equally well 

established, although perhaps not as widely known, that a 

circularly polarized (CP) wave also carries distributed 

angular momentum associated with the rotating vector 

field, following from Maxwell’s equations [16,17].  The 

angular momentum density of a wave with angular 

frequency  is  L = (E x A)/0c
2
 = 0E

2
/where A is the 

magnetic vector potential, so  that these are related by L= 

E/

Now consider a CP wavepacket where the total angular 

momentum L integrated over the volume of the 

wavepacket is L = .  The total energy of this wavepacket 

must then be E = .  This suggests that a photon is 

properly a CP distributed wavepacket (with spin ), rather 

than a point particle as is often asserted.  Further, a CP 

wavepacket with L = n corresponds to a coherent n-

photon state with E = n, rather than a collection of 

discrete single-photon states. 

More generally, we propose that the primary basis for 

quantum mechanics is quantization of spin for

fundamental entities such as the photon and the electron, 

as discussed below.  Note also that angular momentum is 

one of the few direct physical quantities that is Lorentz-

invariant; the spin of a photon or an electron is the same in 

any reference frame.  Our present model does not explain 

the mechanism for spin quantization, but embeds it in a 

model of classical relativistic rotating vector fields. 

 

3 Deriving the Schrödinger Equation 

from the Vector Klein-Gordon 

Equation 

Let us assume that a de Broglie wave in its rest frame 

consists of a distributed coherent vector field, rotating 

with angular velocity  = mc
2
/ about a fixed axis. This 

will be described by the Klein-Gordon Equation 

 
2
/t

2
 = c

2


2
 – 0

2
 

where now (r,t) is a real vector rather than a complex 

scalar.   If we substitute –
2
(r) for 

2
/t

2
 in Eq. (15) to 

eliminate the time dependence (just as in going from Eq. 

(10) to Eq. (11) above), we have 

 c
2


2






  

Consider first the case of a free electron, with no potential 

energy V(r).  The rest frame corresponds to a uniform field 

with = 0, with solution  =  = constant.  Selecting 

the z-axis as the spin axis, we can select  in the x-

direction.  This represents a uniform coherently rotating 

vector field: 

 ̃ = 0 exp(±t); 

 x = Re(̃) = 0 cos(t);  

 y = Im(̃) = ±0 sin(t), (17) 

where the ± represent the two senses of circular polari-

zation.  Note that 0/2 = mc
2
/h = 10

20
 Hz for an electron, 

which is the minimum frequency of an electron wave.  The 

solution for a larger frequency is  ̃ = exp(k·r), where k = 

(
2
-0

2
)
0.5

/c. This corresponds to a phase lag in the 

direction of motion, with a wavelength = 2/k = h/p, 

which is what we expect for a de Broglie wave.  One can 

obtain the same result by taking a Lorentz transform of the 

solution in the rest frame, since Eq. (15) is Lorentz 

covariant.  The phase lag corresponds to a time shift; 

events that are simultaneous in the rest frame are not 

simultaneous in a moving reference frame.     
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Unlike a photon, for which the spin axis is always 

aligned with the propagation direction, the spin axis for an 

electron is aligned with a local magnetic field B, and may 

be independent of the direction of motion. Given the 

magnetic moment  of the electron (the Bohr magneton 

[18]), its energy is shifted by –·B. This is a very small 

energy shift, given the value of  = e/2m = 10
-23

 J/T.  For 

a field of 1 T, this is equivalent to 10
-4

 eV, as compared to 

the rest energy of 500 keV, atomic energies of order 1 eV, 

and thermal energies kT ~ 25 meV at room temperature.  

For spin one-half, only two stable states are available:  the 

ground state with  parallel to B, and the excited state with 

 anti-parallel to B. 

In the case where there is a rapidly varying potential, as 

near an atom, a potential energy V(r) may be included in 

the rest energy of the electron: 

 0 = mc
2
 = m0c

2
 +V(r),  (18) 

where m0 is the rest mass in the absence of a potential.  

