THE KAKEYA TUBE CONJECTURE IMPLIES THE KAKEYA
CONJECTURE
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ABSTRACT. In this article we will give a proof that the Kakeya tube conjecture
implies the Kakeya conjecture.

1. INTRODUCTION

We define the § - tubes in standard way: for all § > 0,w € S™ ! and a € R”, let
1
Tg(a) ={zeR:|(z—a) w < 2 |proj,. (x — a)| < 6}.

In this paper any constant can depend on dimension n. A Kakeya set is a compact
set that contains an unit line in every direction. We will give a proof that the result

Uz, =~1
weN
for maximal set of § - tubes implies the Kakeya conjecture.

Theorem 1 (Kakeya conjecture). Any Kakeya set has full Hausdorff dimension.

2. THE PROOF

For our definition of Hausdoff content see for example [6]. Let K be a Kakeya
set, that is, a set that contains an unit line in every direction. let Ujoil B; be a
cover of K with balls of diameters less than 1 > 8 > 0. Let n > n — a > 0 be such
that

oo
n—o
(1) > o<l
=1

If the hausdorff content is zero that kind of cover exists. By compactness of the
Kakeya set we can take a subcover with diameters such that 1 > 8 > r; > 6 > 0,
where at least one r; ~ §. Now, assume

M M N
(2) YorrziUsilzIUnzt

j=1 j=1 i=1
The second inequality above follows because the balls cover the middle lines of the
tubes, so there exists a constant such that the second inequality above is valid.
Using inequality (1) and (2) we obtain

M M
(3) Coypd /¥ Zr; > Zr;ﬁa.
j=1 j=1
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M
(4) > 1 (Caprd™F —1r7%) > 0.

j=1
It follows that for the average value of a power of diameters it holds that

M 1 XM
(5) Capd ™/ > 51> 17 2 g Q)™
j=1 j=1
where we used Jensen‘s inequality. Thus,
M
(6) C"MZ” > §l/k,
j=1
From above it follows that
(Ca)n - n Can Z n n/k
L (S = (S ) >
j=1 j=1

where we used Jensen‘s inequality again. Thus, from above and inequality (1)
Co > Mk,

It follows from above that

(7) oEC, > M

We can do the steps (3), (4) and (5) again for € = /2 and obtain
| M
(8) Cloyad /% > i > e

j=1
Let & and a small § be such that
6—@/3 > Ca(s—n/k.

From above and inequalities (7) and (8) we obtain
M

(9) Ca/25_a/2 > 604/3 erfa > 6a/36—o¢ — 6—2/3047
j=1

which is a contradiction when § is small.
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