Potential energies associated with a bound atomic state are 

negative, thus reducing the rest mass slightly. In the usual 

case where the potential energy is much smaller than the 

rest energy, Eq. (16) becomes: 

 c
2


2








 

   

This can be rearranged to yield: 

 (-2
/2m)

2
m0c

2
 + V(r)]  = E   

where E =   is the electron energy that includes the full 

rest energy.  If one suppresses the rest energy, one obtains 

an equation that looks just like the usual time-independent 

Schrödinger equation.  However, Eq. (20) is actually the 

equation for a real rotating vector field, rather than a 

complex scalar field.  If one rewrites this in terms of the 

complex equivalent  ̃and the offset energy E = E –m0c
2
, 

one obtains the usual time-independent Schrödinger 

equation 

 (-2
/2m)

2
̃ V(r) ̃ = E ̃  

The solution can be written in the form  

 ̃ = rexp[(r)],  (22) 

and the time-dependence can be restored to yield

  
 

Figure 4:  Solution to Schrodinger equation, representing 

either a complex number  ̃ = exp(), rotating in the 

complex plane, or a real vector field  = 0(x̂ cos + ŷ sin), 

rotating (in either sense) about a spin axis. 

 

  ̃r,t =̃(r) exp(∓t)   

 = rexp{[(r ) ∓ t]}, (23) 

corresponding in turn to the following differential 

equation:  

       ± ̃/t = -(2
/2m)

2
̃+ [V(r)+ m0c

2
]̃    

We can also write the vector solution, as in Eq. (14): 

 x = Re(̃) = r cos[(r) ∓ t];    

 y = Im(̃) = r sin[(r ) ∓ t]. (25) 

This is a rotating vector pointing in a real direction in 

space (see Figure 4), but the mathematics are equivalent to 

a rotation in the complex plane.  Both signs ± are needed, 

as they correspond to both circular polarizations with 

opposite spins.   

The usual time-dependent Schrödinger equation has 

only one sign, since it is generally believed to correspond 

to a zero-spin quantum particle.  Ironically, a perceived 

shortcoming of the scalar Klein-Gordon equation is that it 

has solutions for both positive and negative .  We view 

this as reflecting the physical basis of two polarized vector 

solutions.   

 
4 Quantum Superposition and the 

Stern-Gerlach Experiment 

Let us address briefly the question of the interpretation 

of the quantum wavefunction [19].  Schrödinger believed 

that this was a real physical wave, and we agree.  

x  or Re()

y  or Im()





https://en.wikipedia.org/wiki/Bohr_magneton
https://en.wiktionary.org/wiki/%E2%88%93
https://en.wiktionary.org/wiki/%E2%88%93
https://en.wiktionary.org/wiki/%E2%88%93
https://en.wiktionary.org/wiki/%E2%88%93
https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics
https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics
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De Broglie considered that the wave guides the motion of 

a point particle, and that both wave and particle are 

physical objects; this is the pilot-wave interpretation that 

was also promoted by Bohm.  In the orthodox Copenhagen 

interpretation, on the other hand, the wavefunction is a 

mathematical object that represents a statistical 

distribution of point particles in an ensemble of otherwise 

identical events.  We question the statistical interpretation, 

and promote a realistic waves-only interpretation without 

point particles.  This electron wave is a rotating vector 

field that carries spin (like an electromagnetic wave), but 

apart from spin quantization this is otherwise essentially 

classical.  This realistic picture has experimentally testable 

implications, as we discuss further below. 

We have identified two real rotating solutions of the 

vector Klein-Gordon equation, which we can call ↑ and 

↓, corresponding to spin +/2 and –/2.  Since this is a 

linear equation, any linear combination of these two will 

also be a solution.  For the equivalent complex solutions, 

  ̃c↑̃↑ + c↓ ̃↓, (26) 

where c↑and c↓ are complex numbers that represent 

amplitudes and phase shifts.  However, not all of these 

solutions to the equation are physically accessible.  In 

particular, by the Pauli exclusion principle [20], one can 

have only 1 electron in a given state; neither ½ an electron 

or 2 electrons in one of the states for the same location is 

permissible.  Furthermore, the only acceptable 2-electron 

solution is one with opposite spins.  We represent these by 

the points at (1,0), (0,1), and (1,1) on the plot in Figure 5.   

However, in the orthodox quantum theory, a single-

electron superposition state is also possible [21], such that 

|c↑|

 + |c↓|

2
 = 1, as indicated by the circular arc in Figure 5.  

This is compatible with spin quantization, since |c↑|

 and 

|c↓|
2 

represent the statistical probabilities of measuring the 

two spin states in a measurement on one of these 

superposition states.  Furthermore, a 2-electron state is in 

an entangled superposition of anti-correlated single-

electron states, which cannot be fully represented on 

Figure 5. 

In contrast, we would like to suggest that only the two 

spin-quantized rotating solutions are accessible, and that 

the superposition states of Eq. (26) do not exist for a single 

electron.  A two-electron state may be a superposition of 

↑ and ↓, but it is not entangled.  Therefore, we need a 

different mechanism to explain the Pauli exclusion 

principle.  Our explanation relies on the concept of a 

soliton [22] in a nonlinear differential equation.  A soliton 

(also called a “solitary wave”) is a localized wave packet 

of a particular amplitude that maintains its integrity as it 

moves, acting like a particle moving in a linear medium.   

 

Figure 5:  Physically accessible states in the 2D-space of 

spin states ↑ and ↓.  The dots show the single-electron 

states ↑ and ↓, and the 2-electron state ↑ + ↓.  The 

dashed circular arc shows superposition states based on Eq. 

(26), which are not permitted in the soliton-based picture. 

A soliton will not disperse or split apart, and will repel 

another soliton.  This behavior sounds very much like 

what is required by the Pauli principle.  The Schrödinger 

equation, being linear, cannot provide such solitons, so we 

suggest that it is incomplete.  The complete nonlinear 

treatment must result in an equation that will generate 

solitons such that when the spin is /2, the nonlinearities 

cancel out and the usual linear Schrödinger equation will 

emerge, describing the wave dynamics.  We have not yet 

identified the appropriate nonlinear equation, but there has 

been research into the “nonlinear Schrödinger equation” to 

model soliton-like behavior in optics and other classical 

systems [23]. 

The Stern-Gerlach experiment provided the first 

experimental evidence of electron spin, and its 

interpretation is based on the orthodox quantum 

superposition approach.  This is a good model system to 

investigate these issues, and even to do experiments to test 

these foundations.  The experiment actually measures the 

magnetic moment of atoms rather than single electrons, 

but the effect is the same.  A single electron has spin ±/2, 

but the dynamics of a single electron in free space are 

dominated by its charge; it will tend to follow spiral orbits 

in a magnetic field, with the effect of the spin being much 

smaller.  In order to measure the spin of an electron, one 

needs to embed an electron in an appropriate neutral atom.  

Hydrogen has one electron, but hydrogen forms diatomic 

molecules where the net spin cancels out.  So we must deal 

with atoms having many electrons. 

While all electronic states in atoms have spin angular 

momentum, electrons tend to fill states of both spins, 

cancelling out the total spin for an even number of 

electrons.  Some atomic states have zero orbital angular 

momentum, while others have states with orbital angular 

momentum n, which corresponds to (r) changing by 2n 
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in going around the nucleus.  This orbital angular 

momentum is in the same direction as the spin angular 

momentum, but the total cancels out for a filled atomic 

shell. So a filled shell, such as that for a noble gas atom 

such as Xe, has zero electronic magnetic moment.  

Also, atomic nuclei also have spin, but their magnetic 

moments, on the order of the nuclear magneton e/2mn, are 

thousands of times smaller than that of the electron (due to 

the larger nucleon mass mn), and are therefore negligible 

compared to the electronic magnetic moment. 

So if one considers a univalent atom, such as an alkali 

metal or one from the Cu/Ag/Au column in the periodic 

table, the angular momentum and magnetic moment are 

essentially equivalent to those of a single electron, but the 

electric charge can be ignored in the dynamics. 

Consider a vacuum chamber with a furnace that heats 

up such a univalent metal (such as Ag in the original 

experiment) to create a gas of single atoms.  Even without 

a deliberate magnetic field, the earth’s field ~ 50 T 

creates the 2 spin states, ↑ and ↓ aligning with the field.  

One of these is the ground state and the other the excited 

state, but the energy difference 2B is much less than kT, 

so that an equilibrium population will have virtually 50% 

in each state.  If there is a hole in the side of the oven, this 

creates an atomic beam of atoms, of both spins.  As shown 

in the conceptual diagram of Figure 1, this beam enters a 

large magnetic field, with a vertical field gradient.  This 

gradient acts to separate the beam into two sub-beams; one 

going up to smaller fields, and the other going down to 

larger fields.  The magnetic field can be removed, and the 

atoms continue to follow the separate paths, where the two 

sub-beams are detected.   

The argument for classical magnetic separation reflects 

the fact that a magnetic material will be attracted to a 

strong magnetic field, since this reduces the energy.  The 

ground state of an electron spin, where the electron 

magnetic moment aligns with the external field, is of this 

type.  In contrast, a diamagnetic material (or a 

superconductor) will repel a strong magnetic field, since 

this increases the energy.  The excited spin state is 

effectively diamagnetic.   

The trends in energy levels can be seen in the energy 

level diagram of Figure 6.  This shows how the two energy 

levels in the ground and excited states change as they 

move from the oven into the magnet, and how their energy 

changes in the magnet due to transverse motion.  The 

initial energy differences in the oven are quite small, and 

the two mixed sub-beams stream out toward the magnet 

with thermal kinetic energies ~ kT.  The ground-state sub-

beam reduces its potential energy as it enters the large 

magnetic field, thus accelerating its velocity to maintain 

constant total energy.  The excited-state sub- beam 

 

Figure 6: Trends in ground and excited energy levels in 

single-stage Stern-Gerlach experiment, moving from the oven 

(left) to the inhomogeneous magnet (right).  

 

increases its potential energy as it enters the large  

magnetic field, requiring the atoms in the beam to slow 

down.  But since the changes in potential energy are much 

smaller than kT, this change in speed will not be noticed.  

However, this large magnetic field is vertically 

inhomogeneous, with increasing field in the vertical 

direction.  The ground-state sub-beam will bend upwards, 

attracted to the increasing field, while the excited state 

sub-beam will bend downwards, repelled by the larger 

field.  These changes in direction will be maintained if the 

fields are reduced, permitting a separation into the two 

sub-beams. 

However, this classical explanation is not quite the one 

presented in textbooks for the Stern-Gerlach experiment.  

Instead, it is asserted that this is a prototypical quantum 

measurement [24].  The initial beam, rather than being a 

classical mixture of atoms with ↑ and ↓, is a linear 

superposition of the two as in Eq. (26).  Then, the 

inhomogeneous magnetic field in the magnet acts 

somehow to decohere this superposition into a statistical 

mixture, at which point classical magnetic separation can 

occur.  This gives exactly the same final result, so how can 

we tell which is correct?  And if we can’t tell, does it 

matter? 

But the single-stage Stern-Gerlach experiment is not the 

only experiment of this type that is described in textbooks.  

The two-stage Stern-Gerlach experiment [25] is also 

described, in a way that suggests that this experiment was 

also carried out in the early days of quantum mechanics.  

In the two-stage experiment, one of the two separated 

beams from the first stage is sent to a second gradient 

magnet, this one with its transverse field direction rotated
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Figure 7:  Two-stage Stern-Gerlach experiment.                  

(a)  Experimental  diagram.  (b)  Energy level diagram. 

 
by an angle  with respect to that of the first magnet (see 

Figure 7a). 

This is analogous to the double-polarizer optics 

experiment, with a similar quantum analysis, but the two-

stage spin experiment has never actually been reported.  

Feynman [25] commented that the 2-stage experiment was 

never done, but others neglect to mention this.  In our 

interpretation of this experiment [26], indicated in Figure 

7b, the excited beam from the first stage remains 100% 

excited in the 2
nd

 stage, regardless of the angle .  This 

happens because the spin of the electrons in the excited 

beam rotate (adiabatically) in the fringe fields to follow the 

local magnetic field.  In contrast, in the orthodox 

superposition picture, the electrons in the excited beam 

form a new superposition state 

  ̃2cos ̃↑ + sin ̃↓, (27) 

which gives rise to a 2
nd

 beam splitting that goes as cos
2
 

and sin
2
, similar to that which happens in the optical 

linear polarizer experiment.  This prediction is so strongly 

believed that a high-quality computer animation has been 

developed to teach students about this [27].  However, we 

see little basis for the formation of such a superposition 

state. 

We propose that this 2-stage Stern-Gerlach experiment 

should be carried out as soon as possible.  Instrumentation 

for the 1-stage Stern-Gerlach experiment designed for 

student laboratories is available commercially [28], and 

could be adapted for the 2-stage experiment. 

This would make a good student project, and the results 

could be revolutionary.  We would be happy to consult on 

such an effort. 

 
5 Discussion and Conclusions 

We have focused on the importance of spin and the 

Schrödinger equation to quantum mechanics, but 

Schrödinger himself is also well known for another aspect 

– his objection to quantum superposition and entanglement 

[29,1], which he was the first to name.  Einstein was 

another skeptic of entanglement – he called it “spooky 

action at a distance” and questioned its consistency with 

relativity.  We suggest that entanglement first entered the 

theory to explain the Pauli exclusion principle in 1925, 

although this aspect was not appreciated at the time.  In 

1935, Schrödinger proposed a thought-experiment (now 

known as Schrödinger’s cat paradox [30]) involving a cat 

in a quantum superposition of being alive and dead, due to 

entanglement with a radioactive atom, to illustrate this 

problem.  Also in 1935, Einstein proposed the Einstein- 

Podolsky-Rosen (EPR) paradox [31] involving 

complementary measurements on entangled states.  

Neither Schrödinger nor Einstein ever accepted these 

quantum deviations from realism as correct, complete, and 

consistent.  We tend to side with Schrödinger and Einstein 

in this matter.   

We have proposed that spin is central to quantum 

mechanics, and that electrons and photons are soliton-like 

distributed rotating vector fields with quantized total spin.  

Soliton-like effects provide a natural explanation for the 

Pauli exclusion principle, without quantum entanglement 

or intrinsic uncertainty.  An important conceptual feature 

of this realistic picture is that it has no separation between 

the quantum and classical worlds. The physical laws and 

mathematical equations and symmetries are the same on 

all scales, apart from a characteristic scale of discrete 

angular momentum given by .  But can this really be 

consistent with physical observations on microscopic and 

macroscopic scales?   

The key question is how one builds up from these 

fundamental quantized fields.  According to the Standard 

Model of Elementary Particles [32], there are two types of 

fundamental particles:  spin-1/2 fermions like the electron 

(quarks, neutrinos, muons) and spin-1 bosons like the 

photon (gluons, W & Z).  (We will neglect the Higgs 

boson, which is proposed to have zero spin.) In a 

composite particle, the component spins add up, taking 

account of signs.  So for example, a proton or neutron is 

composed of 3 quarks, with a total spin of ½.  
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Figure 8:  Realistic picture of a nucleon composed of 3 

quarks, each of which is a fermion with spin-1/2.  The quarks 

consist of distributed rotating vector fields (red, green, and 

blue) confined to the nucleon, but the nucleon itself is not a 

quantum wave, and is not a fermion. 

 
In the orthodox picture (known as the “spin-statistics 

theorem” [33]), a proton or neutron is a fermion just like 

an electron.  Similarly, a composite of an even number of 

fermions (such as a spin-zero pion or a spin-zero helium 

atom) would be a boson, acting just like a photon. 

In our realistic picture [11], the fundamental particles 

are true quantum waves; there are no point particles 

anywhere.  Composites of these quantum particles are not 

waves at all, but merely bags of internally confined 

wavepackets (see Figure 8).  That means that a proton or 

neutron is just a particle with a scale of 1 fm, while an 

atom is just a particle with a scale of 1 Å; there are no de 

Broglie waves for these composite particles, and they are 

neither fermions nor bosons.  We argue that these 

composite particles follow classical dynamics, but not all 

classical trajectories are accessible.  For example, a 

molecule has quantized rotational and vibrational states, 

not because it is a wave, but rather because transitions 

between states must be mediated by quantized photons.   

It is widely believed that quantum diffraction of a 

particle beam from a crystalline lattice or orifice proves 

that neutrons, atoms, and molecules are de Broglie waves 

[34].  However, there is an alternative explanation, even 

within conventional quantum theory.  Van Vliet [35] 

showed that if one regards the diffracting crystal or mask 

as a quantum object, then using standard quantum 

analysis, one obtains the standard diffraction result 

regardless of the particle or wave nature of the incident 

particle beam.  For example, in neutron diffraction, a 

neutron may be absorbed by a nucleus and re-emitted, but 

the momentum transfer from the lattice to the neutron is 

 

 
Figure 9:  Conceptual picture of neutron diffraction from a 

crystal lattice.  (Top)  Conventional coherent wave picture.  

(Bottom)  Alternative particle picture, where quantized 

momentum transfer from the lattice, rather than coherent 

scattering, is responsible for the diffraction. 

 
quantized at P = G [36], where G is a reciprocal lattice 

vector of the crystalline lattice (see Figure 9).  This does 

not require a coherent neutron wave, as would be required 

for classical wave diffraction.  Similarly, a particle beam 

composed of large molecules such as C60 (and even larger) 

has been shown to diffract on passing through a narrow slit 

[37]. This has been attributed to a de Broglie wave of C60, 

but the same quantitative result follows from quantized 

momentum transfer from the slit to C60 molecules after 

collision.     

If a neutron is not a fermion, wouldn’t that affect the 

models of nuclei and neutron stars?  Yes, but one can 

attribute the compressibility properties of nucleons to the 

underlying fermion properties of the component quarks, 

rather than to the fermion nature of a nucleon itself.  

Within this realistic picture, one would expect nucleons in 

nuclei to be more like atoms in crystals [38], rather than 

like electrons in metals (which are true waves). 

A further question about the quantum nature of 

composites relates to Bose-Einstein condensates [39], 

where in analogy with a laser, most or all the atoms or 

electrons can be in phase in the same ground state.  Three 

types deserve attention:  superfluid helium, super-

conductors, and dilute atomic gases.  
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Figure 10:  Checkerboard pattern representing two 

sublattices of atoms in a real-space model of a superfluid 

state.  Each red atom is surrounded by gray atoms with 

electrons having the same energy and spin, but with a phase 

difference of 180 deg., i.e. a change in sign.  The entire 

structure can move together without loss. 

 
 Regarding superfluidity in liquid helium [40], this 

occurs in the common isotope He-4 at 2 K, while it does 

not occur in the less-common isotope He-3, at least until 

temperatures below 2 mK.  In both isotopes, the net 

electron spin is zero, but while the He-4 nucleus has zero 

spin, the He-3 nucleus has spin-1/2.  Therefore, He-4 may 

be classified as a boson, while He-3 may be classified as a 

fermion, which would seem to explain the difference.  At 

very low temperatures, two He-3 atoms may form a 

correlated pair, which again becomes a boson, enabling 

boson condensation again. 

However, an alternative explanation of superfluidity 

without bosons is shown in Figure 10 [41, 11].  This 

shows a real-space checkerboard picture (which may be 

generalized to 3D) of two sublattices of atoms, where each 

of the red atoms is surrounded by black atoms, and vice 

versa.  Both the red and black atoms have electrons with 

the same energy and spin direction. However, the electrons 

in the two sublattices have real quantum rotations that are 

180 degrees out of phase, so that there are nodal planes 

between adjacent electron states.  These nodal planes, 

which represent anti-bonding orbitals, are compatible with 

the Pauli exclusion principle.  This locks individual atoms 

in place, but this entire structure can move as a rigid block 

with no dissipation, enabling superfluidity.   

This mechanism maintains long-range phase coherence, 

and should apply for both He-4 and He-3, since they 

should have the same electron configurations. However, 

the He-3 nucleus has a magnetic moment due to the 

uncompensated spin.  This magnetic moment, though 

small, can create an inhomogeneous energy shift 

(dephasing) of adjacent electrons, destabilizing the 

structure of Figure 10.  At ultra-low temperatures, the 

nuclear magnetic moments can order ferromagnetically, 

enabling identical environments for adjacent electrons,  

 

Figure 11:  Proposed alternative explanation for 

observations of Bose-Einstein Condensation in dilute 

atomic gases.  Below a characteristic temperature, the 
atoms tend to condense into two-phase clusters similar to 

that in Figure 10. 

 
thus restoring the order in Figure 10. 

In superconductors, the mobile conduction electrons are 

fermions, but according to the orthodox BCS theory of 

superconductivity [42], the electrons may pair up with 

phonons to form “Cooper pairs”, which are then bosons, 

and which can correlate their motion over a coherence 

length  to achieve lossless superconducting behavior.  In 

an alternative real-space realistic picture [43, 44, 45], 

electron waves diffract from a self-induced coherent 

phonon field to create localized electron orbitals on the 

scale of .  These localized orbitals with the same energy 

and spin then organize to form the two correlated 

sublattices of Figure 11.  Again, such a structure prevents 

local scattering, but maintains long-range phase coherence, 

and enables lossless electron transport by motion of the 

entire structure relative to the atomic cores.  Remarkably, 

this theory maps onto the equations for much of the BCS 

theory.  It even reproduces flux quantization in units of 

h/2e, where 2e is usually asserted to prove the existence of 

Cooper pairs.  This alternative picture also makes testable 

predictions that would not be expected from standard 

theory [46, 47]. 

Dilute gases of univalent alkali metals, with spins 

aligned in large magnetic fields at low temperatures 

(which prevents spin flips and atomic bonding), have been 

found to undergo a phase transition at ultra-low 

temperatures.  The velocity distribution of the atoms in the 

gas suddenly narrows, which is attributed to Bose-Einstein 

condensation [39].  According to orthodox quantum 

theory, the atoms are far apart, but their extended de 

Broglie waves tend to lock in phase.  In contrast, we 

suggest that the gas atoms tend to form larger clusters 

similar to the two-phase condensate in Figure 10 (see 

Figure 11).  Larger clusters have higher mass, and 

therefore lower thermal velocities, thus fitting the 
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experimental data without the need for atomic de Broglie 

waves, which we suggest do not exist.  Clusters should 

also be detectable by other means, which should enable 

this alternative theory to be tested [41, 11]. 

Regarding quantum entanglement, there have been 

numerous experiments based in part on the EPR paradox, 

measuring the linear polarization of single photons from 

correlated photon pairs, which have tended to support 

entanglement over local realism.  However, we argue [48] 

that a single photon should correspond to circular 

polarization with spin S = ±, and that a linearly polarized 

field requires at least 2 oppositely polarized CP photons.  

Is it conceivable that experiments claiming to detect single 

photons are really detecting two simultaneous photons?  

Yes, in fact most photon detectors are avalanche-type 

event detectors, which cannot distinguish 1 from 2 

simultaneous photons.  However, certain types of newer 

superconducting single photon detectors measure absorbed 

energy, and can therefore count photons.  This is another 

experiment that can help address quantum foundations, 

which to our knowledge has not yet been done. 

Finally, discussions of the foundational interpretation of 

quantum theory have been going on for almost a century, 

without clear resolution.  One reason has been that there 

have not been major technological applications that 

depend on these foundational issues.  That has changed 

recently with quantum computing.  In essence, quantum 

computing promises exponentially massive parallelism in 

bit processing without massive parallelism in hardware.  

This follows from entanglement among N qubits, the two-

state quantum systems that are the quantum analog of 

classical bits.  Since this effective parallelism goes as 2
N 

due to entanglement, if N = 300, this speedup is greater 

than the number of atoms in the universe.  This would be 

fantastic if it were true, which is why this has generated so 

much interest.  There are now billions of dollars being 

invested in quantum computing research, so there should 

be an answer within a decade as to whether this is 

possible.  We suggest that this issue could be settled more 

economically by a few simpler experiments testing 

quantum foundations [26, 49].  However, most of the 

research is proceedings uncritically.  For example, among 

the several technological approaches to quantum 

computing, the one using superconducting qubits based on 

Josephson junctions may be the most prominent.  One 

other research group [50, 51] has re-analyzed many of the 

Josephson junction systems which claim to provide clear 

evidence for quantum effects, and has found that virtually 

all of these can be equally well explained using fully 

classical dynamics, without superposition and 

entanglement.  However, this important work has been 

completely ignored by the active researchers in the field. 

In conclusion, the central question of quantum 

mechanics remains what it has been since Schrödinger 

asked it almost a century ago:  

What is the physical meaning of the quantum 

wavefunction? 

The orthodox interpretation of quantum mechanics has 

denied that this question is meaningful, and has thereby 

stifled much-needed research into these foundations.  We 

suggest that what is needed is to go back to the beginning, 

reexamine the assumptions, and identify experimental tests 

that can illuminate these assumptions.  Despite the 

widespread belief that local realism has been disproven, 

we maintain that a realistic model remains tenable, and can 

be tested.  In particular, a realistic model of rotating 

relativistic vector fields seem eminently suitable as a basis 

for quantum waves with spin, but this was apparently 

never examined in the early days.  Our model is not yet 

complete; it requires a nonlinear self-interaction to create 

discrete soliton-like objects with quantized total spin.  But 

it already suggests experimental tests that may illuminate 

quantum foundations. For example, a two-stage Stern-

Gerlach experiment can address quantum superposition, 

and other laboratory experiments can address issues of 

quantum entanglement and boson condensation.  The new 

field of quantum computing may also provide insights into 

these questions, provided that physicists keep an open 

mind.  The next decade should be interesting, and may 

provide a resolution of the central question.  We suggest 

that the future will restore local realism to an honored role 

in the physical universe, which both Schrödinger and 

Einstein might have approved.  
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